Solutions final test Advanced Calculus (2DBN10) January 2024

No rights can be derived from these solutions.

1. The eigenvalues of the coefficient matrix are $\lambda_{1,2}=2 \pm i$. An eigenvector corresponding to $\lambda_{1}=2+i$ is $(2,3+i)$. So the general real solution is

$$
\begin{aligned}
y(t) & =C_{1} \operatorname{Re}\left[\binom{2}{3+i} e^{(2+i) t}\right]+C_{2} \operatorname{Im}\left[\binom{2}{3+i} e^{(2+i) t}\right] \\
& =e^{2 t}\left[C_{1}\binom{2 \cos t}{3 \cos t-\sin t}+C_{2}\binom{2 \sin t}{\cos t+3 \sin t}\right]
\end{aligned}
$$

These solutions satisfy $y(t) \rightarrow 0$ for $t \rightarrow-\infty$ and are therefore not periodic (unless $y \equiv 0$.)
2. The characteristic polynomial has the simple root $\lambda_{1}=1$ and the double root $\lambda_{2,3}=-2$. Accordingly, a suitable ansatz is

$$
y_{p}(t)=A t^{2} e^{-2 t}+B
$$

Direct calculation yields $A=-1 / 6, B=-1 / 4$.
3. a)

b) $z=-2+2(x-1)+y-2$
c) $2(x-1)+y-2=0$, or $2 x+y=4$.
4. Expressing $D_{v} f(0,0)$ and $D_{w} f(0,0)$ in terms of the partial derivatives $\partial_{1} f(0,0)$ and $\partial_{2} f(0,0)$ yields

$$
\begin{aligned}
\partial_{1} f(0,0)+\partial_{2} f(0,0) & =3 \\
2 \partial_{1} f(0,0)-\partial_{2} f(0,0) & =-3
\end{aligned}
$$

Solving this system yields $\nabla f(0,0)=\left(\partial_{1} f(0,0), \partial_{2} f(0,0)\right)^{\top}=(0,3)^{\top}$.
5. Critical points of f satisfy

$$
\nabla f(x, y)=\binom{1-2 x y}{1-x^{2}}=0
$$

hence $(x, y)= \pm(1,1 / 2)$. Only the point $(1,1 / 2)$ lies in D, with $f(1,1 / 2)=1$.
We now consider the boundary line segments:

1. Let

$$
g_{1}(x):=f(x, 0)=x, \quad 0 \leq x \leq 2
$$

The maximal value of f on the line segment from $(0,0)$ to $(2,0)$ is $f(2,0)=2$.
The minimal value of f on the line segment from $(0,0)$ to $(2,0)$ is $f(0,0)=0$.
2. Let

$$
g_{2}(y):=f(0, y)=y, \quad 0 \leq y \leq 2
$$

The maximal value of f on the line segment from $(0,0)$ to $(0,2)$ is $f(0,2)=2$.
The minimal value of f on the line segment from $(0,0)$ to $(0,2)$ is $f(0,0)=0$.
3. Let

$$
g_{3}(x):=f(x, 2-x)=2-x^{2}(2-x)=x^{3}-2 x^{2}+2, \quad 0 \leq x \leq 2
$$

Then $g_{3}^{\prime}(x)=x(3 x-4)$ and $g_{3}^{\prime}(x)=0$ only if $x=0$ or $x=4 / 3$.
The maximal value of f on the line segment from $(0,2)$ to $(2,0)$ is $f(0,2)=f(2,0)=2$.
The minimal value of f on the line segment from $(0,2)$ to $(2,0)$ is $f(4 / 3,2 / 3)=22 / 27$.
So the maximal value of f on D is $f(0,2)=f(2,0)=2$ and the minimal value of f on D is $f(0,0)=0$.
6. The Lagrange equations are

$$
\left(\begin{array}{c}
y \\
x-1 \\
2 z
\end{array}\right)=\lambda\left(\begin{array}{l}
2 x \\
2 y \\
2 z
\end{array}\right), \quad x^{2}+y^{2}+z^{2}=1
$$

Because of $z=\lambda z$ we either have $z=0$ or $\lambda=1$.

1. If $z=0$ then $1-x^{2}=y^{2}=2 \lambda x y=x^{2}-x$, i.e. $2 x^{2}-x-1=0$ with solutions $x_{1}=-1 / 2$, $x_{2}=1$.
1.1. If $x=1 / 2$ then $y=\lambda= \pm \sqrt{3} / 2$. This yields two solutions to the Lagrange equations with $f(1 / 2, \pm \sqrt{3} / 2,0)=\mp 3 \sqrt{3} / 4$.
1.2. If $x=1$ then $y=\lambda=0$. This yields a solution to the Lagrange equations with $f(1,0,0)=0$.
2. If $\lambda=1$ then $4 x=2 y=x-1$, i.e. $x=-1 / 3, y=-2 / 3, z= \pm 2 / 3$. This yields two solutions to the Lagrange equations with $f(-1 / 3,-2 / 3, \pm 2 / 3)=4 / 3$.
Comparing the values in the solution points, we find that the maximal value of f is $4 / 3$ and the minimal value is $-3 \sqrt{3} / 4$.
3. a) With $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by

$$
F(t, x, y)=\binom{e^{x t}+x+y-3}{e^{y t}+x^{2}+y^{3}-3}
$$

the conditions are:

$$
F\left(t_{0}, x_{0}, y_{0}\right)=0, \text { i.e. }
$$

$$
\begin{aligned}
& e^{x_{0} t_{0}}+x_{0}+y_{0}=3, \\
& e^{y_{0} t_{0}}+x_{0}^{2}+y_{0}^{3}=3,
\end{aligned}
$$

and

$$
D F_{(x, y)}\left(t_{0}, x_{0}, y_{0}\right)=\left(\begin{array}{cc}
t_{0} e^{x_{0} t_{0}}+1 & 1 \\
2 x_{0} & t_{0} e^{y_{0} t_{0}}+3 y_{0}^{2}
\end{array}\right)
$$

invertible. Under these assumptions, the Implicit Function theorem ensures the unique solvability of the given system near $\left(t_{0}, x_{0}, y_{0}\right)$ for $x=\xi(t), y=\eta(t)$.
b) We indeed have $F(0,1,1)=0$ and

$$
D_{(x, y)} F(0,1,1)=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)
$$

which is invertible (e.g. because its determinant is 1).
From the chain rule we get

$$
D_{(x, y)} F(0,1,1)\binom{\xi^{\prime}(0)}{\eta^{\prime}(0)}=-D_{t} F(0,1,1)=-\binom{1}{1}
$$

Solving this system yields $\xi^{\prime}(0)=-2, \eta^{\prime}(0)=1$.
So the linearizations around $t=0$ are

$$
\xi(t) \approx 1-2 t, \quad \eta(t) \approx 1+t
$$

8. Cylindrical coordinates:

$$
\operatorname{Vol}(K)=\iiint_{K} d V=\int_{0}^{\pi / 4} \int_{0}^{1} \int_{z(1-z)}^{2 z(1-z)} r d r d z d \theta=\pi / 80
$$

9. "adapted" cylindrical coordinates $((x, y, z)=(x, r \cos \theta, r \sin \theta))$:

$$
\iiint_{K} x d V=\int_{0}^{2 \pi} \int_{1}^{2} x \int_{0}^{\sqrt{4-x^{2}}} r d r d x d \theta \quad \text { or } \quad \iiint_{K} x d V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} r \int_{1}^{\sqrt{4-r^{2}}} x d x d r d \theta=9 \pi / 4
$$

