
Solutions final test Advanced Calculus (2DBN10)
January 2024

No rights can be derived from these solutions.

1. The eigenvalues of the coefficient matrix are λ1,2 = 2 ± i. An eigenvector corresponding to
λ1 = 2 + i is (2, 3 + i). So the general real solution is

y(t) = C1 Re

[(
2

3 + i

)
e(2+i)t

]
+ C2 Im

[(
2

3 + i

)
e(2+i)t

]
= e2t

[
C1

(
2 cos t

3 cos t− sin t

)
+ C2

(
2 sin t

cos t+ 3 sin t

)]
.

These solutions satisfy y(t) → 0 for t → −∞ and are therefore not periodic (unless y ≡ 0.)

2. The characteristic polynomial has the simple root λ1 = 1 and the double root λ2,3 = −2.
Accordingly, a suitable ansatz is

yp(t) = At2e−2t +B.

Direct calculation yields A = −1/6, B = −1/4.

3. a)

b) z = −2 + 2(x− 1) + y − 2

c) 2(x− 1) + y − 2 = 0, or 2x+ y = 4.

4. ExpressingDvf(0, 0) and Dwf(0, 0) in terms of the partial derivatives ∂1f(0, 0) and ∂2f(0, 0)
yields

∂1f(0, 0) + ∂2f(0, 0) = 3,
2∂1f(0, 0)− ∂2f(0, 0) = −3.

Solving this system yields ∇f(0, 0) = (∂1f(0, 0), ∂2f(0, 0))
⊤ = (0, 3)⊤.

5. Critical points of f satisfy

∇f(x, y) =

(
1− 2xy
1− x2

)
= 0,
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hence (x, y) = ±(1, 1/2). Only the point (1, 1/2) lies in D, with f(1, 1/2) = 1.

We now consider the boundary line segments:

1. Let
g1(x) := f(x, 0) = x, 0 ≤ x ≤ 2.

The maximal value of f on the line segment from (0, 0) to (2, 0) is f(2, 0) = 2.

The minimal value of f on the line segment from (0, 0) to (2, 0) is f(0, 0) = 0.

2. Let
g2(y) := f(0, y) = y, 0 ≤ y ≤ 2.

The maximal value of f on the line segment from (0, 0) to (0, 2) is f(0, 2) = 2.

The minimal value of f on the line segment from (0, 0) to (0, 2) is f(0, 0) = 0.

3. Let
g3(x) := f(x, 2− x) = 2− x2(2− x) = x3 − 2x2 + 2, 0 ≤ x ≤ 2.

Then g′3(x) = x(3x− 4) and g′3(x) = 0 only if x = 0 or x = 4/3.

The maximal value of f on the line segment from (0, 2) to (2, 0) is f(0, 2) = f(2, 0) = 2.

The minimal value of f on the line segment from (0, 2) to (2, 0) is f(4/3, 2/3) = 22/27.

So the maximal value of f on D is f(0, 2) = f(2, 0) = 2 and the minimal value of f on D is
f(0, 0) = 0.

6. The Lagrange equations are y
x− 1
2z

 = λ

2x
2y
2z

 , x2 + y2 + z2 = 1

Because of z = λz we either have z = 0 or λ = 1.

1. If z = 0 then 1−x2 = y2 = 2λxy = x2−x, i.e. 2x2−x− 1 = 0 with solutions x1 = −1/2,
x2 = 1.

1.1. If x = 1/2 then y = λ = ±
√
3/2. This yields two solutions to the Lagrange equations

with f(1/2,±
√
3/2, 0) = ∓3

√
3/4.

1.2. If x = 1 then y = λ = 0. This yields a solution to the Lagrange equations with
f(1, 0, 0) = 0.

2. If λ = 1 then 4x = 2y = x − 1, i.e. x = −1/3, y = −2/3, z = ±2/3. This yields two
solutions to the Lagrange equations with f(−1/3,−2/3,±2/3) = 4/3.

Comparing the values in the solution points, we find that the maximal value of f is 4/3 and
the minimal value is −3

√
3/4.

7. a) With F : R3 −→ R2 given by

F (t, x, y) =

(
ext + x+ y − 3
eyt + x2 + y3 − 3

)
the conditions are:

F (t0, x0, y0) = 0, i.e.
ex0t0 + x0 + y0 = 3,
ey0t0 + x2

0 + y30 = 3,

and

DF(x,y)(t0, x0, y0) =

(
t0e

x0t0 + 1 1
2x0 t0e

y0t0 + 3y20

)
invertible. Under these assumptions, the Implicit Function theorem ensures the unique
solvability of the given system near (t0, x0, y0) for x = ξ(t), y = η(t).
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b) We indeed have F (0, 1, 1) = 0 and

D(x,y)F (0, 1, 1) =

(
1 1
2 3

)
which is invertible (e.g. because its determinant is 1).

From the chain rule we get

D(x,y)F (0, 1, 1)

(
ξ′(0)
η′(0)

)
= −DtF (0, 1, 1) = −

(
1
1

)
.

Solving this system yields ξ′(0) = −2, η′(0) = 1.

So the linearizations around t = 0 are

ξ(t) ≈ 1− 2t, η(t) ≈ 1 + t.

8. Cylindrical coordinates:

Vol(K) =

∫∫∫
K

dV =

∫ π/4

0

∫ 1

0

∫ 2z(1−z)

z(1−z)

r drdzdθ = π/80.
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9. “adapted” cylindrical coordinates ((x, y, z) = (x, r cos θ, r sin θ)):∫∫∫
K

x dV =

∫ 2π

0

∫ 2

1

x

∫ √
4−x2

0

r drdxdθ or

∫∫∫
K

x dV =

∫ 2π

0

∫ √
3

0

r

∫ √
4−r2

1

x dxdrdθ = 9π/4.
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