
Let I ⊂ R be an interval.

Proposition 1 Let (fn) be a sequence of functions on I. Suppose:

(i) fn continuously differentiable on I for all n

(ii) (fn) pointwise convergent on I to f : I −→ R.

(iii) f ′n uniformly convergent to g : I −→ R.

Then f is continuously differentiable on I and f ′ = g.

Proof: Because of (i), (iii), and Theorem [K] 8.3.1, g is continuous on I. Let
a ∈ I and ε > 0 be given. Because of the continuity of g,

∃δ > 0 : ∀x ∈ I : |x− a| < δ ⇒ |g(x)− g(a)| < ε/4.

Choose such a δ and let h ∈ (−δ, δ) \ {0} with a+h ∈ I. We are going to show:∣∣∣∣f(a+ h)− f(a)

h
− g(a)

∣∣∣∣ < ε. (1)

Because of (ii) and (iii) we have

∃n1 : ∀n ≥ n1 : ‖f ′n − g‖∞ < ε/4,

∃n2 : ∀n ≥ n2 : |fn(a)− f(a)| < ε|h|/4,
∃n3 : ∀n ≥ n3 : |fn(a+ h)− f(a+ h)| < ε|h|/4.

Choose n1,2,3 correspondingly, and let n ≥ n0 := max{n1, n2, n3}. According to
the Mean Value theorem, there is a c between a and a+ h such that

fn(a+ h)− fn(a)

h
= f ′n(c),

and because of |a− c| < |h| < δ we have

|g(c)− g(a)| < ε/4.

So ∣∣∣∣f(a+ h)− f(a)

h
− g(a)

∣∣∣∣
4
≤ 1

|h|
|f(a+ h)− fn(a+ h)|+

∣∣∣∣fn(a+ h)− fn(a)

h
− g(a)

∣∣∣∣+
1

|h|
|fn(a)− f(a)|

MVT
≤ 1

|h|
|f(a+ h)− fn(a+ h)|+ |f ′n(c)− g(a)|+ 1

|h|
|fn(a)− f(a)|

4
≤ 1

|h|
|f(a+ h)− fn(a+ h)|︸ ︷︷ ︸

<ε/4

+ |f ′n(c)− g(c)|︸ ︷︷ ︸
≤‖f ′

n−g‖∞<ε/4

+ |g(c)− g(a)|︸ ︷︷ ︸
<ε/4

+
1

|h|
|fn(a)− f(a)|︸ ︷︷ ︸

<ε/4

< ε,
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Proposition 2 ([K] 8.2.8, Cauchy’s criterion)
Let D ⊂ R and let (fn) be a sequence of functions on D such that

∀ε > 0 : ∃n0 : ∀n,m ≥ n0 : ‖fn − fm‖∞ < ε.

Then (fn) is uniformly convergent.

Proof: Let x ∈ D. Then

∀ε > 0 : ∃n0 : ∀n,m ≥ n0 : |fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε,

so (fn(x)) is a Cauchy sequence in R, and therefore convergent. Define the
pointwise limit f : D −→ R by

f(x) := lim
n→∞

fn(x), x ∈ D.

We have to show ‖f − fn‖∞ → 0 as n → ∞. Let ε > 0 and x ∈ D arbitrary.
Then

∃n0 : ∀n,m ≥ n0 : |fn(x)− fm(x)| < ε/2.

Choose such an n0, fix n ≥ n0 and consider the limit m→∞. This gives

|fn(x)− f(x)| ≤ ε/2 < ε.

As x ∈ D is arbitrary, we get

‖f − fn‖∞ = sup
x∈D
|fn(x)− f(x)| ≤ ε/2 < ε.

Proposition 3 ([K] 8.3.7, Dini’s criterion)
Let [a, b] be a bounded closed interval, (fn) a sequence of functions on [a, b].

Suppose:

(i) fn → f∗ pointwise,

(ii) fn continuous for all n, f∗ continuous.

(iii) (fn) is an increasing sequence, i.e.

∀x ∈ [a, b] : ∀n,m ∈ N : n > m ⇒ fn(x) ≥ fm(x).

Then fn → f∗ uniformly.

Proof: Because of (i) and (iii) we have fn(x) ≤ f∗(x) for all x ∈ [a, b]. Assume
the convergence is not uniform. Then

∃ε > 0 : ∀n ∈ N : ∃xn ∈ [a, b] : fn(xn) ≤ f∗(xn)− ε. (2)

According to the Bolzano-Weierstrass theorem, the sequence (xn) has an accu-
mulation point x∗.
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Fix m ∈ N. The functions fm and f∗ are continuous, so

∃δ > 0 : ∀x ∈ [a, b] :

|x− x∗| < δ ⇒
(
|f∗(x)− f∗(x∗)| < ε/3 ∧ |fm(x)− fm(x∗)| < ε/3

)
. (3)

Choose such a δ and choose k ∈ N such that k ≥ m and |xk − x∗| < δ. (This is
possible because x∗ is an accumulation point of the sequence (xn).) Then

fm(x∗)
(3)
< fm(xk) + ε/3

(iii)

≤ fk(xk) + ε/3
(2)

≤ f∗(xk)− 2ε/3
(3)
< f∗(x∗)− ε/3.

Passing to the limit m→∞ gives f∗(x∗) ≤ f∗(x∗)− ε/3. This is a contra-
diction.
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