Let $I \subset \mathbb{R}$ be an interval.

Proposition 1 Let (f_n) be a sequence of functions on *I*. Suppose:

- (i) f_n continuously differentiable on I for all n
- (ii) (f_n) pointwise convergent on I to $f: I \longrightarrow \mathbb{R}$.
- (iii) f'_n uniformly convergent to $g: I \longrightarrow \mathbb{R}$.

Then f is continuously differentiable on I and f' = g.

Proof: Because of (i), (iii), and Theorem [K] 8.3.1, g is continuous on I. Let $a \in I$ and $\varepsilon > 0$ be given. Because of the continuity of g,

$$\exists \delta > 0: \quad \forall x \in I: \quad |x - a| < \delta \Rightarrow |g(x) - g(a)| < \varepsilon/4.$$

Choose such a δ and let $h \in (-\delta, \delta) \setminus \{0\}$ with $a + h \in I$. We are going to show:

$$\left|\frac{f(a+h) - f(a)}{h} - g(a)\right| < \varepsilon.$$
(1)

Because of (ii) and (iii) we have

$$\begin{aligned} \exists n_1 : \quad \forall n \ge n_1 : \quad \|f'_n - g\|_{\infty} < \varepsilon/4, \\ \exists n_2 : \quad \forall n \ge n_2 : \quad |f_n(a) - f(a)| < \varepsilon |h|/4, \\ \exists n_3 : \quad \forall n \ge n_3 : \quad |f_n(a+h) - f(a+h)| < \varepsilon |h|/4. \end{aligned}$$

Choose $n_{1,2,3}$ correspondingly, and let $n \ge n_0 := \max\{n_1, n_2, n_3\}$. According to the Mean Value theorem, there is a c between a and a + h such that

$$\frac{f_n(a+h) - f_n(a)}{h} = f'_n(c),$$

and because of $|a-c| < |h| < \delta$ we have

$$|g(c) - g(a)| < \varepsilon/4.$$

 So

$$\begin{aligned} \left| \frac{f(a+h) - f(a)}{h} - g(a) \right| \\ &\stackrel{\Delta}{\leq} \quad \frac{1}{|h|} |f(a+h) - f_n(a+h)| + \left| \frac{f_n(a+h) - f_n(a)}{h} - g(a) \right| + \frac{1}{|h|} |f_n(a) - f(a)| \\ \stackrel{\text{MVT}}{\leq} \quad \frac{1}{|h|} |f(a+h) - f_n(a+h)| + |f'_n(c) - g(a)| + \frac{1}{|h|} |f_n(a) - f(a)| \\ \stackrel{\Delta}{\leq} \quad \underbrace{\frac{1}{|h|} |f(a+h) - f_n(a+h)|}_{<\varepsilon/4} + \underbrace{|f'_n(c) - g(c)|}_{<\varepsilon/4} + \underbrace{|g(c) - g(a)|}_{<\varepsilon/4} \\ + \underbrace{\frac{1}{|h|} |f_n(a) - f(a)|}_{<\varepsilon/4} < \varepsilon, \end{aligned}$$

Proposition 2 ([K] 8.2.8, Cauchy's criterion)

Let $D \subset \mathbb{R}$ and let (f_n) be a sequence of functions on D such that

 $\forall \varepsilon > 0: \quad \exists n_0: \quad \forall n, m \ge n_0: \quad \|f_n - f_m\|_{\infty} < \varepsilon.$

Then (f_n) is uniformly convergent.

Proof: Let $x \in D$. Then

$$\forall \varepsilon > 0: \quad \exists n_0: \quad \forall n, m \ge n_0: \quad |f_n(x) - f_m(x)| \le \|f_n - f_m\|_{\infty} < \varepsilon_{\alpha}$$

so $(f_n(x))$ is a Cauchy sequence in \mathbb{R} , and therefore convergent. Define the pointwise limit $f: D \longrightarrow \mathbb{R}$ by

$$f(x) := \lim_{n \to \infty} f_n(x), \qquad x \in D.$$

We have to show $||f - f_n||_{\infty} \to 0$ as $n \to \infty$. Let $\varepsilon > 0$ and $x \in D$ arbitrary. Then

$$\exists n_0: \quad \forall n, m \ge n_0: \quad |f_n(x) - f_m(x)| < \varepsilon/2.$$

Choose such an n_0 , fix $n \ge n_0$ and consider the limit $m \to \infty$. This gives

$$|f_n(x) - f(x)| \le \varepsilon/2 < \varepsilon.$$

As $x \in D$ is arbitrary, we get

$$||f - f_n||_{\infty} = \sup_{x \in D} |f_n(x) - f(x)| \le \varepsilon/2 < \varepsilon.$$

Proposition 3 ([K] 8.3.7, Dini's criterion)

Let [a, b] be a bounded closed interval, (f_n) a sequence of functions on [a, b]. Suppose:

- (i) $f_n \to f^*$ pointwise,
- (ii) f_n continuous for all n, f^* continuous.
- (iii) (f_n) is an increasing sequence, i.e.

$$\forall x \in [a, b]: \quad \forall n, m \in \mathbb{N}: \quad n > m \Rightarrow f_n(x) \ge f_m(x).$$

Then $f_n \to f^*$ uniformly.

Proof: Because of (i) and (iii) we have $f_n(x) \leq f^*(x)$ for all $x \in [a, b]$. Assume the convergence is not uniform. Then

$$\exists \varepsilon > 0: \quad \forall n \in \mathbb{N}: \quad \exists x_n \in [a, b]: \quad f_n(x_n) \le f^*(x_n) - \varepsilon.$$
(2)

According to the Bolzano-Weierstrass theorem, the sequence (x_n) has an accumulation point x^* .

Fix $m \in \mathbb{N}$. The functions f_m and f^* are continuous, so

$$\exists \delta > 0 : \quad \forall x \in [a, b] : |x - x^*| < \delta \implies \left(|f^*(x) - f^*(x^*)| < \varepsilon/3 \land |f_m(x) - f_m(x^*)| < \varepsilon/3 \right).$$
(3)

Choose such a δ and choose $k \in \mathbb{N}$ such that $k \ge m$ and $|x_k - x^*| < \delta$. (This is possible because x^* is an accumulation point of the sequence (x_n) .) Then

$$f_m(x^*) \stackrel{(3)}{<} f_m(x_k) + \varepsilon/3 \stackrel{(\text{iiii})}{\leq} f_k(x_k) + \varepsilon/3 \stackrel{(2)}{\leq} f^*(x_k) - 2\varepsilon/3 \stackrel{(3)}{<} f^*(x^*) - \varepsilon/3.$$

Passing to the limit $m \to \infty$ gives $f^*(x^*) \le f^*(x^*) - \varepsilon/3$. This is a contradiction.