Let $I \subset \mathbb{R}$ be an interval.
Proposition 1 Let $\left(f_{n}\right)$ be a sequence of functions on I. Suppose:
(i) f_{n} continuously differentiable on I for all n
(ii) $\left(f_{n}\right)$ pointwise convergent on I to $f: I \longrightarrow \mathbb{R}$.
(iii) f_{n}^{\prime} uniformly convergent to $g: I \longrightarrow \mathbb{R}$.

Then f is continuously differentiable on I and $f^{\prime}=g$.
Proof: Because of (i), (iii), and Theorem [K] 8.3.1, g is continuous on I. Let $a \in I$ and $\varepsilon>0$ be given. Because of the continuity of g,

$$
\exists \delta>0: \quad \forall x \in I: \quad|x-a|<\delta \Rightarrow|g(x)-g(a)|<\varepsilon / 4 .
$$

Choose such a δ and let $h \in(-\delta, \delta) \backslash\{0\}$ with $a+h \in I$. We are going to show:

$$
\begin{equation*}
\left|\frac{f(a+h)-f(a)}{h}-g(a)\right|<\varepsilon . \tag{1}
\end{equation*}
$$

Because of (ii) and (iii) we have

$$
\begin{gathered}
\exists n_{1}: \quad \forall n \geq n_{1}: \quad\left\|f_{n}^{\prime}-g\right\|_{\infty}<\varepsilon / 4, \\
\exists n_{2}: \quad \forall n \geq n_{2}: \quad\left|f_{n}(a)-f(a)\right|<\varepsilon|h| / 4, \\
\exists n_{3}: \quad \forall n \geq n_{3}: \quad\left|f_{n}(a+h)-f(a+h)\right|<\varepsilon|h| / 4 .
\end{gathered}
$$

Choose $n_{1,2,3}$ correspondingly, and let $n \geq n_{0}:=\max \left\{n_{1}, n_{2}, n_{3}\right\}$. According to the Mean Value theorem, there is a c between a and $a+h$ such that

$$
\frac{f_{n}(a+h)-f_{n}(a)}{h}=f_{n}^{\prime}(c)
$$

and because of $|a-c|<|h|<\delta$ we have

$$
|g(c)-g(a)|<\varepsilon / 4
$$

So

$$
\begin{aligned}
& \left|\frac{f(a+h)-f(a)}{h}-g(a)\right| \\
\Delta & \frac{1}{|h|}\left|f(a+h)-f_{n}(a+h)\right|+\left|\frac{f_{n}(a+h)-f_{n}(a)}{h}-g(a)\right|+\frac{1}{|h|}\left|f_{n}(a)-f(a)\right| \\
\stackrel{\text { MVT }}{\leq} & \frac{1}{|h|}\left|f(a+h)-f_{n}(a+h)\right|+\left|f_{n}^{\prime}(c)-g(a)\right|+\frac{1}{|h|}\left|f_{n}(a)-f(a)\right| \\
\leq & \underbrace{\frac{1}{|h|}\left|f(a+h)-f_{n}(a+h)\right|}_{<\varepsilon / 4}+\underbrace{\left|f_{n}^{\prime}(c)-g(c)\right|}_{\leq\left\|f_{n}^{\prime}-g\right\|_{\infty}<\varepsilon / 4}+\underbrace{|g(c)-g(a)|}_{<\varepsilon / 4} \\
& +\underbrace{\frac{1}{|h|}\left|f_{n}(a)-f(a)\right|}_{<\varepsilon / 4}<\varepsilon,
\end{aligned}
$$

Proposition 2 ([K] 8.2.8, Cauchy's criterion)
Let $D \subset \mathbb{R}$ and let $\left(f_{n}\right)$ be a sequence of functions on D such that

$$
\forall \varepsilon>0: \quad \exists n_{0}: \quad \forall n, m \geq n_{0}: \quad\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon
$$

Then $\left(f_{n}\right)$ is uniformly convergent.
Proof: Let $x \in D$. Then

$$
\forall \varepsilon>0: \quad \exists n_{0}: \quad \forall n, m \geq n_{0}: \quad\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon
$$

so $\left(f_{n}(x)\right)$ is a Cauchy sequence in \mathbb{R}, and therefore convergent. Define the pointwise limit $f: D \longrightarrow \mathbb{R}$ by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x), \quad x \in D .
$$

We have to show $\left\|f-f_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Let $\varepsilon>0$ and $x \in D$ arbitrary. Then

$$
\exists n_{0}: \quad \forall n, m \geq n_{0}: \quad\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon / 2
$$

Choose such an n_{0}, fix $n \geq n_{0}$ and consider the limit $m \rightarrow \infty$. This gives

$$
\left|f_{n}(x)-f(x)\right| \leq \varepsilon / 2<\varepsilon .
$$

As $x \in D$ is arbitrary, we get

$$
\left\|f-f_{n}\right\|_{\infty}=\sup _{x \in D}\left|f_{n}(x)-f(x)\right| \leq \varepsilon / 2<\varepsilon .
$$

Proposition 3 ([K] 8.3.7, Dini's criterion)
Let $[a, b]$ be a bounded closed interval, $\left(f_{n}\right)$ a sequence of functions on $[a, b]$. Suppose:
(i) $f_{n} \rightarrow f^{*}$ pointwise,
(ii) f_{n} continuous for all n, f^{*} continuous.
(iii) $\left(f_{n}\right)$ is an increasing sequence, i.e.

$$
\forall x \in[a, b]: \quad \forall n, m \in \mathbb{N}: \quad n>m \Rightarrow f_{n}(x) \geq f_{m}(x)
$$

Then $f_{n} \rightarrow f^{*}$ uniformly.
Proof: Because of (i) and (iii) we have $f_{n}(x) \leq f^{*}(x)$ for all $x \in[a, b]$. Assume the convergence is not uniform. Then

$$
\begin{equation*}
\exists \varepsilon>0: \quad \forall n \in \mathbb{N}: \quad \exists x_{n} \in[a, b]: \quad f_{n}\left(x_{n}\right) \leq f^{*}\left(x_{n}\right)-\varepsilon . \tag{2}
\end{equation*}
$$

According to the Bolzano-Weierstrass theorem, the sequence $\left(x_{n}\right)$ has an accumulation point x^{*}.

Fix $m \in \mathbb{N}$. The functions f_{m} and f^{*} are continuous, so

$$
\begin{align*}
& \exists \delta>0: \quad \forall x \in[a, b]: \\
& \left|x-x^{*}\right|<\delta \Rightarrow\left(\left|f^{*}(x)-f^{*}\left(x^{*}\right)\right|<\varepsilon / 3 \wedge\left|f_{m}(x)-f_{m}\left(x^{*}\right)\right|<\varepsilon / 3\right) \tag{3}
\end{align*}
$$

Choose such a δ and choose $k \in \mathbb{N}$ such that $k \geq m$ and $\left|x_{k}-x^{*}\right|<\delta$. (This is possible because x^{*} is an accumulation point of the sequence $\left(x_{n}\right)$.) Then

$$
f_{m}\left(x^{*}\right) \stackrel{(3)}{<} f_{m}\left(x_{k}\right)+\varepsilon / 3 \stackrel{(\mathrm{iii})}{\leq} f_{k}\left(x_{k}\right)+\varepsilon / 3 \stackrel{(2)}{\leq} f^{*}\left(x_{k}\right)-2 \varepsilon / 3 \stackrel{(3)}{<} f^{*}\left(x^{*}\right)-\varepsilon / 3
$$

Passing to the limit $m \rightarrow \infty$ gives $f^{*}\left(x^{*}\right) \leq f^{*}\left(x^{*}\right)-\varepsilon / 3$. This is a contradiction.

