Let (b_n) be a sequence in \mathbb{R} .

Proposition 1 If $\limsup b_n = L \in \mathbb{R}$ then

- (i) L is an accumulation point of (b_n) ,
- (ii) $\forall \varepsilon > 0$: $\exists n_0 \in \mathbb{N}$: $\forall n \ge n_0$: $b_n < L + \varepsilon$.

Proof: (i) Let V be the set of accumulation points of (b_n) . V is not empty because $\limsup b_n \in \mathbb{R}$. We reason step by step for $k = 1, 2, 3, \ldots$

$$\exists B_k \in V : \quad L - 1/(2k) < B_k \le L,$$

 $\exists n_k \in \mathbb{N}: \quad (k > 1 \implies n_k > n_{k-1}) \land |b_{n_k} - B_k| < 1/(2k).$

So for each $k \in \mathbb{N}_+$

$$|b_{n_k} - L| \stackrel{\triangle}{\leq} |b_{n_k} - B_k| + |B_k - L| < 1/k.$$

Therefore $b_{n_k} \to L$ as $k \to \infty$.

(ii) Observe that (b_n) is bounded from above. (Why?) We argue by contradiction. Assume

$$\exists \varepsilon > 0: \quad \forall n \in \mathbb{N}: \quad \exists j \ge n: \quad b_j \ge L + \varepsilon.$$

Then (b_n) has a subsequence b_{n_k} with $b_{n_k} \ge L + \varepsilon$ for all k. This subsequence is bounded (check!) and therefore, by the Bolzano-Weierstrass theorem, has an accumulation point $\tilde{b} \in V$ with $\tilde{b} \ge L + \varepsilon$. Then $L = \sup V \ge$ $L + \varepsilon$, a contradiction.

Let

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k \tag{1}$$

be a (real) power series.

Proposition 2 (Radius of convergence)

- (i) If $\limsup \sqrt[k]{|a_k|} = 0$ then (1) is pointwise absolutely convergent on \mathbb{R} .
- (ii) If $\limsup \sqrt[k]{|a_k|} =: 1/R \in (0,\infty)$ then (1) is pointwise absolutely convergent in $(x_0 - R, x_0 + R)$ and divergent for all x with $|x - x_0| > R$.

(iii) If $\limsup \sqrt[k]{|a_k|} = +\infty$ then (1) is convergent only for $x = x_0$.

Proof: (i) Let $x \in \mathbb{R}$, w.l.o.g. $x \neq x_0$. We have $\sqrt[k]{|a_k|} \to 0$. (Check!). So

$$\sqrt[k]{|a_k|} < \frac{1}{2|x - x_0|}$$

for sufficiently large k. Root test for $\sum_{k=0}^{\infty} |a_k(x-x_0)^k|$:

$$\sqrt[k]{|a_k||x - x_0|^k} = \sqrt[k]{|a_k||x - x_0|} < 1/2 < 1$$

for k sufficiently large. So (1) absolutely convergent.

(ii) 1. Let $x \in \mathbb{R}$ with $|x-x_0| < R$, w.l.o.g. $x \neq x_0$. Choose $\varepsilon \in (0, \frac{R}{|x-x_0|} - 1)$. Then $|x - x_0| < \frac{R}{1+\varepsilon}$ and because of Proposition 1 (ii)

$$\exists k_0: \quad \forall k \ge k_0: \quad \sqrt[k]{|a_k|} \le \limsup \sqrt[k]{|a_k|} + \frac{\varepsilon}{2R} \le \frac{1}{R} \left(1 + \frac{\varepsilon}{2}\right).$$

Root test for $\sum_{k=0}^{\infty} |a_k(x-x_0)^k|$:

$$\sqrt[k]{|a_k||x - x_0|^k} = \sqrt[k]{|a_k||x - x_0|} \le \frac{1 + \varepsilon/2}{1 + \varepsilon} < 1$$

for k sufficiently large. So (1) absolutely convergent.

2. Let $x \in \mathbb{R}$ with $|x - x_0| > R$. Choose $\varepsilon \in (0, 1 - \frac{R}{|x - x_0|})$. Then $|x - x_0| > \frac{R}{1 - \varepsilon}$. Because of Proposition 1 (i) there is a subsequence (a_{k_j}) of (a_k) with $k_j \sqrt{|a_{k_j}|} \to 1/R$, so

$$\sqrt[k_j]{|a_{k_j}|} > \frac{1}{R} \left(1 - \frac{\varepsilon}{2} \right)$$

for j sufficiently large. Therefore

$$\sqrt[k_j]{|a_{k_j}||x-x_j|^{k_j}} = \sqrt[k_j]{|a_{k_j}||x-x_0|} > \frac{1-\varepsilon/2}{1-\varepsilon} > 1$$

and so

$$\neg (a_k | x - x_0 |^k \to 0).$$

Consequently, (1) is divergent.

(iii) Let $x \in \mathbb{R} \setminus \{x_0\}$. The sequence $(\sqrt[k]{|a_k|})$ is unbounded above, and therefore it has a subsequence $(\sqrt[k_i]{|a_{k_j}|})$ going to infinity, so $\sqrt[k_i]{|a_{k_j}|}|x-x_0| > 1$ for all sufficiently large *j*.As in (ii) 2. this implies that (1) diverges.