
Let (bn) be a sequence in R.

Proposition 1 If lim sup bn = L ∈ R then

(i) L is an accumulation point of (bn),

(ii) ∀ε > 0 : ∃n0 ∈ N : ∀n ≥ n0 : bn < L + ε.

Proof: (i) Let V be the set of accumulation points of (bn). V is not empty
because lim sup bn ∈ R. We reason step by step for k = 1, 2, 3, . . ..

∃Bk ∈ V : L− 1/(2k) < Bk ≤ L,

∃nk ∈ N : (k > 1 ⇒ nk > nk−1) ∧ |bnk
−Bk| < 1/(2k).

So for each k ∈ N+

|bnk
− L|

4
≤ |bnk

−Bk|+ |Bk − L| < 1/k.

Therefore bnk
→ L as k →∞.

(ii) Observe that (bn) is bounded from above. (Why?) We argue by contra-
diction. Assume

∃ε > 0 : ∀n ∈ N : ∃j ≥ n : bj ≥ L + ε.

Then (bn) has a subsequence bnk
with bnk

≥ L + ε for all k.
This subsequence is bounded (check!) and therefore, by the Bolzano-Weierstrass

theorem, has an accumulation point b̃ ∈ V with b̃ ≥ L + ε. Then L = supV ≥
L + ε, a contradiction.

Let
∞∑
k=0

ak(x− x0)k (1)

be a (real) power series.

Proposition 2 (Radius of convergence)

(i) If lim sup k
√
|ak| = 0 then (1) is pointwise absolutely convergent on R.

(ii) If lim sup k
√
|ak| =: 1/R ∈ (0,∞) then (1) is pointwise absolutely conver-

gent in (x0 −R, x0 + R) and divergent for all x with |x− x0| > R.

(iii) If lim sup k
√
|ak| = +∞ then (1) is convergent only for x = x0.

Proof: (i) Let x ∈ R, w.l.o.g. x 6= x0. We have k
√
|ak| → 0. (Check!). So

k
√
|ak| <

1

2|x− x0|
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for sufficiently large k. Root test for
∑∞

k=0 |ak(x− x0)k|:

k

√
|ak||x− x0|k = k

√
|ak||x− x0| < 1/2 < 1

for k sufficiently large. So (1) absolutely convergent.
(ii) 1. Let x ∈ R with |x−x0| < R, w.l.o.g. x 6= x0. Choose ε ∈ (0, R

|x−x0|−1).

Then |x− x0| < R
1+ε and because of Proposition 1 (ii)

∃k0 : ∀k ≥ k0 : k
√
|ak| ≤ lim sup k

√
|ak|+

ε

2R
≤ 1

R

(
1 +

ε

2

)
.

Root test for
∑∞

k=0 |ak(x− x0)k|:

k

√
|ak||x− x0|k = k

√
|ak||x− x0| ≤

1 + ε/2

1 + ε
< 1

for k sufficiently large. So (1) absolutely convergent.
2. Let x ∈ R with |x− x0| > R. Choose ε ∈ (0, 1− R

|x−x0| ). Then |x− x0| >
R

1−ε . Because of Proposition 1 (i) there is a subsequence (akj
) of (ak) with

kj

√
|akj
| → 1/R, so

kj

√
|akj | >

1

R

(
1− ε

2

)
for j sufficiently large. Therefore

kj

√
|akj ||x− x)|kj = kj

√
|akj ||x− x0| >

1− ε/2

1− ε
> 1

and so
¬(ak|x− x0|k → 0).

Consequently, (1) is divergent.
(iii) Let x ∈ R \ {x0}. The sequence ( k

√
|ak|) is unbounded above, and

therefore it has a subsequence ( kj

√
|akj
|) going to infinity, so kj

√
|akj
||x−x0| > 1

for all sufficiently large j.As in (ii) 2. this implies that (1) diverges.
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