Let $\left(b_{n}\right)$ be a sequence in \mathbb{R}.
Proposition 1 If $\limsup b_{n}=L \in \mathbb{R}$ then
(i) L is an accumulation point of $\left(b_{n}\right)$,
(ii) $\forall \varepsilon>0: \quad \exists n_{0} \in \mathbb{N}: \quad \forall n \geq n_{0}: \quad b_{n}<L+\varepsilon$.

Proof: (i) Let V be the set of accumulation points of $\left(b_{n}\right)$. V is not empty because $\lim \sup b_{n} \in \mathbb{R}$. We reason step by step for $k=1,2,3, \ldots$.

$$
\begin{gathered}
\exists B_{k} \in V: \quad L-1 /(2 k)<B_{k} \leq L, \\
\exists n_{k} \in \mathbb{N}: \quad\left(k>1 \Rightarrow n_{k}>n_{k-1}\right) \wedge\left|b_{n_{k}}-B_{k}\right|<1 /(2 k) .
\end{gathered}
$$

So for each $k \in \mathbb{N}_{+}$

$$
\left|b_{n_{k}}-L\right| \stackrel{\Delta}{\leq}\left|b_{n_{k}}-B_{k}\right|+\left|B_{k}-L\right|<1 / k .
$$

Therefore $b_{n_{k}} \rightarrow L$ as $k \rightarrow \infty$.
(ii) Observe that $\left(b_{n}\right)$ is bounded from above. (Why?) We argue by contradiction. Assume

$$
\exists \varepsilon>0: \quad \forall n \in \mathbb{N}: \quad \exists j \geq n: \quad b_{j} \geq L+\varepsilon .
$$

Then $\left(b_{n}\right)$ has a subsequence $b_{n_{k}}$ with $b_{n_{k}} \geq L+\varepsilon$ for all k.
This subsequence is bounded (check!) and therefore, by the Bolzano-Weierstrass theorem, has an accumulation point $\tilde{b} \in V$ with $\tilde{b} \geq L+\varepsilon$. Then $L=\sup V \geq$ $L+\varepsilon$, a contradiction.

Let

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k} \tag{1}
\end{equation*}
$$

be a (real) power series.
Proposition 2 (Radius of convergence)
(i) If limsup $\sqrt[k]{\left|a_{k}\right|}=0$ then (1) is pointwise absolutely convergent on \mathbb{R}.
(ii) If limsup $\sqrt[k]{\left|a_{k}\right|}=: 1 / R \in(0, \infty)$ then (1) is pointwise absolutely convergent in $\left(x_{0}-R, x_{0}+R\right)$ and divergent for all x with $\left|x-x_{0}\right|>R$.
(iii) If $\lim \sup \sqrt[k]{\left|a_{k}\right|}=+\infty$ then (1) is convergent only for $x=x_{0}$.

Proof: (i) Let $x \in \mathbb{R}$, w.l.o.g. $x \neq x_{0}$. We have $\sqrt[k]{\left|a_{k}\right|} \rightarrow 0$. (Check!). So

$$
\sqrt[k]{\left|a_{k}\right|}<\frac{1}{2\left|x-x_{0}\right|}
$$

for sufficiently large k. Root test for $\sum_{k=0}^{\infty}\left|a_{k}\left(x-x_{0}\right)^{k}\right|$:

$$
\sqrt[k]{\left|a_{k}\right|\left|x-x_{0}\right|^{k}}=\sqrt[k]{\left|a_{k}\right| \mid} x-x_{0} \mid<1 / 2<1
$$

for k sufficiently large. So (1) absolutely convergent.
(ii) 1. Let $x \in \mathbb{R}$ with $\left|x-x_{0}\right|<R$, w.l.o.g. $x \neq x_{0}$. Choose $\varepsilon \in\left(0, \frac{R}{\left|x-x_{0}\right|}-1\right)$. Then $\left|x-x_{0}\right|<\frac{R}{1+\varepsilon}$ and because of Proposition 1 (ii)

$$
\exists k_{0}: \quad \forall k \geq k_{0}: \quad \sqrt[k]{\left|a_{k}\right|} \leq \limsup \sqrt[k]{\left|a_{k}\right|}+\frac{\varepsilon}{2 R} \leq \frac{1}{R}\left(1+\frac{\varepsilon}{2}\right)
$$

Root test for $\sum_{k=0}^{\infty}\left|a_{k}\left(x-x_{0}\right)^{k}\right|$:

$$
\sqrt[k]{\left|a_{k}\right|\left|x-x_{0}\right|^{k}}=\sqrt[k]{\left|a_{k}\right| \mid}\left|x-x_{0}\right| \leq \frac{1+\varepsilon / 2}{1+\varepsilon}<1
$$

for k sufficiently large. So (1) absolutely convergent.
2. Let $x \in \mathbb{R}$ with $\left|x-x_{0}\right|>R$. Choose $\varepsilon \in\left(0,1-\frac{R}{\left|x-x_{0}\right|}\right)$. Then $\left|x-x_{0}\right|>$ $\frac{R}{1-\varepsilon}$. Because of Proposition 1 (i) there is a subsequence $\left(a_{k_{j}}\right)$ of $\left(a_{k}\right)$ with $\sqrt[k_{k}]{\left|a_{k_{j}}\right|} \rightarrow 1 / R$, so

$$
\sqrt[k_{j}]{\left|a_{k_{j}}\right|}>\frac{1}{R}\left(1-\frac{\varepsilon}{2}\right)
$$

for j sufficiently large. Therefore

$$
\sqrt[k_{j}]{\left.\left|a_{k_{j}}\right| \mid x-x\right)\left.\right|^{k_{j}}}=\sqrt[k_{j}]{\left|a_{k_{j}}\right| \mid x}-x_{0} \left\lvert\,>\frac{1-\varepsilon / 2}{1-\varepsilon}>1\right.
$$

and so

$$
\neg\left(a_{k}\left|x-x_{0}\right|^{k} \rightarrow 0\right) .
$$

Consequently, (1) is divergent.
(iii) Let $x \in \mathbb{R} \backslash\left\{x_{0}\right\}$. The sequence $\left(\sqrt[k]{\left|a_{k}\right|}\right)$ is unbounded above, and therefore it has a subsequence $\left(\sqrt[k_{j}]{\left|a_{k_{j}}\right|}\right)$ going to infinity, so $\sqrt[k_{j}]{\left|a_{k_{j}}\right|}\left|x-x_{0}\right|>1$ for all sufficiently large j.As in (ii) 2 . this implies that (1) diverges.

