Typical errors in the final test Analysis 1 (2WA31), January 2014

We learn from failure, not from success!
Bram Stoker, Dracula

This document contains a number of frequently encountered errors in the final test of the course Analysis 1 (2WA31, January 2014). Try to find and correct them.
2. What goes wrong?
"For $k=0, \ldots n$ we have $\lim _{n \rightarrow \infty} \frac{1}{n+k}=0$. So

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}+\lim _{n \rightarrow \infty} \frac{1}{n+1}+\ldots+\lim _{n \rightarrow \infty} \frac{1}{2 n} \\
& =0+0+\ldots+0=0 . "
\end{aligned}
$$

3. What goes wrong? How to correct this?
"... Let v be an approximation point of the sequence $\left(c_{n}\right)$. Then there is a subsequence $\left(c_{n_{k}}\right)$ with $c_{n_{k}} \rightarrow v$ as $k \rightarrow \infty$. For the corresponding subsequences $\left(a_{n_{k}}\right)$ and $\left(b_{n_{k}}\right)$ we have: $a_{n_{k}} \rightarrow 1$ or $a_{n_{k}} \rightarrow 2$ as $k \rightarrow \infty$, and also $b_{n_{k}} \rightarrow 2$ or $b_{n_{k}} \rightarrow 4$ als $k \rightarrow \infty$. According to the calculation rules for limits we get $v \in\{2,4,8\}$. So $V \subseteq\{2,4,8\}$."
4.a) What goes wrong? How to do this correctly?
"According to a standard Taylor expansion we have

$$
1-\cos (x)=\frac{x^{2}}{2}+O\left(x^{4}\right)
$$

The remainder term is of higher order and $x>0$, so

$$
1-\cos (x) \leq \frac{x^{2}}{2}+\frac{x^{3}}{6}
$$

4.b) The following argument is not wrong but incomplete. Which important observation is missing?
"Take $x=1 / n>0$. Then, according to 4.a),

$$
1-\cos (1 / n) \leq \frac{1}{2 n^{2}}+\frac{1}{6 n^{3}} \leq \frac{2}{3 n^{2}}
$$

the series $\sum \frac{1}{n^{2}}$ is hyperharmonic and therefore convergent. So the series $\frac{2}{3} \sum \frac{1}{n^{2}}$ is a convergent majorant for the series $\sum(1-\cos (1 / n))$, so that one is convergent as well."
6.b) The following reasoning contains an error which is easily corrected. How?
". . Choose $x=\frac{1}{\sqrt{n}}$. Then

$$
\left\|f_{n}\right\|_{\infty}=f_{n}\left(\frac{1}{\sqrt{n}}\right)=\frac{\sin 1}{2}
$$

and therefore $\left\|f_{n}\right\|_{\infty}$ does not approach zero as $n \rightarrow \infty$. So $\left(f_{n}\right)$ not uniformly covergent on $(0, \infty)$."
6.c) A similar error:

$$
" \sup _{x \in[a, \infty)}\left|f_{n}(x)\right|=\left|\frac{\sin (n a)}{1+n a^{2}}\right| \rightarrow 0
$$

as $n \rightarrow \infty$, and therefore $\left(f_{n}\right)$ is uniformly convergent on $[a, \infty)$.
6.e) The following is not wrong but too short. What is the missing step?
"...so the function s is continuous on the interval $[a, \infty)$, and therefore also on $(0, \infty)$."
7. This hurts. Why, and how to do this better?
". . . therefore, for the coefficient of the power series we have

$$
a_{0}=1, \quad a_{1}=a_{2}=0, \quad a_{k+3}=\frac{a_{k}}{(k+1)(k+2)(k+3)} .
$$

For the radius of convergence R this implies

$$
R=\lim _{k \rightarrow \infty} \frac{1}{\left|\frac{a_{k+1}}{a_{k}}\right|}=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|=\ldots "
$$

