Typical errors in the final test Analysis 1 (2WA31), January 2014

We learn from failure, not from success! Bram Stoker, *Dracula*

This document contains a number of frequently encountered errors in the final test of the course Analysis 1 (2WA31, January 2014). Try to find and correct them.

2. What goes wrong?

"For
$$k = 0, \dots n$$
 we have $\lim_{n \to \infty} \frac{1}{n+k} = 0$. So
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n+1} + \dots + \lim_{n \to \infty} \frac{1}{2n}$$
$$= 0 + 0 + \dots + 0 = 0$$

3. What goes wrong? How to correct this?

"... Let v be an approximation point of the sequence (c_n) . Then there is a subsequence (c_{n_k}) with $c_{n_k} \to v$ as $k \to \infty$. For the corresponding subsequences (a_{n_k}) and (b_{n_k}) we have: $a_{n_k} \to 1$ or $a_{n_k} \to 2$ as $k \to \infty$, , and also $b_{n_k} \to 2$ or $b_{n_k} \to 4$ als $k \to \infty$. According to the calculation rules for limits we get $v \in \{2, 4, 8\}$. So $V \subseteq \{2, 4, 8\}$."

4.a) What goes wrong? How to do this correctly?

"According to a standard Taylor expansion we have

$$1 - \cos(x) = \frac{x^2}{2} + O(x^4).$$

The remainder term is of higher order and x > 0, so

$$1 - \cos(x) \le \frac{x^2}{2} + \frac{x^3}{6}$$
. "

4.b) The following argument is not wrong but incomplete. Which important observation is missing?

"Take x = 1/n > 0. Then, according to 4.a),

$$1 - \cos(1/n) \le \frac{1}{2n^2} + \frac{1}{6n^3} \le \frac{2}{3n^2}.$$

the series $\sum \frac{1}{n^2}$ is hyperharmonic and therefore convergent. So the series $\frac{2}{3} \sum \frac{1}{n^2}$ is a convergent majorant for the series $\sum (1 - \cos(1/n))$, so that one is convergent as well."

6.b) The following reasoning contains an error which is easily corrected. How? "... Choose $x = \frac{1}{\sqrt{n}}$. Then

$$||f_n||_{\infty} = f_n(\frac{1}{\sqrt{n}}) = \frac{\sin 1}{2},$$

and therefore $||f_n||_{\infty}$ does not approach zero as $n \to \infty$. So (f_n) not uniformly covergent on $(0, \infty)$."

6.c) A similar error:

$$\sup_{x \in [a,\infty)} |f_n(x)| = \left| \frac{\sin(na)}{1 + na^2} \right| \to 0$$

as $n \to \infty$, and therefore (f_n) is uniformly convergent on $[a, \infty)$. "

- 6.e) The following is not wrong but too short. What is the missing step?
 "...so the function s is continuous on the interval [a,∞), and therefore also on (0,∞)."
 - **7.** This hurts. Why, and how to do this better?
 - "... therefore, for the coefficient of the power series we have

$$a_0 = 1$$
, $a_1 = a_2 = 0$, $a_{k+3} = \frac{a_k}{(k+1)(k+2)(k+3)}$.

For the radius of convergence R this implies

$$R = \lim_{k \to \infty} \frac{1}{\left|\frac{a_{k+1}}{a_k}\right|} = \lim_{k \to \infty} \left|\frac{a_k}{a_{k+1}}\right| = \dots "$$