1. First show that $\sup A+2 \sup B$ is an upper bound for C. Then show that C has no smaller upper bounds, i.e.:

$$
\forall \varepsilon>0: \quad \exists c \in C: \quad c>\sup A+2 \sup B-\varepsilon
$$

This is equivalent to

$$
\forall \varepsilon>0: \quad \exists a \in A, b \in B: \quad a+2 b>\sup A+2 \sup B-\varepsilon .
$$

2. Consider convergent subsequences $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ and the corresponding subsequences $b_{n_{k}}$ with the same index sequence.
3. As far as convergence is concerned, we expect the series to behave like

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n / 2}}, \quad \sum_{n=1}^{\infty} \frac{1}{2^{2 / n}}, \quad \sum_{n=1}^{\infty} \frac{2}{n+4}
$$

Find the behavior of these first. To prove results on the original ones, use (for example) convergent majorants or divergent minorants. (Other arguments are possible as well.)

