Exercises Analysis 1 (2WA30) Lecture 1

1. Are the following subsets of \mathbb{R} bounded above / below? Find supremum, infimum, maximum and minimum, if they exist. Give reasons for your answers.

$$
\begin{aligned}
A & =\{x \in \mathbb{R} \mid \exists n \in \mathbb{N}: 2 n-1<x<2 n\} \\
B & =\left\{\left.-\frac{1}{n} \right\rvert\, n \in \mathbb{N}_{+}\right\} \\
C & =\left\{x \in \mathbb{R} \mid 4 x-x^{2}>3\right\} \\
D & =\left\{x \in \mathbb{R} \mid 4 x-x^{2} \geq 3\right\} \\
E & =[0,1] \backslash \mathbb{Q}
\end{aligned}
$$

2. Let $A \subset \mathbb{R}$ be nonempty and bounded. Show:
a) For all $\varepsilon>0$ there is an $x \in A$ such that $x>\sup A-\varepsilon$. (Hint: Give a proof by contradiction!)
b) Let z be an upper bound for A such that for all $\varepsilon>0$ there is an $x \in A$ such that $x>z-\varepsilon$. Then $z=\sup A$.
c) Formulate the statements analogous to \mathbf{a}) and \mathbf{b}) for $\inf A$ (no proof required).
3. Let $A, B \subset \mathbb{R}$ be nonempty and bounded. Define

$$
\begin{aligned}
-A & =\{-a \mid a \in A\} \\
A+B & =\{a+b \mid a \in A, b \in B\} \\
A-B & =\{a-b \mid a \in A, b \in B\}
\end{aligned}
$$

Show
a)

$$
\begin{aligned}
\sup (-A) & =-\inf A \\
\sup (A+B) & =\sup A+\sup B \\
\inf (A-B) & =\inf A-\sup B
\end{aligned}
$$

b)

$$
(\forall a \in A \forall b \in B: a<b) \Rightarrow \sup A \leq \inf B
$$

4. \star^{1} The most straightforward way to represent real numbers is by "infinite decimal fractions" (IDFs), i.e. numbers of the form

[^0]$$
\pm a_{0} \cdot a_{1} a_{2} a_{3} \ldots, \quad a_{0} \in \mathbb{N}, a_{i} \in\{0, \ldots, 9\}, i>0
$$

Check that the set of IDFs is completely ordered. More precisely:
Let A be a nonempty set of IDFs that is bounded above. Show that there is an IDF which is the supremum of A.
Hint: Show first that you can assume without loss of generality that A contains positive IDF's. Then try to find an algorithm which generates the digits of the supremum one by one.

[^0]: ${ }^{1}$ More challenging exercises for ambitious students are marked by \star here and in the sequel. These exercises are not part of the regular homework and need not be handed in.

