## Exercises Analysis 1 (2WA30) Lecture 2

1. Show: For all $a, b, c \in \mathbb{R}$ holds
a) $|a+b| \leq|a|+|b|$,
b) $|a-b| \leq|a-c|+|b-c|$,
c) $||a|-|b|| \leq|a-b|$. (so-called inverse triangle inequality)
2. Let $\left\{a_{n}\right\}$ be a sequence, $a^{*} \in \mathbb{R}$. Show:

$$
a_{n} \rightarrow a^{*} \quad \Leftrightarrow \quad\left|a_{n}-a^{*}\right| \rightarrow 0
$$

3. Is the following proposition true? Give a proof or a counterexample.
"Let $\left(a_{n}\right),\left(b_{n}\right)$ be sequences with $a_{n} \rightarrow a^{*}, b_{n} \rightarrow b^{*}$, and $a_{n}<b_{n}$ for all $n$.
Then $a^{*}<b^{*}$."
4. Let $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ be sequences defined by

$$
a_{n}=\frac{n+3}{n^{2}-3}, \quad b_{n}=\frac{n^{5}}{3^{n}}, \quad c_{n}=\frac{7 n+4}{n+5}
$$

Find the limits of these sequences and give proofs for the convergence towards these limits (without using limit theorems).

