Exercises Analysis 1 (2WA30) Lecture 2

- **1.** Show: For all $a, b, c \in \mathbb{R}$ holds
 - a) $|a+b| \le |a| + |b|$,
 - **b)** $|a-b| \le |a-c| + |b-c|$,
 - c) $||a| |b|| \le |a b|$. (so-called inverse triangle inequality)
- **2.** Let $\{a_n\}$ be a sequence, $a^* \in \mathbb{R}$. Show:

$$a_n \to a^* \quad \Leftrightarrow \quad |a_n - a^*| \to 0.$$

3. Is the following proposition true? Give a proof or a counterexample.

"Let (a_n) , (b_n) be sequences with $a_n \to a^*$, $b_n \to b^*$, and $a_n < b_n$ for all n.

Then $a^* < b^*$."

4. Let (a_n) , (b_n) , (c_n) be sequences defined by

$$a_n = \frac{n+3}{n^2-3}$$
, $b_n = \frac{n^5}{3^n}$, $c_n = \frac{7n+4}{n+5}$.

Find the limits of these sequences and give proofs for the convergence towards these limits (without using limit theorems).