Exercises Analysis 1 (2WA30) Lecture 5

1. A series $\sum_{k=1}^{\infty} a_{k}$ with $a_{k}=b_{k}-b_{k-1}, k=1,2, \ldots$ is called telescoping. (More precisely: This name is used if one works with this representation.)
a) Show: A telescoping series $\sum_{k=1}^{\infty} a_{k}$ is convergent if and only if the sequence (b_{n}) converges, and in this case

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} b_{n}-b_{0} .
$$

b) Find with the help of a)

$$
\sum_{k=2}^{\infty} \frac{2 k+1}{k^{2}(k+1)^{2}}
$$

2. Kosmala Ex. 7.1.1 without (d),(h),(j),(k) (If no initial value for the summation index is given, start with $k=1$.)
3. Let $\sum a_{n}, \sum b_{n}$ be two series, $c \in \mathbb{R}$. Are the following statements true? (Give a proof or a counterexample.) ${ }^{1}$
a) "If $\sum a_{n}$ and $\sum b_{n}$ are convergent then $\sum\left(a_{n}+b_{n}\right)$ is convergent as well, and $\sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n}$."
b) "If $\sum a_{n}$ is convergent, then $\sum\left(c a_{n}\right)$ is convergent as well, and $\sum\left(c a_{n}\right)=$ $c \sum a_{n}$."
c) "If $\sum a_{n}$ is convergent and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is divergent."
d) "If $\sum a_{n}$ is divergent and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is divergent as well."
4. Let $\sum_{k=1}^{\infty} a_{k}$ be absolutely convergent. Show:

$$
\left|\sum_{k=1}^{\infty} a_{k}\right| \leq \sum_{k=1}^{\infty}\left|a_{k}\right|
$$

(This is the "triangle inequality for infinitely many terms".)
5. Let $q \in \mathbb{R},|q|<1$. Find the value of the following series:

$$
\sum_{k=7}^{\infty} \frac{q^{k}}{2}, \quad \sum_{k=7}^{\infty}\left(\frac{q}{2}\right)^{k}, \quad \sum_{k=0}^{\infty} \frac{2^{k / 2}}{2^{2 k}}, \quad \sum_{k=0}^{\infty} \frac{4^{k-5}}{5^{2 k+2}}
$$

[^0]6. \star^{2} A rubber ball is dropped from height h_{0} above a plane surface and falls down under the influence of gravity acceleration g. It bounces back up, falls down etc. In the k-th jump, the ball reaches maximum height $h_{k}=\alpha h_{k-1}, k=1,2,3, \ldots$, with $\alpha \in(0,1)$.
For how long does the ball move up and down in total?

[^1]
[^0]: ${ }^{1}$ Observe that it is unimportant at what value of n the summation starts.

[^1]: ${ }^{2}$ This problem is not difficult but involves some elementary mechanics which is beyond the scope of our course.

