Exercises Analysis 1 (2WA30) Lecture 8

1. Let $D \subset \mathbb{R}$ be unbounded from above, $a \in (D \cap (-\infty, a))', b \in (D \cap (b, \infty))', L \in \mathbb{R}, f : D \longrightarrow \mathbb{R}.$

Give the definitions of the following limit statements. Give an equivalent characterization in terms of sequences and show that it is equivalent.

- **a)** $\lim_{x\uparrow a} f(x) = L,$
- **b)** $\lim_{x \downarrow b} f(x) = \infty$,
- c) $\lim_{x \to \infty} f(x) = -\infty$,
- **2.** Let $D \subset \mathbb{R}$, $a \in (D \cap (-\infty, a))' \cup (D \cap (a, \infty))'$, $f : D \longrightarrow \mathbb{R}$. Show: $\lim_{x \to a} f(x)$ exists if and only if: The one-sided limits $\lim_{x \uparrow a} f(x)$ and $\lim_{x \downarrow a} f(x)$ both exist and

$$\lim_{x \uparrow a} f(x) = \lim_{x \downarrow a} f(x).$$

In this case

$$\lim_{x \to a} f(x) = \lim_{x \uparrow a} f(x) = \lim_{x \downarrow a} f(x)$$

3. Let $D \subset \mathbb{R}$, $a \in D'$, $f, g : D \longrightarrow \mathbb{R}$, f bounded, and $\lim_{x \to a} g(x) = +\infty$. Show

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

4. Let $I \subset \mathbb{R}$ be an interval, $f, g: I \longrightarrow \mathbb{R}$ continuous and $g(x) \neq 0$ for all $x \in I$.

Show:

a) We have

$$(\forall x \in I : g(x) > 0) \lor (\forall x \in I : g(x) < 0).$$

b) the functions (defined by pointwise operations)

$$f+g, \, f\cdot g, \, {f\over g}: \ I \longrightarrow \mathbb{R}$$

are continous on I.

- **5.** Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous periodic function with period T > 0. Show: There is an $x \in \mathbb{R}$ such that f(x) = f(x + T/2).
- **6.** Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous, f(0) = 1, and

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0.$$

Show: there is an $x^* \in \mathbb{R}$ such that $f(x^*) = \max\{f(x), | x \in \mathbb{R}\}$.