Exercises Analysis 1 (2WA30) Lecture 9

1. Let $f: \mathbb{R} \backslash\{0\} \longrightarrow \mathbb{R}, g, h: \mathbb{R} \longrightarrow \mathbb{R}$ be given by

$$
f(x)=1 / x, \quad g(x)=\left\{\begin{array}{ll}
x & (x \in \mathbb{Q}) \\
0 & (x \notin \mathbb{Q})
\end{array}, \quad h(x)=\left\{\begin{array}{cc}
x^{2} & (x \in \mathbb{Q}) \\
0 & (x \notin \mathbb{Q})
\end{array}\right.\right.
$$

In which points are these functions differentiable? Find the derivatives in these points.
2. Kosmala Ex. 5.3 .15 c,d,f
3. Let $I \subset \mathbb{R}$ be an interval. A differentiable function $F: I \longrightarrow \mathbb{R}$ is called a primitive for the function $f: I \longrightarrow \mathbb{R}$ (on I) if $F^{\prime}(x)=f(x)$ for all $x \in I$. Show: If F_{1} and F_{2} are two primitives for f on I then there is a constant $C \in \mathbb{R}$ such that $F_{2} \equiv F_{1}+C$, i.e. $F_{2}(x)=F_{1}(x)+C$ for all $x \in I$.
4. Let $f:(0, \infty) \longrightarrow \mathbb{R}$ be given by

$$
f(x)=\ln (x) .
$$

a) Give the n-th order Taylor polynomial T_{n} for f around $a=1$ and give a representation for the remainder term $R_{n}(x)$ if $\ln (x)$ is approximated by $T_{n}(x)$.
b) Show that $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in[1,2]$.
c) Find the value of the infinite series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}
$$

5. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{cl}
e^{-\frac{1}{x^{2}}} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

a) Show inductively that f is k times differentiable and

$$
f^{(k)}(x)=\left\{\begin{array}{cl}
p_{k}\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

with some polynomial p_{k}.
b) Give the Taylor polynomial for f of degree $n \in \mathbb{N}$ around 0 . For which $x \in \mathbb{R}$ does the Taylor series of f around 0 converge? Does it converge to $f(x)$?
6. \star Using Mathematica, calculate high order Taylor polynomials for your own chosen, infinitely differentiable function. Make a conjecture about the interval on which the Taylor polynomials converge to the function.

