Exercises Analysis 1 (2WA30) Lecture 12

1. Kosmala Ex. 8.4.17
2. Let the sequence of functions $\left(f_{n}\right), n \in \mathbb{N}_{+}$, on \mathbb{R} given by

$$
f_{n}(x)=\left\{\begin{array}{cl}
0 & \text { if }|x|>1 / n, \\
n x+1 & \text { if } x \in[-1 / n, 0), \\
1-n x & \text { if } x \in[0,1 / n]
\end{array}\right.
$$

a) Find the pointwise limit function $f^{*}: \mathbb{R} \longrightarrow \mathbb{R}$.
b) Does the sequence of functions $\left(f_{n}\right)$ converge uniformly to f^{*} ?
c) Show that the function series

$$
\sum_{n=1}^{\infty} 2^{-n} f_{n}\left(x-\frac{1}{n}\right)
$$

converges pointwise on \mathbb{R}.
d) Prove: the function $s: \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$
s(x):=\sum_{n=1}^{\infty} 2^{-n} f_{n}\left(x-\frac{1}{n}\right), \quad x \in \mathbb{R},
$$

is continuous.
3. (\star) Let $m \in \mathbb{R}$ and let $\left(a_{k}\right)$ be a sequence of real number such that

$$
\sum_{k=0}^{\infty}\left|a_{k}\right| e^{-m k}
$$

converges. Show: The function $s:[m, \infty) \longrightarrow \mathbb{R}$ defined by

$$
s(x)=\sum_{k=0}^{\infty} a_{k} e^{-k x}
$$

is infinitely differentiable on (m, ∞).
4. For each of the following power series, find all $x \in \mathbb{R}$ for which they converge:

$$
\sum_{k=1}^{\infty} \frac{x^{k}}{2^{k} k}, \quad \sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}, \quad \sum_{k=1}^{\infty} k 3^{k} x^{k}, \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} x^{k} .
$$

