Exercises Analysis 1 (2WA30) Lecture 14

1. (The Identity theorem for power series under weaker assumptions)
a) Let $f(x)=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ be a power series with positive radius of convergence. Show: If $f\left(x_{n}\right)=0$ for a sequence $\left\{x_{n}\right\}$ with $x_{n} \rightarrow x_{0}$, $x_{n} \neq x_{0}$, then $a_{k}=0$ for all $k \in \mathbb{N}$.
Hint: For $j \in \mathbb{N}$, define

$$
f_{(j)}(x):=\sum_{k=0}^{\infty} a_{j+k}\left(x-x_{0}\right)^{k}
$$

and show by induction over j : For all $j \in \mathbb{N}$:

$$
f_{(j)}\left(x_{n}\right)=0 \text { for all } n \in \mathbb{N} \text { and } \quad a_{j}=0 .
$$

b) Conclude: If

$$
g(x)=\sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}, \quad h(x)=\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}
$$

are two power series with positive radii of convergence and $g\left(x_{n}\right)=$ $h\left(x_{n}\right)$ for a sequence $\left(x_{n}\right)$ with $x_{n} \rightarrow x_{0}, x_{n} \neq x_{0}$, then $b_{k}=c_{k}$ for all $k \in \mathbb{N}$.
2. Find closed expressions for the functions given by the power series

$$
\sum_{k=0}^{\infty} k^{3}(x-2)^{k}, \quad \sum_{k=0}^{\infty} \frac{x^{k}}{(k+2)!}
$$

3. Find coefficients $a_{k}, k \in \mathbb{N}$, such that the function f given by the power series

$$
f(x):=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

satisfies the equations
a) $\quad x f^{\prime \prime}(x)-x f^{\prime}(x)-f(x)=0, \quad f^{\prime}(0)=1$,
b) $\star f^{\prime \prime}(x)=2 f(x) f^{\prime}(x), \quad f(0)=f^{\prime}(0)=1$.

Find the radius of convergence of the power series and a representation of f in terms of elementary functions.
4. \star Let

$$
f(x):=\sum_{k=0}^{\infty} a_{k} x^{k}, \quad g(x):=\sum_{l=0}^{\infty} b_{l} x^{l}
$$

be two functions defined by their power series with radii of convergence $R_{1}>0, R_{2}>0$, respectively.
Show that their product h (given by $h(x):=f(x) g(x)$) has a power series representation with radius of convergence $R \geq \min \left(R_{1}, R_{2}\right)$. Give the coefficients of the power series representing h.

