A bounded set in \mathbb{Q} without supremum

The following example shows that the field \mathbb{Q} is not completely ordered, i.e. there are bounded subsets of \mathbb{Q} without supremum (in \mathbb{Q} !).

As an example we choose

$$A := \{ x \in \mathbb{Q} \, | \, x > 0 \, \land \, x^2 < 2 \}.$$

1. Clearly $1 \in A \neq \emptyset$, furthermore A is bounded above, as for x > 2 we have x > 0 and $x^2 > 4 > 2$, so 2 is an upper bound for A.

2. Assume $c \in \mathbb{Q}$ is the supremum of A. Then $c \ge 1 > 0$. We show:

$$\forall \xi \in \mathbb{Q}: \quad 0 < \xi < c \implies \xi \in A.$$
(1)

From $\xi < c = \sup A$ it follows that ξ is not an upper bound for A, therefore there is $\xi' > \xi$ with $\xi' \in A$, so ${\xi'}^2 < 2$ and therefore $\xi^2 < {\xi'}^2 < 2$, so $\xi \in A$.

3. Define

$$\xi := \frac{2c+2}{c+2}.$$

Then certainly $\xi > 0$ and $\xi \in \mathbb{Q}$. It is easily checked that

$$\xi = c - \frac{c^2 - 2}{c + 2}, \tag{2}$$

$$\xi^2 = 2 + \frac{2(c^2 - 2)}{(c+2)^2}.$$
(3)

4. As there is no rational number z with $z^2 = 2$, one of the two strict inequalities $c^2 < 2$ or $c^2 > 2$ must hold. In both cases, we will derive a contradiction.

I.
$$c^2 < 2 \xrightarrow{(2)}{\longrightarrow} \xi > c \Longrightarrow \xi \notin A \Longrightarrow \xi^2 > 2$$
 contradiction.
II. $c^2 > 2 \xrightarrow{(2)}{\longrightarrow} \xi < c \xrightarrow{(1)}{\longrightarrow} \xi \in A \Longrightarrow \xi^2 < 2$ contradiction.
II. $c^2 > 2 \xrightarrow{(2)}{\longrightarrow} \xi < c \xrightarrow{(1)}{\longrightarrow} \xi \in A \Longrightarrow \xi^2 < 2$ contradiction.

Therefore, the set A can have no rational supremum.