A bounded set in \mathbb{Q} without supremum

The following example shows that the field \mathbb{Q} is not completely ordered, i.e. there are bounded subsets of \mathbb{Q} without supremum (in \mathbb{Q} !).

As an example we choose

$$
A:=\left\{x \in \mathbb{Q} \mid x>0 \wedge x^{2}<2\right\} .
$$

1. Clearly $1 \in A \neq \varnothing$, furthermore A is bounded above, as for $x>2$ we have $x>0$ and $x^{2}>4>2$, so 2 is an upper bound for A.
2. Assume $c \in \mathbb{Q}$ is the supremum of A. Then $c \geq 1>0$. We show:

$$
\begin{equation*}
\forall \xi \in \mathbb{Q}: \quad 0<\xi<c \quad \Longrightarrow \quad \xi \in A \tag{1}
\end{equation*}
$$

From $\xi<c=\sup A$ it follows that ξ is not an upper bound for A, therefore there is $\xi^{\prime}>\xi$ with $\xi^{\prime} \in A$, so $\xi^{\prime 2}<2$ and therefore $\xi^{2}<\xi^{\prime 2}<2$, so $\xi \in A$.
3. Define

$$
\xi:=\frac{2 c+2}{c+2}
$$

Then certainly $\xi>0$ and $\xi \in \mathbb{Q}$. It is easily checked that

$$
\begin{align*}
\xi & =c-\frac{c^{2}-2}{c+2} \tag{2}\\
\xi^{2} & =2+\frac{2\left(c^{2}-2\right)}{(c+2)^{2}} \tag{3}
\end{align*}
$$

4. As there is no rational number z with $z^{2}=2$, one of the two strict inequalities $c^{2}<2$ or $c^{2}>2$ must hold. In both cases, we will derive a contradiction.
I. $\left.\quad c^{2}<2 \begin{array}{l}\stackrel{(2)}{\Longrightarrow} \xi>c \Longrightarrow \xi \notin A \Longrightarrow \xi^{2}>2 \\ \\ \\ \stackrel{(3)}{\Longrightarrow} \xi^{2}<2\end{array}\right\}$ contradiction.
II. $\left.\quad \begin{array}{rl}c^{2}>2 & \stackrel{(2)}{\Longrightarrow} \xi<c \stackrel{(1)}{\Longrightarrow} \xi \in A \Longrightarrow \xi^{2}<2 \\ & \stackrel{(3)}{\Longrightarrow} \xi^{2}>2\end{array}\right\}$ contradiction.

Therefore, the set A can have no rational supremum.

