Standard power series

All given series here are Taylor series around $x_{0}=0$.

Geometric and related series

$$
(1-x)^{-1}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\ldots
$$

From this we directly derive:

$$
\begin{aligned}
\left(1 \mp x^{m}\right)^{-1} & =\sum_{k=0}^{\infty}(\pm 1)^{k} x^{m k}=1 \pm x^{m}+x^{2 m} \pm \ldots \\
\ln (1-x) & =-\int_{0}^{x} \frac{1}{1-t} d t=-\sum_{k=1}^{\infty} \frac{x^{k}}{k}=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots\right), \\
\arctan x & =\int_{0}^{x} \frac{1}{1+t^{2}} d t=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \pm \ldots
\end{aligned}
$$

The radius of convergence of these series is 1 .

Exponential and related series

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots .
$$

From this we directly derive:
Even / odd part:

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2}=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}=1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+\ldots, \\
& \sinh x=\frac{e^{x}-e^{-x}}{2} \sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}=x+\frac{x^{3}}{6}+\frac{x^{5}}{120}+\ldots
\end{aligned}
$$

Real / imaginary part of $e^{i x}$:

$$
\begin{aligned}
& \cos x=\operatorname{Re}\left(e^{i x}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{24} \pm \ldots, \\
& \sin x=\operatorname{Im}\left(e^{i x}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120} \pm \ldots
\end{aligned}
$$

These series converge for all $x \in \mathbb{R}$.

Binomial series:

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}=1+\alpha x+\frac{\alpha(\alpha-1)}{1 \cdot 2} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots
$$

met

$$
\binom{\alpha}{k}:=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!} .
$$

The radius of convergence of this series is 1 .
For $\alpha \in \mathbb{N}_{+}$, the series reduces to a finite sum given by Newton's binomial theorem.

For $\alpha=-1$ we get the geometric series.

Trigonometric addition formulas

For $\alpha, \beta \in \mathbb{R}$ we have

$$
e^{i(\alpha+\beta)}=e^{i \alpha} e^{i \beta},
$$

so

$$
\cos (\alpha+\beta)+i \sin (\alpha+\beta)=(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)
$$

Carrying out the multiplication on the right and splitting into real and imaginary part yields

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\cos \alpha \sin \beta+\sin \alpha \cos \beta
\end{aligned}
$$

