High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=e^{-x^{2}}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}$ (check!)
$n=2:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=e^{-x^{2}}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}$ (check!)
$n=3:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=e^{-x^{2}}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}$ (check!) $n=4:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=e^{-x^{2}}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}$ (check!) $n=5:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=e^{-x^{2}}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}$ (check!)
$n=20$:

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=e^{-x^{2}}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n} \frac{\left(-x^{2}\right)^{k}}{k!}$ (check!)
$n=35$:

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=\frac{1}{x^{2}+1}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}$ (check!) $n=2:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=\frac{1}{x^{2}+1}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}$ (check!) $n=3:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=\frac{1}{x^{2}+1}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}$ (check!) $n=4$:

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=\frac{1}{x^{2}+1}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}$ (check!) $n=5:$

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=\frac{1}{x^{2}+1}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}$ (check!) $n=20$:

High order Taylor approximations

How does the Taylor polynomial $T_{n}=T_{n, f, x_{0}}$ behave as $n \rightarrow \infty$?
Example: $f(x)=\frac{1}{x^{2}+1}, x_{0}=0 \quad \rightsquigarrow \quad T_{2 n+1}(x)=T_{2 n}(x)=\sum_{k=0}^{n}\left(-x^{2}\right)^{k}$ (check!) $n=35$:

