Let $I \subset \mathbb{R}$ be an interval, $a \in I$, and $f: I \longrightarrow \mathbb{R}$ be an infinitely differentiable function, i.e. a function for which the derivatives $f^{(k)}$ of all orders $k \in \mathbb{N}$ exist on I. Let $x \in \mathbb{R}$, and consider the sequence $\left(T_{n}(x)\right)$ of n-th order Taylor approximations of f around a, evaluated at x. By definition of series convergence, this sequence converges for $n \rightarrow \infty$ if and only if the series

$$
\begin{equation*}
T_{\infty}(x):=\lim _{n \rightarrow \infty} T_{n}(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \tag{1}
\end{equation*}
$$

is convergent. It is called the Taylor series of f around a.
Two questions arise:

- For which $x \in \mathbb{R}$ does (1) converge?
- If (1) converges and $x \in I$, do we have $T_{\infty}(x)=f(x)$?

A partial answer is given by the following observation:
Proposition: Let $x \in I$, and let $R_{n}(x)$ be the remainder term in Taylor's theorem (as given in the lecture). Then

$$
\text { The Taylor series }(1) \text { converges to } f(x) \quad \Longleftrightarrow \quad R_{n}(x) \xrightarrow{n \rightarrow \infty} 0
$$

(Check!)

