Solutions to final test Analysis 1 (2WA31)
 February 2017

Disclaimer:

- No rights can be derived from these solutions.
- Comparing your own solutions to the ones given here does not necessarily yield sufficient information on the former's correctness, as the problems often can be solved in various, different-looking ways.
- Caution: Reading these solutions can lead to an over-optimistic estimation of your abilities. It is no substitute to (trying to) solve the problems independently!

1. a) Let $y \in f(A)$. There is an $x \in A$ with $y=f(x)$, and we have $x \leq \sup A$. Therefore $y=f(x) \leq f(\sup A)$. So $f(\sup A)$ is an upper bound for $f(A)$, and, as $\sup f(A)$ is the least upper bound, $\sup f(A) \leq f(\sup A)$.
b) $A=(-1,0), f$ given by

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

Then $\sup f(A)=\sup \{0\}=0, f(\sup A)=f(0)=1$.
c) Let $\varepsilon>0$. As f is continuous at $\sup A$, there is a $\delta>0$ such that

$$
\forall \xi \in(\sup A-\delta, \sup A+\delta): \quad f(\xi)>f(\sup A)-\varepsilon .
$$

Furthermore, there is an $x \in A$ such that $x>\sup A-\delta$. So $x \in(\sup A-\delta, \sup A+\delta)$, and therefore $f(x)>f(\sup A)-\varepsilon$. So $f(\sup A)-\varepsilon$ is no upper bound for $f(A)$, and, as this holds for all $\varepsilon>0, f(\sup A) \leq \sup f(A)$. The results follow from this and $\mathbf{a})$.
2. a) We distinguish three cases:
I. $a<1$: Then

$$
a+\frac{1}{n}<\frac{a+1}{2}<1
$$

for n large, and so

$$
0<x_{n}<\left(\frac{a+1}{2}\right)^{n}
$$

for these n. Now, as $\left(\frac{a+1}{2}\right)^{n} \rightarrow 0$ (standard limit), we get $x_{n} \rightarrow 0$ by the squeeze theorem.
II. $a=1$:

$$
\left(1+\frac{1}{n}\right)^{n} \rightarrow e
$$

(standard limit).
III. $a>1$: Then

$$
a+\frac{1}{n}>\frac{a+1}{2}>1
$$

for n large, and so

$$
x_{n}>\left(\frac{a+1}{2}\right)^{n}
$$

for these n. Therefore $x_{n} \rightarrow+\infty$ because of $\left(\frac{a+1}{2}\right)^{n} \rightarrow+\infty$ (standard limit).
b) We have

$$
b_{n}=\sum_{k=1}^{n+1} \frac{1}{k^{2}},
$$

so $\left(b_{n}\right)$ is the sequence of the partial sums of the convergent hyperharmonic series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$. Further, a simple induction argument shows that $1 \leq a_{n} \leq b_{n}$ for all n, so $\left(a_{n}\right)$ has the upper bound $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$. Therefore, as $\left(a_{n}\right)$ is also increasing, $\left(a_{n}\right)$ is convergent.
3. a) Let v be an accumulation point of $\left(c_{n}\right)$. Then there is a subsequence $\left(c_{n_{k}}\right)$ such that $c_{n_{k}} \rightarrow v$ as $k \rightarrow \infty$. Suppose $v<0$. Then $c_{n_{k}}<\frac{v}{2}<$ 0 for k large, and so also $a_{n_{k}}<\frac{v}{2}<0$. By the Bolzano-Weierstrass theorem, $\left(a_{n_{k}}\right)$ has a convergent subsequence $\left(a_{n_{k_{l}}}\right)$. Its limit w satisfies $w \leq \frac{v}{2}<0$. This is not possible as $w \in\{0,1\}$ because w is also an accumulation point of $\left(a_{n}\right)$. Therefore $v \geq 0$.
Analogously, $v \leq 1$. (Fill in the details!)
b) As 0 is an accumulation point of $\left(b_{n}\right)$ there is a subsequence $\left(b_{n_{k}}\right)$ with $b_{n_{k}} \rightarrow 0$ as $k \rightarrow \infty$. By the Bolzano-Weierstrass theorem, $\left(a_{n_{k}}\right)$ has a convergent subsequence ($a_{n_{k_{l}}}$). Its limit is either 0 or 1 because it is an accumulation point of $\left(a_{n}\right)$. However, because of $a_{n_{k_{l}}} \leq b_{n_{k_{l}}}<\frac{1}{2}$ for l large, the second possibility is excluded, and therefore $a_{n_{k_{l}}} \rightarrow 0$ as $l \rightarrow \infty$. Now because of

$$
a_{n_{k_{l}}} \leq c_{n_{k_{l}}} \leq b_{n_{k_{l}}}
$$

we get from the squeeze theorem that $c_{n_{k_{l}}} \rightarrow 0$ as $l \rightarrow \infty$, and therefore 0 is an accumulation point of $\left(c_{n}\right)$.
Analogously, one shows that 1 is an accumulation point of $\left(c_{n}\right)$. (Fill in the details!)
4. a) The series is alternating, and $\frac{\ln n}{n} \rightarrow 0$ as $n \rightarrow \infty$ (standard limit). Setting

$$
f(x)=\frac{\ln x}{x} \quad(x>0)
$$

and calculating

$$
f^{\prime}(x)=\frac{1-\ln x}{x^{2}}<0 \quad \text { for } x>e
$$

we find that the sequence $\left(\frac{\ln n}{n}\right)$ is decreasing for $n \geq 3$. Therefore, convergence follows from the Leibniz criterion.
b) Observe first that the series has positive terms and

$$
\frac{\sqrt[3]{n+2}}{n \sqrt{n-1}} \sim n^{\frac{1}{3}-\frac{3}{2}}=n^{-\frac{7}{6}}
$$

for n large. More precisely,

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n+2}}{n \sqrt{n-1}} n^{\frac{7}{6}}=1
$$

(Give the details!)
This implies

$$
\frac{\sqrt[3]{n+2}}{n \sqrt{n-1}} \leq \frac{2}{n^{\frac{7}{6}}}
$$

for n large, and therefore $\sum_{n=n_{0}}^{\infty} \frac{2}{n^{\frac{7}{6}}}$ is a convergent majorant (hyperharmonic series) for $\sum_{n=n_{0}}^{\infty} \frac{\sqrt[3]{n+2}}{n \sqrt{n-1}}$ for n_{0} large. So $\sum_{n=2}^{\infty} \frac{\sqrt[3]{n+2}}{n \sqrt{n-1}}$ is convergent.
c) We have $b_{n}>\frac{1}{2}$ for $n \geq n_{0}$ with some $n_{0} \in \mathbb{N}$. Therefore, the series $\sum_{n=n_{0}}^{\infty} a_{n} b_{n}$ has the divergent minorant $\sum_{n=n_{0}}^{\infty} \frac{a_{n}}{2}$. (Both have positive terms.) So $\sum_{n=1}^{\infty} a_{n} b_{n}$ is divergent.
5. a)

$$
\begin{gather*}
\forall M \in \mathbb{R}: \quad \exists \delta>0: \quad x \in(0, \delta) \Rightarrow f(x)>M, \tag{1}\\
\forall \varepsilon>0: \quad \exists z \in(0, \infty): \quad x>z \Rightarrow|f(x)-2|<\varepsilon \tag{2}
\end{gather*}
$$

b) Let $y=\frac{f\left(x_{0}\right)+2}{2}$. Choosing $M=y$ in (1) shows

$$
\exists \delta^{*}>0: \quad x \in\left(0, \delta^{*}\right) \Rightarrow f(x)>y .
$$

Fix $\xi_{1} \in\left(0, \min \left(\delta^{*}, x_{0}\right)\right)$. Then $f\left(\xi_{1}\right)>y>f\left(x_{0}\right)$. Applying the Intermediate Value theorem to f on the interval $\left[\xi_{1}, x_{0}\right]$ yields that there is an $x_{1} \in\left(\xi_{1}, x_{0}\right)$ such that $f\left(x_{1}\right)=y$.
Choosing $\varepsilon=2-y>0$ in (2) shows

$$
\exists z^{*} \in(0, \infty): \quad x>z^{*} \Rightarrow f(x)>y
$$

(Check!) Fix $\xi_{2}>\max \left(x_{0}, z^{*}\right)$. Then $f\left(x_{0}\right)<y<f\left(\xi_{2}\right)$. Applying the Intermediate Value theorem to f on the interval $\left[x_{0}, \xi_{2}\right.$] yields that there is an $x_{2} \in\left(x_{0}, \xi_{2}\right)$ such that $f\left(x_{2}\right)=y=f\left(x_{1}\right)$.
The statement follows, as $x_{1}<x_{0}<x_{2}$.
6. a) Let $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ be given by $f_{n}(x)=a_{n} \sin \left(x^{n}\right)$. Then $\left\|f_{n}\right\|_{\infty}=$ $\left|a_{n}\right|$, and the given series of functions is uniformly convergent on \mathbb{R} by the Weierstrass criterion. As this implies pointwise convergence, the function f is well-defined. Moreover, as uniform convergence preserves continuity and all f_{n} are continuous, f is also continuous.
b) Consider the series of functions

$$
\sum_{n=0}^{\infty} f_{n}^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \cos \left(x^{n}\right)
$$

Due to $\sup _{x \in[-1,1]}\left|f_{n}^{\prime}(x)\right|=\left|n a_{n}\right|$, the Weierstrass criterion yields the uniform convergence of this series of functions. From this and the result from \mathbf{a}), it follows that f is differentiable on $(-1,1)$.
c) Observe that $\sup _{x \in[-c, c]}\left|f_{n}^{\prime}(x)\right|=c^{n-1} n\left|a_{n}\right|$. So by the same reasoning as above, we get convergence of $\sum c^{n-1} n\left|a_{n}\right|$ (or, equivalently, $\sum c^{n} n\left|a_{n}\right|$) as sufficient condition for differentiability on $(-c, c)$.
7. Applying standard rules for calculations with power series and shifting the index we find

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-2 \sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n+2}+2 \sum_{n=0}^{\infty} a_{n} x^{n}= \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}-2 \sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=2}^{\infty} a_{n-2} x^{n}+2 \sum_{n=0}^{\infty} a_{n} x^{n}=0
\end{aligned}
$$

Applying the identity theorem for power series ("comparison of coefficients") we find $a_{0}=0$ (as given already), and

$$
a_{n-2}=(n(n-1)-2 n+2) a_{n}=(n-1)(n-2) a_{n}
$$

for $n \geq 2$, or

$$
a_{n+2}=\frac{a_{n}}{n(n+1)}
$$

for $n \geq 1$. It follows from $f^{\prime}(0)=1$ that $a_{1}=1$ and from $f^{\prime \prime}(0)=0$ that $a_{2}=0$. It is easily seen (and proved by induction) now that $a_{2 k}=0$ and $a_{2 k+1}=\frac{1}{(2 k)!}$, so

$$
f(x)=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k)!}
$$

Applying e.g. the ratio test it is easy to see that the series converges for all $x \in \mathbb{R}$. Finally,

$$
f(x)=x \sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}=x \cosh x
$$

