
Solutions to final test Analysis 1 (2WA31)
February 2017

Disclaimer:

• No rights can be derived from these solutions.

• Comparing your own solutions to the ones given here does not necessarily
yield sufficient information on the former’s correctness, as the problems
often can be solved in various, different-looking ways.

• Caution: Reading these solutions can lead to an over-optimistic estimation
of your abilities. It is no substitute to (trying to) solve the problems
independently!

1. a) Let y ∈ f(A). There is an x ∈ A with y = f(x), and we have
x ≤ supA. Therefore y = f(x) ≤ f(supA). So f(supA) is an
upper bound for f(A), and, as sup f(A) is the least upper bound,
sup f(A) ≤ f(supA).

b) A = (−1, 0), f given by

f(x) =

{
0 if x < 0,
1 if x ≥ 0.

Then sup f(A) = sup{0} = 0, f(supA) = f(0) = 1.

c) Let ε > 0. As f is continuous at supA, there is a δ > 0 such that

∀ξ ∈ (supA− δ, supA+ δ) : f(ξ) > f(supA)− ε.

Furthermore, there is an x ∈ A such that x > supA − δ. So
x ∈ (supA − δ, supA + δ), and therefore f(x) > f(supA) − ε. So
f(supA) − ε is no upper bound for f(A), and, as this holds for all
ε > 0, f(supA) ≤ sup f(A). The results follow from this and a).

2. a) We distinguish three cases:

I. a < 1: Then

a+
1

n
<
a+ 1

2
< 1

for n large, and so

0 < xn <

(
a+ 1

2

)n

for these n. Now, as
(
a+1
2

)n → 0 (standard limit), we get xn → 0 by
the squeeze theorem.
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II. a = 1: (
1 +

1

n

)n

→ e

(standard limit).

III. a > 1: Then

a+
1

n
>
a+ 1

2
> 1

for n large, and so

xn >

(
a+ 1

2

)n

for these n. Therefore xn → +∞ because of
(
a+1
2

)n → +∞ (standard
limit).

b) We have

bn =

n+1∑
k=1

1

k2
,

so (bn) is the sequence of the partial sums of the convergent hyperhar-
monic series

∑∞
k=1

1
k2 . Further, a simple induction argument shows

that 1 ≤ an ≤ bn for all n, so (an) has the upper bound
∑∞

k=1
1
k2 .

Therefore, as (an) is also increasing, (an) is convergent.

3. a) Let v be an accumulation point of (cn). Then there is a subsequence
(cnk

) such that cnk
→ v as k →∞. Suppose v < 0. Then cnk

< v
2 <

0 for k large, and so also ank
< v

2 < 0. By the Bolzano-Weierstrass
theorem, (ank

) has a convergent subsequence (ankl
). Its limit w

satisfies w ≤ v
2 < 0. This is not possible as w ∈ {0, 1} because w is

also an accumulation point of (an). Therefore v ≥ 0.

Analogously, v ≤ 1. (Fill in the details!)

b) As 0 is an accumulation point of (bn) there is a subsequence (bnk
)

with bnk
→ 0 as k → ∞. By the Bolzano-Weierstrass theorem,

(ank
) has a convergent subsequence (ankl

). Its limit is either 0 or
1 because it is an accumulation point of (an). However, because of
ankl

≤ bnkl
< 1

2 for l large, the second possibility is excluded, and
therefore ankl

→ 0 as l→∞. Now because of

ankl
≤ cnkl

≤ bnkl
,

we get from the squeeze theorem that cnkl
→ 0 as l → ∞, and

therefore 0 is an accumulation point of (cn).

Analogously, one shows that 1 is an accumulation point of (cn). (Fill
in the details!)

4. a) The series is alternating, and lnn
n → 0 as n → ∞ (standard limit).

Setting

f(x) =
lnx

x
(x > 0)
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and calculating

f ′(x) =
1− lnx

x2
< 0 for x > e

we find that the sequence
(
lnn
n

)
is decreasing for n ≥ 3. Therefore,

convergence follows from the Leibniz criterion.

b) Observe first that the series has positive terms and

3
√
n+ 2

n
√
n− 1

∼ n 1
3−

3
2 = n−

7
6

for n large. More precisely,

lim
n→∞

3
√
n+ 2

n
√
n− 1

n
7
6 = 1.

(Give the details!)

This implies
3
√
n+ 2

n
√
n− 1

≤ 2

n
7
6

for n large, and therefore
∑∞

n=n0

2

n
7
6

is a convergent majorant (hy-

perharmonic series) for
∑∞

n=n0

3
√
n+2

n
√
n−1 for n0 large. So

∑∞
n=2

3
√
n+2

n
√
n−1

is convergent.

c) We have bn > 1
2 for n ≥ n0 with some n0 ∈ N. Therefore, the

series
∑∞

n=n0
anbn has the divergent minorant

∑∞
n=n0

an

2 . (Both have

positive terms.) So
∑∞

n=1 anbn is divergent.

5. a)
∀M ∈ R : ∃ δ > 0 : x ∈ (0, δ) ⇒ f(x) > M, (1)

∀ ε > 0 : ∃ z ∈ (0,∞) : x > z ⇒ |f(x)− 2| < ε. (2)

b) Let y = f(x0)+2
2 . Choosing M = y in (1) shows

∃ δ∗ > 0 : x ∈ (0, δ∗) ⇒ f(x) > y.

Fix ξ1 ∈ (0,min(δ∗, x0)). Then f(ξ1) > y > f(x0). Applying the
Intermediate Value theorem to f on the interval [ξ1, x0] yields that
there is an x1 ∈ (ξ1, x0) such that f(x1) = y.

Choosing ε = 2− y > 0 in (2) shows

∃ z∗ ∈ (0,∞) : x > z∗ ⇒ f(x) > y.

(Check!) Fix ξ2 > max(x0, z
∗). Then f(x0) < y < f(ξ2). Applying

the Intermediate Value theorem to f on the interval [x0, ξ2] yields
that there is an x2 ∈ (x0, ξ2) such that f(x2) = y = f(x1).

The statement follows, as x1 < x0 < x2.
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6. a) Let fn : R −→ R be given by fn(x) = an sin(xn). Then ‖fn‖∞ =
|an|, and the given series of functions is uniformly convergent on R
by the Weierstrass criterion. As this implies pointwise convergence,
the function f is well-defined. Moreover, as uniform convergence
preserves continuity and all fn are continuous, f is also continuous.

b) Consider the series of functions

∞∑
n=0

f ′n(x) =

∞∑
n=0

nanx
n−1 cos(xn).

Due to supx∈[−1,1] |f ′n(x)| = |nan|, the Weierstrass criterion yields
the uniform convergence of this series of functions. From this and
the result from a), it follows that f is differentiable on (−1, 1).

c) Observe that supx∈[−c,c] |f ′n(x)| = cn−1n|an|. So by the same reason-

ing as above, we get convergence of
∑
cn−1n|an| (or, equivalently,

∑
cnn|an|)

as sufficient condition for differentiability on (−c, c).

7. Applying standard rules for calculations with power series and shifting the
index we find

∞∑
n=2

n(n− 1)anx
n − 2

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n+2 + 2

∞∑
n=0

anx
n =

∞∑
n=2

n(n− 1)anx
n − 2

∞∑
n=1

nanx
n −

∞∑
n=2

an−2x
n + 2

∞∑
n=0

anx
n = 0.

Applying the identity theorem for power series (“comparison of coeffi-
cients”) we find a0 = 0 (as given already), and

an−2 = (n(n− 1)− 2n+ 2)an = (n− 1)(n− 2)an

for n ≥ 2, or

an+2 =
an

n(n+ 1)

for n ≥ 1. It follows from f ′(0) = 1 that a1 = 1 and from f ′′(0) = 0 that
a2 = 0. It is easily seen (and proved by induction) now that a2k = 0 and
a2k+1 = 1

(2k)! , so

f(x) =

∞∑
k=0

x2k+1

(2k)!
.

Applying e.g. the ratio test it is easy to see that the series converges for
all x ∈ R. Finally,

f(x) = x

∞∑
k=0

x2k

(2k)!
= x coshx.
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