Solutions to final test Analysis 1 (2WA31) February 2017

Disclaimer:

- No rights can be derived from these solutions.
- Comparing your own solutions to the ones given here does not necessarily yield sufficient information on the former's correctness, as the problems often can be solved in various, different-looking ways.
- **Caution:** Reading these solutions can lead to an over-optimistic estimation of your abilities. It is no substitute to (trying to) solve the problems independently!
- **1.** a) Let $y \in f(A)$. There is an $x \in A$ with y = f(x), and we have $x \leq \sup A$. Therefore $y = f(x) \leq f(\sup A)$. So $f(\sup A)$ is an upper bound for f(A), and, as $\sup f(A)$ is the least upper bound, $\sup f(A) \leq f(\sup A)$.
 - **b)** A = (-1, 0), f given by

$$f(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 0. \end{cases}$$

Then $\sup f(A) = \sup\{0\} = 0$, $f(\sup A) = f(0) = 1$.

c) Let $\varepsilon > 0$. As f is continuous at sup A, there is a $\delta > 0$ such that

 $\forall \xi \in (\sup A - \delta, \sup A + \delta) : \quad f(\xi) > f(\sup A) - \varepsilon.$

Furthermore, there is an $x \in A$ such that $x > \sup A - \delta$. So $x \in (\sup A - \delta, \sup A + \delta)$, and therefore $f(x) > f(\sup A) - \varepsilon$. So $f(\sup A) - \varepsilon$ is no upper bound for f(A), and, as this holds for all $\varepsilon > 0$, $f(\sup A) \le \sup f(A)$. The results follow from this and **a**).

2. a) We distinguish three cases:

I. a < 1: Then

$$a + \frac{1}{n} < \frac{a+1}{2} < 1$$

for n large, and so

$$0 < x_n < \left(\frac{a+1}{2}\right)^n$$

for these *n*. Now, as $\left(\frac{a+1}{2}\right)^n \to 0$ (standard limit), we get $x_n \to 0$ by the squeeze theorem.

II. a = 1:

$$\left(1+\frac{1}{n}\right)^n \to e$$

(standard limit). III. a > 1: Then

$$a + \frac{1}{n} > \frac{a+1}{2} > 1$$

for n large, and so

$$x_n > \left(\frac{a+1}{2}\right)^n$$

for these *n*. Therefore $x_n \to +\infty$ because of $\left(\frac{a+1}{2}\right)^n \to +\infty$ (standard limit).

b) We have

$$b_n = \sum_{k=1}^{n+1} \frac{1}{k^2}$$

so (b_n) is the sequence of the partial sums of the convergent hyperharmonic series $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Further, a simple induction argument shows that $1 \leq a_n \leq b_n$ for all n, so (a_n) has the upper bound $\sum_{k=1}^{\infty} \frac{1}{k^2}$. Therefore, as (a_n) is also increasing, (a_n) is convergent.

- **3.** a) Let v be an accumulation point of (c_n) . Then there is a subsequence (c_{n_k}) such that $c_{n_k} \to v$ as $k \to \infty$. Suppose v < 0. Then $c_{n_k} < \frac{v}{2} < 0$ for k large, and so also $a_{n_k} < \frac{v}{2} < 0$. By the Bolzano-Weierstrass theorem, (a_{n_k}) has a convergent subsequence $(a_{n_{k_l}})$. Its limit w satisfies $w \leq \frac{v}{2} < 0$. This is not possible as $w \in \{0, 1\}$ because w is also an accumulation point of (a_n) . Therefore $v \geq 0$. Analogously, $v \leq 1$. (Fill in the details!)
 - **b)** As 0 is an accumulation point of (b_n) there is a subsequence (b_{n_k}) with $b_{n_k} \to 0$ as $k \to \infty$. By the Bolzano-Weierstrass theorem, (a_{n_k}) has a convergent subsequence $(a_{n_{k_l}})$. Its limit is either 0 or 1 because it is an accumulation point of (a_n) . However, because of $a_{n_{k_l}} \leq b_{n_{k_l}} < \frac{1}{2}$ for l large, the second possibility is excluded, and therefore $a_{n_{k_l}} \to 0$ as $l \to \infty$. Now because of

$$a_{n_{k_l}} \le c_{n_{k_l}} \le b_{n_{k_l}},$$

we get from the squeeze theorem that $c_{n_{k_l}} \to 0$ as $l \to \infty$, and therefore 0 is an accumulation point of (c_n) .

Analogously, one shows that 1 is an accumulation point of (c_n) . (Fill in the details!)

4. a) The series is alternating, and $\frac{\ln n}{n} \to 0$ as $n \to \infty$ (standard limit). Setting

$$f(x) = \frac{\ln x}{x} \qquad (x > 0)$$

and calculating

$$f'(x) = \frac{1 - \ln x}{x^2} < 0$$
 for $x > e$

we find that the sequence $\left(\frac{\ln n}{n}\right)$ is decreasing for $n \ge 3$. Therefore, convergence follows from the Leibniz criterion.

b) Observe first that the series has positive terms and

$$\frac{\sqrt[3]{n+2}}{n\sqrt{n-1}} \sim n^{\frac{1}{3}-\frac{3}{2}} = n^{-\frac{7}{6}}$$

for n large. More precisely,

$$\lim_{n \to \infty} \frac{\sqrt[3]{n+2}}{n\sqrt{n-1}} n^{\frac{7}{6}} = 1.$$

(Give the details!) This implies

$$\frac{\sqrt[3]{n+2}}{n\sqrt{n-1}} \le \frac{2}{n^{\frac{7}{6}}}$$

for *n* large, and therefore $\sum_{n=n_0}^{\infty} \frac{2}{n^{\frac{7}{5}}}$ is a convergent majorant (hyperharmonic series) for $\sum_{n=n_0}^{\infty} \frac{\sqrt[3]{n+2}}{n\sqrt{n-1}}$ for n_0 large. So $\sum_{n=2}^{\infty} \frac{\sqrt[3]{n+2}}{n\sqrt{n-1}}$ is convergent.

c) We have $b_n > \frac{1}{2}$ for $n \ge n_0$ with some $n_0 \in \mathbb{N}$. Therefore, the series $\sum_{n=n_0}^{\infty} a_n b_n$ has the divergent minorant $\sum_{n=n_0}^{\infty} \frac{a_n}{2}$. (Both have positive terms.) So $\sum_{n=1}^{\infty} a_n b_n$ is divergent.

5. a)

$$\forall M \in \mathbb{R} : \quad \exists \delta > 0 : \quad x \in (0, \delta) \Rightarrow f(x) > M, \tag{1}$$

$$\forall \varepsilon > 0: \quad \exists z \in (0, \infty): \quad x > z \Rightarrow |f(x) - 2| < \varepsilon.$$
 (2)

b) Let $y = \frac{f(x_0)+2}{2}$. Choosing M = y in (1) shows

$$\exists \ \delta^* > 0: \quad x \in (0, \delta^*) \ \Rightarrow \ f(x) > y.$$

Fix $\xi_1 \in (0, \min(\delta^*, x_0))$. Then $f(\xi_1) > y > f(x_0)$. Applying the Intermediate Value theorem to f on the interval $[\xi_1, x_0]$ yields that there is an $x_1 \in (\xi_1, x_0)$ such that $f(x_1) = y$. Choosing $\varepsilon = 2 - y > 0$ in (2) shows

 $\exists z^* \in (0,\infty): \quad x > z^* \Rightarrow f(x) > y.$

(Check!) Fix $\xi_2 > \max(x_0, z^*)$. Then $f(x_0) < y < f(\xi_2)$. Applying the Intermediate Value theorem to f on the interval $[x_0, \xi_2]$ yields that there is an $x_2 \in (x_0, \xi_2)$ such that $f(x_2) = y = f(x_1)$. The statement follows, as $x_1 < x_0 < x_2$.

- 6. a) Let f_n: ℝ → ℝ be given by f_n(x) = a_n sin(xⁿ). Then ||f_n||_∞ = |a_n|, and the given series of functions is uniformly convergent on ℝ by the Weierstrass criterion. As this implies pointwise convergence, the function f is well-defined. Moreover, as uniform convergence preserves continuity and all f_n are continuous, f is also continuous.
 - **b)** Consider the series of functions

$$\sum_{n=0}^{\infty} f'_n(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} \cos(x^n).$$

Due to $\sup_{x \in [-1,1]} |f'_n(x)| = |na_n|$, the Weierstrass criterion yields the uniform convergence of this series of functions. From this and the result from **a**), it follows that f is differentiable on (-1, 1).

- c) Observe that $\sup_{x \in [-c,c]} |f'_n(x)| = c^{n-1}n|a_n|$. So by the same reasoning as above, we get convergence of $\sum c^{n-1}n|a_n|$ (or, equivalently, $\sum c^n n|a_n|$) as sufficient condition for differentiability on (-c,c).
- **7.** Applying standard rules for calculations with power series and shifting the index we find

$$\sum_{n=2}^{\infty} n(n-1)a_n x^n - 2\sum_{n=1}^{\infty} na_n x^n - \sum_{n=0}^{\infty} a_n x^{n+2} + 2\sum_{n=0}^{\infty} a_n x^n =$$
$$\sum_{n=2}^{\infty} n(n-1)a_n x^n - 2\sum_{n=1}^{\infty} na_n x^n - \sum_{n=2}^{\infty} a_{n-2} x^n + 2\sum_{n=0}^{\infty} a_n x^n = 0.$$

Applying the identity theorem for power series ("comparison of coefficients") we find $a_0 = 0$ (as given already), and

$$a_{n-2} = (n(n-1) - 2n + 2)a_n = (n-1)(n-2)a_n$$

for $n \ge 2$, or

$$a_{n+2} = \frac{a_n}{n(n+1)}$$

for $n \ge 1$. It follows from f'(0) = 1 that $a_1 = 1$ and from f''(0) = 0 that $a_2 = 0$. It is easily seen (and proved by induction) now that $a_{2k} = 0$ and $a_{2k+1} = \frac{1}{(2k)!}$, so

$$f(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k)!}.$$

Applying e.g. the ratio test it is easy to see that the series converges for all $x \in \mathbb{R}$. Finally,

$$f(x) = x \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = x \cosh x.$$