Solutions to final test Analysis 1 (2WA30) February 2019

Disclaimer:

- No rights can be derived from these solutions.
- Comparing your own solutions to the ones given here does not necessarily yield sufficient information on the former's correctness, as the problems often can be solved in various, different-looking ways.
- **Caution:** Reading these solutions can lead to an over-optimistic estimation of your abilities. It is no substitute to (trying to) solve the problems independently!
- **1.** For all $a \in A$, $b \in B$ we have a > b+1, so b+1 is a lower bound for A. Hence $\inf A \ge b+1$ for all $b \in B$, and therefore $\inf A 1$ is an upper bound for B. Hence $\inf A 1 \ge \sup B$, or equivalently $\inf A \sup B \ge 1$.

Let $\varepsilon > 0$ be arbitrary. There is an $n \in \mathbb{N}$ such that $a_n - b_n < 1 + \varepsilon$, and therefore

$$\inf A - \sup B \le a_n - b_n < 1 + \varepsilon.$$

As this estimate holds for all $\varepsilon > 0$, this implies $\inf A - \sup B \le 1$. So $\inf A - \sup B = 1$.

2. a) The statement is true. Assume $(a_n) \sim (b_n)$, $(b_n) \sim (c_n)$. Then, by known calculation rules for limits of products

$$\frac{a_n}{c_n} = \underbrace{\frac{a_n}{b_n}}_{\rightarrow 1} \underbrace{\frac{b_n}{c_n}}_{\rightarrow 1} \rightarrow 1$$

b) The statement is false. A possible counterexample is $a_n = n + 1$, $b_n = n$.

c) The statement is true. Assume $(a_n) \sim (b_n)$. Then

$$0 \le \left| \frac{a_n + 1}{b_n + 1} - 1 \right| = \left| \frac{a_n - b_n}{b_n + 1} \right| = \frac{\left| \frac{a_n}{b_n} - 1 \right|}{1 + \frac{1}{b_n}} \le \left| \frac{a_n}{b_n} - 1 \right| \to 0,$$

and therefore, by the Squeeze Theorem, $\frac{a_n+1}{b_n+1} - 1 \rightarrow 0$, which implies $(a_n+1) \sim (b_n+1)$.

3. Suppose the negation of the statement that is to be shown:

$$\forall n \in \mathbb{N} : \exists m \ge n : a_m \notin (0, 1).$$

Therefore, there exists a subsequence (a_{n_k}) of (a_n) such that $(a_{n_k}) \notin (0, 1)$. By the Bolzano-Weiserstrass theorem, this subsequence has a convergent subsequence $(a_{n_{k_l}})$. For its limit z we either have $z \ge 1$ or $z \le 0$. In both cases, this is a contradiction to our assumption as z is also an accumulation point of the original sequence (a_n) . **4.** a) As

$$\lim_{n \to \infty} \sqrt{\frac{n^3}{n^3 - 1}} = 1$$

we have for n large enough (say for $n \ge n_0$) that $\sqrt{\frac{n^3}{n^3-1}} < 2$ and therefore for these n

$$\frac{1}{\sqrt{n^3 - 1}} \le \frac{2}{n^{3/2}}$$

As (up to a factor 2 and finitely many missing terms) the series $\sum_{n=n_0}^{\infty} \frac{2}{n^{3/2}}$ is a hypergeometric series with exponent $\frac{3}{2} > 1$, and therefore convergent, we can apply the majorant criterion to establish that also $\sum_{n=n_0}^{\infty} \frac{1}{\sqrt{n^3-1}}$, and hence $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^3-1}}$ is convergent.

b) We have

$$\frac{\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{2^n n!}{n^n}} = 2\left(\frac{n}{n+1}\right)^n \to \frac{2}{e} < 1$$

as $n \to \infty$. Therefore, the ratio test yields convergence of the series.

c) Calculating the ratio

$$\frac{(n+1)!|x|^{((n+1)^2)}}{n!|x|^{(n^2)}} = (n+1)|x|^{2n+1}$$

shows that the given power series converges absolutely for |x| < 1 and diverges for |x| > 1. So the radius of convergence is 1.

- 5. a) (i): $\forall \varepsilon > 0 : \exists x_0 < 0 : x \le x_0 \Rightarrow |f(x) 1| < \varepsilon$. (ii): $\forall M \in \mathbb{R} : \exists \delta > 0 : x \in (-\delta, 0) \Rightarrow f(x) > M$.
 - **b)** Let y > 1 be fixed. From (ii) with M = y we get that there is a $\delta > 0$ such that f(x) > y for all $x \in (-\delta, 0)$. Fix such a δ , and fix $x_2 \in (-\delta, 0)$. From (i) with $\varepsilon = y 1$ we get that there is an x_0 such that f(x) < y for all $x \le x_0$. Fix such an x_0 , and fix $x_1 < \min\{-\delta, x_0\}$ Then $x_1 < x_2$ and $f(x_2) < y$. As f is continuous (because f is differentiable) we can apply the Intermediate Value theorem on the interval $[x_1, x_2]$ and find that there is a $c \in (x_1, x_2)$ with f(c) = y, hence $y \in R(f)$.
 - c) By the Mean Value theorem we have that for all $x \in (-1,0)$ there is a $\xi \in (-1,x)$ such that

$$f(x) = f(-1) + f'(\xi)(x+1).$$

Suppose f' would be bounded, say $|f'(z)| \leq L$ for all $z \in (-\infty, 0)$. This would imply

$$f(x) \le f(-1) + L(x+1) \le f(-1) + L$$
, for all $x \in (-1,0)$,

which contradicts (ii). Therefore f' is unbounded.

- b) Let M be an upper bound for {|Φ(z)|| z ∈ ℝ}. Fix x ∈ ℝ. Then |Φ(kx)e^{-k}| ≤ Me^{-k}, and as ∑[∞]_{k=0} Me^{-k} is convergent it is a convergent majorant for ∑[∞]_{k=0} |Φ(kx)e^{-k}|, so the series ∑[∞]_{k=0} Φ(kx)e^{-k} is absolutely convergent.
 - c) Define $f_k : \mathbb{R} \longrightarrow \mathbb{R}$ by $f_k(x) = \Phi(kx)e^{-k}$, $x \in \mathbb{R}$. Then, by the same arguments as in a), $||f_k||_{\infty} \leq Me^{-k}$ and uniform convergence of $\sum f_k$ is ensured by the Weierstrass M-test.

- **d)** Let *L* be an upper bound for $\{|\Phi'(z)| | z \in \mathbb{R}\}$. Then $||f'_k||_{\infty} \leq Lke^{-k}$, and, as $\sum ke^{-k}$ is convergent (why?) we get by the Weierstrass M-test that $\sum f'_k$ is uniformly convergent. Together with the convergence of $\sum f_k$ this implies by a known theorem that *s* differentiable.
- **7.** The additional conditions imply $a_0 = 1$, $a_1 = 0$. Inserting the ansatz in the equation yields

$$(1+x^2)\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} + 4x\sum_{n=1}^{\infty}na_nx^{n-1} + 2\sum_{n=0}^{\infty}a_nx^n = 0$$

and after rearranging and shifting the index

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=2}^{\infty} n(n-1)a_nx^n + 4\sum_{n=1}^{\infty} na_nx^n + 2\sum_{n=0}^{\infty} a_nx^n = 0.$$

Now applying the identity theorem ("comparison of coefficients") yields: for n = 0: $2a_2 + 2a_0 = 0$, so $a_2 = -1$, for n = 1: $6a_3 + 6a_1 = 0$, so $a_3 = 0$, for $n \ge 2$: $(n^2 + 3n + 2)a_{-1} = (n^2 + 3n + 2)a_{-1} = 0$ so $a_{-1} = -a_{-1} = -a_{-1}$

for $n \ge 2$: $(n^2 + 3n + 2)a_{n+2} + (n^2 + 3n + 2)a_n = 0$, so $a_{n+2} = -a_n$. So in general $a_{2n+1} = 0$, $a_{2n} = (-1)^n$. The power series has radius of convergence 1 and represents the function $x \mapsto (1 + x^2)^{-1}$.