Solutions to final test Analysis 1 (2WA30)
February 2019

Disclaimer:
e No rights can be derived from these solutions.

e Comparing your own solutions to the ones given here does not necessarily
yield sufficient information on the former’s correctness, as the problems often
can be solved in various, different-looking ways.

e Caution: Reading these solutions can lead to an over-optimistic estimation of
your abilities. It is no substitute to (trying to) solve the problems indepen-
dently!

1. Foralla € A, b€ B we have a > b+ 1, so b+ 1 is a lower bound for A. Hence
infA>b+1 for all b € B, and therefore inf A — 1 is an upper bound for B.
Hence inf A — 1 > sup B, or equivalently inf A —sup B > 1.

Let € > 0 be arbitrary. There is an n € N such that a, — b, < 1 + ¢, and
therefore
infA—supB<a,—b,<1l+e.

As this estimate holds for all € > 0, this implies infA — supB < 1. So
infA—supB=1.

2. a) The statement is true. Assume (a,) ~ (by,), (by) ~ (¢n). Then, by
known calculation rules for limits of products
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b) The statement is false. A possible counterexample is a,, = n+1, b, = n.

c) The statement is true. Assume (ay) ~ (by). Then
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and therefore, by the Squeeze Theorem, — 1 — 0, which implies

(an+1) ~ (b, +1).

bn+1

3. Suppose the negation of the statement that is to be shown:
VneN: Im>n: apn¢(0,1).

Therefore, there exists a subsequence (a,,) of (a,) such that (a,,) ¢ (0,1).
By the Bolzano-Weiserstrass theorem, this subsequence has a convergent sub-
sequence (ankl ). For its limit z we either have z > 1 or z < 0. In both cases,
this is a contradiction to our assumption as z is also an accumulation point
of the original sequence (ay,).
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we have for n large enough (say for n > ng) that n?—jl < 2 and

therefore for these n )

2
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As (up to a factor 2 and finitely many missing terms) the series > - 2

n=no n3/2
is a hypergeometric series with exponent % > 1, and therefore convergent,

we can apply the majorant criterion to establish that also ZZO:”O \/ﬁ,

and hence Y~ , \/% is convergent.

We have
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as n — oo. Therefore, the ratio test yields convergence of the series.

Calculating the ratio
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shows that the given power series converges absolutely for |z| < 1 and
diverges for |z| > 1. So the radius of convergence is 1.

(i):Ve>0:Fa0<0: <29 = |f(x) -1 <e.

(i) VMeR:36>0:2€(-0,0) = f(z) > M.

Let y > 1 be fixed. From (ii) with M = y we get that there isa § > 0
such that f(z) >y for all © € (—4,0). Fix such a ¢, and fix 25 € (—4,0).
From (i) with € = y — 1 we get that there is an xg such that f(z) <y
for all x < xg. Fix such an z, and fix 1 < min{—d,x9} Then z; < x4
and f(z2) < y. As f is continuous (because f is differentiable) we can
apply the Intermediate Value theorem on the interval [z7, 23] and find
that there is a ¢ € (x1,22) with f(c¢) =y, hence y € R(f).

By the Mean Value theorem we have that for all x € (—1,0) there is a
& € (—1,x) such that

f@)=f(=D)+ (O +1).

Suppose f’ would be bounded, say |f'(z)| < L for all z € (—o00,0). This
would imply

fl@) < f(-D)+Lx+1) < f(-1)+ L, for all z € (—1,0),
which contradicts (ii). Therefore f’ is unbounded.

Let M be an upper bound for {|®(z)||z € R}. Fix x € R. Then
|®(kx)e *| < Me™*, and as Y 5, Me " is convergent it is a convergent
majorant for > p-  |®(kz)e |, so the series Y.~ , ®(kz)e~* is absolutely
convergent.

Define f; : R — R by fi(z) = ®(kx)e™*, 2 € R. Then, by the same
arguments as in a), || fx|lcc < Me™* and uniform convergence of 3" fy is
ensured by the Weierstrass M-test.



d) Let L be an upper bound for {|®(z)||z € R}. Then || f}|l«c < Lke™,
and, as > ke~ is convergent (why?) we get by the Weierstrass M-test
that > f; is uniformly convergent. Together with the convergence of
> fx this implies by a known theorem that s differentiable.

7. The additional conditions imply ag = 1, a; = 0. Inserting the ansatz in the
equation yields

1+x i n—lan"2+4x2nan"1+22an =0
n=1 n=0

and after rearranging and shifting the index
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Z(n +2)(n+ Daptoz™ + Z n(n—1ayx™ +4 Z nanz" + 2 Z apz™ = 0.
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Now applying the identity theorem (“comparison of coefficients”) yields:

for n = 0: 2as 4+ 2a9 = 0, so as = —1,

for n = 1: 6asz + 6a; =0, so az =0,

for n > 2: (n? +3n+ 2)anso + (2 +3n +2)a, = 0, 50 ayyo = —a,. So in
general as,11 = 0, as, = (—1)". The power series has radius of convergence
1 and represents the function x — (1 4+ 22)~1.



