
Solutions to final test Analysis 1 (2WA30)
February 2019

Disclaimer:

• No rights can be derived from these solutions.

• Comparing your own solutions to the ones given here does not necessarily
yield sufficient information on the former’s correctness, as the problems often
can be solved in various, different-looking ways.

• Caution: Reading these solutions can lead to an over-optimistic estimation of
your abilities. It is no substitute to (trying to) solve the problems indepen-
dently!

1. For all a ∈ A, b ∈ B we have a > b+ 1, so b+ 1 is a lower bound for A. Hence
infA ≥ b + 1 for all b ∈ B, and therefore infA − 1 is an upper bound for B.
Hence infA− 1 ≥ supB, or equivalently infA− supB ≥ 1.

Let ε > 0 be arbitrary. There is an n ∈ N such that an − bn < 1 + ε, and
therefore

infA− supB ≤ an − bn < 1 + ε.

As this estimate holds for all ε > 0, this implies infA − supB ≤ 1. So
infA− supB = 1.

2. a) The statement is true. Assume (an) ∼ (bn), (bn) ∼ (cn). Then, by
known calculation rules for limits of products

an
cn

=
an
bn︸︷︷︸
→1

bn
cn︸︷︷︸
→1

→ 1.

b) The statement is false. A possible counterexample is an = n+ 1, bn = n.

c) The statement is true. Assume (an) ∼ (bn). Then

0 ≤
∣∣∣∣an + 1

bn + 1
− 1

∣∣∣∣ =

∣∣∣∣an − bnbn + 1

∣∣∣∣ =

∣∣∣an

bn
− 1
∣∣∣

1 + 1
bn

≤
∣∣∣∣anbn − 1

∣∣∣∣→ 0,

and therefore, by the Squeeze Theorem, an+1
bn+1 − 1 → 0, which implies

(an + 1) ∼ (bn + 1).

3. Suppose the negation of the statement that is to be shown:

∀ n ∈ N : ∃ m ≥ n : am /∈ (0, 1).

Therefore, there exists a subsequence (ank
) of (an) such that (ank

) /∈ (0, 1).
By the Bolzano-Weiserstrass theorem, this subsequence has a convergent sub-
sequence (ankl

). For its limit z we either have z ≥ 1 or z ≤ 0. In both cases,
this is a contradiction to our assumption as z is also an accumulation point
of the original sequence (an).
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4. a) As

lim
n→∞

√
n3

n3 − 1
= 1,

we have for n large enough (say for n ≥ n0) that
√

n3

n3−1 < 2 and

therefore for these n
1√

n3 − 1
≤ 2

n3/2

As (up to a factor 2 and finitely many missing terms) the series
∑∞

n=n0

2
n3/2

is a hypergeometric series with exponent 3
2 > 1, and therefore convergent,

we can apply the majorant criterion to establish that also
∑∞

n=n0

1√
n3−1 ,

and hence
∑∞

n=2
1√

n3−1 is convergent.

b) We have
2n+1(n+1)!
(n+1)n+1

2nn!
nn

= 2

(
n

n+ 1

)n

→ 2

e
< 1

as n→∞. Therefore, the ratio test yields convergence of the series.

c) Calculating the ratio

(n+ 1)!|x|((n+1)2)

n!|x|(n2)
= (n+ 1)|x|2n+1

shows that the given power series converges absolutely for |x| < 1 and
diverges for |x| > 1. So the radius of convergence is 1.

5. a) (i): ∀ ε > 0 : ∃ x0 < 0 : x ≤ x0 ⇒ |f(x)− 1| < ε.
(ii): ∀M ∈ R : ∃ δ > 0 : x ∈ (−δ, 0) ⇒ f(x) > M .

b) Let y > 1 be fixed. From (ii) with M = y we get that there is a δ > 0
such that f(x) > y for all x ∈ (−δ, 0). Fix such a δ, and fix x2 ∈ (−δ, 0).
From (i) with ε = y − 1 we get that there is an x0 such that f(x) < y
for all x ≤ x0. Fix such an x0, and fix x1 < min{−δ, x0} Then x1 < x2
and f(x2) < y. As f is continuous (because f is differentiable) we can
apply the Intermediate Value theorem on the interval [x1, x2] and find
that there is a c ∈ (x1, x2) with f(c) = y, hence y ∈ R(f).

c) By the Mean Value theorem we have that for all x ∈ (−1, 0) there is a
ξ ∈ (−1, x) such that

f(x) = f(−1) + f ′(ξ)(x+ 1).

Suppose f ′ would be bounded, say |f ′(z)| ≤ L for all z ∈ (−∞, 0). This
would imply

f(x) ≤ f(−1) + L(x+ 1) ≤ f(−1) + L, for all x ∈ (−1, 0),

which contradicts (ii). Therefore f ′ is unbounded.

6. b) Let M be an upper bound for {|Φ(z)| | z ∈ R}. Fix x ∈ R. Then
|Φ(kx)e−k| ≤Me−k, and as

∑∞
k=0Me−k is convergent it is a convergent

majorant for
∑∞

k=0 |Φ(kx)e−k|, so the series
∑∞

k=0 Φ(kx)e−k is absolutely
convergent.

c) Define fk : R −→ R by fk(x) = Φ(kx)e−k, x ∈ R. Then, by the same
arguments as in a), ‖fk‖∞ ≤Me−k and uniform convergence of

∑
fk is

ensured by the Weierstrass M-test.

2



d) Let L be an upper bound for {|Φ′(z)| | z ∈ R}. Then ‖f ′k‖∞ ≤ Lke−k,
and, as

∑
ke−k is convergent (why?) we get by the Weierstrass M-test

that
∑
f ′k is uniformly convergent. Together with the convergence of∑

fk this implies by a known theorem that s differentiable.

7. The additional conditions imply a0 = 1, a1 = 0. Inserting the ansatz in the
equation yields

(1 + x2)

∞∑
n=2

n(n− 1)anx
n−2 + 4x

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n = 0

and after rearranging and shifting the index

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=2

n(n− 1)anx
n + 4

∞∑
n=1

nanx
n + 2

∞∑
n=0

anx
n = 0.

Now applying the identity theorem (“comparison of coefficients”) yields:
for n = 0: 2a2 + 2a0 = 0, so a2 = −1,
for n = 1: 6a3 + 6a1 = 0, so a3 = 0,
for n ≥ 2: (n2 + 3n + 2)an+2 + (n2 + 3n + 2)an = 0, so an+2 = −an. So in
general a2n+1 = 0, a2n = (−1)n. The power series has radius of convergence
1 and represents the function x 7→ (1 + x2)−1.

3


