
Solutions to final test Analysis 1 (2WA30)
April 2019

Disclaimer:

• No rights can be derived from these solutions.

• Comparing your own solutions to the ones given here does not necessarily
yield sufficient information on the former’s correctness, as the problems often
can be solved in various, different-looking ways.

• Caution: Reading these solutions can lead to an over-optimistic estimation of
your abilities. It is no substitute to (trying to) solve the problems indepen-
dently!

1. For any k ∈ N, due to Vk ⊂ Vk+1 ⊂ V we have sk ≤ sk+1 ≤ supV . There-
fore the sequence (sk) is increasing and bounded and therefore convergent.
Moreover, as sk ≤ supV for all k, we also have limk→∞ sk ≤ supV. .

To show the reverse inequality, fix x ∈ V . Then there is an l ∈ N such that
x ∈ Vl. So

x ≤ sl ≤ sup{sk | k ∈ N} = lim
k→∞

sk,

i.e. limk→∞ sk is an upper bound for V . supV is the least upper bound,
hence supV ≤ limk→∞ sk. .

2. For all x ∈ R we have (x−1)2 = x2−2x+1 ≥ 0 and thus x ≤ x2+1
2 . Therefore

both (an) and (bn) are increasing. If they converge, the limit L has to satisfy

L = L2+1
2 which implies L = 1 . However, we have bn ≥ 2 for all n ∈ N,

so (bn) cannot converge to 1 and is therefore divergent . A simple induction
argument shows that an < 1 for all n ∈ N, so (an) converges, and the limit is
1.

3. If B is an accumulation point of (bn), then there is a subsequence (bnk
) with

bnk
→ B as k → ∞. The subsequence (ank

) is bounded because (an) is
bounded. Hence, by Bolzano-Weierstrass, (ank

) has a convergent subsequence
(ankl

). Its limit is an accumulation point of (an), call it A1. Now, because
of

ankl
+1 = bnkl

− ankl
→ B −A1 as l→∞,

we see that A2 := B −A1 is also an accumulation point of (an).

4. a) As √
n2−2n+5

n3+6√
1
n

→ 1 as n→∞

(Verify!) there exists an n0 ∈ N such that√
n2 − 2n+ 5

n3 + 6
≥ 1

2
√
n

for n ≥ n0.

So the (up to the factor 2) hyperharmonic series
∑∞

n=n0

1
2
√
n

is a di-

vergent minorant for
∑∞

n=n0

√
n2−2n+5

n3+6 , and therefore the given series

diverges.
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b) Recall that due to (a±b)2 ≥ 0 for a, b ∈ R we have ±2ab ≤ a2+b2, hence
also |ab| ≤ a2 + b2. Consequently, the convergent series

∑
(a2n + b2n) is

a convergent majorant for
∑
|anbn|, and the series

∑
anbn is absolutely

convergent.

c) If |x| < min{R0, R1} then both
∑∞

k=0 a2kx
2k and

∑∞
k=0 a2k+1x

2k+1 con-
verge, so also their sum

∑∞
k=0 akx

k does. If |x| > min{R0, R1}, say
|x| > R0 without loss of generality, then there is an ε > 0 such that
2k
√
|a2k| > (1 + ε)/|x| for infinitely many indices k, and

|a2kx2k| ≥ ( 2k
√
|a2k||x|)2k 6→ 0,

so that
∑∞

k=0 akx
k is divergent. So the radius of convergence is min{R0, R1}.

5. a)

∀ ε > 0 : ∃x0 ∈ R : ∀x ≥ x0 : |f(x)− L| < ε, (1)

∀M > 0 : ∃ δ > 0 : ∀ t ∈ (2− δ, 2 + δ) \ {2} : g(t) > M (2)

b) As h is periodic, its range is {h(x) |x ∈ [0, T ]}. The continuous function
h takes on the bounded, closed interval [0, T ] its minimum value c in a
point x1 ∈ [0, T ] and its maximum value d in a point x2 ∈ [0, T ]. If
c < d then x1 6= x2, say x1 < x2 without loss of generality, and by
the Intermediate Value theorem applied to h on [x1, x2], we find that all
values in [c, d] are taken by h on [x1, x2].

c) We have to show

∀ η > 0 : ∃µ > 0 : ∀ t ∈ (2− µ, 2 + µ) \ {2} : |f(g(t) + h(t))− L| < η.

Fix η > 0. Set ε := η in (1). So

∃x0 ∈ R : ∀x ≥ x0 : |f(x)− L| < η. (3)

Choose such an x0 and set M := x0 − c in (2). So

∃ δ > 0 : ∀ t ∈ (2− δ, 2 + δ) : g(t) > x0 − c. (4)

Choose such a δ and set µ := δ.

Fix t ∈ (2−µ, 2+µ)\{2} = (2−δ, 2+δ)\{2}. Then by (4) and h(t) ≥ c
we get g(t) + h(t) ≥ x0 and from this by (3) with x = g(t) + h(t) we get
|f(g(t) + h(t))− L| < η.

6. a) The function F : R −→ R given by F (z) = z − sin z has derivative
F ′(z) = 1 − cos z ≥ 0 and is therefore increasing. As F (0) = 0 we have
F (z) ≤ 0 for z ≤ 0 and F (z) ≥ 0 for z ≥ 0, This implies the statement.

b) Fix x ∈ (−1, 1). Because of | sin(xn)| ≤ |xn| = |x|n, the convergent
geometric series

∑
|x|n is a convergent majorant for

∑
| sin(xn)|, and

therefore
∑

sin(xn) converges absolutely.

c) Similarly, for x ∈ [−a, a] we have | sin(xn)| ≤ an, the sum
∑
an is conver-

gent, and the function series is uniformly convergent by the Weierstrass
criterion.

d) Fix x ∈ (−1, 1) and choose a ∈ (|x|, 1). The terms x 7→ sin(xn) are
continuous, and due to the uniform convergence, the sum function s is
continuous on [−a, a], so in particular in x.
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e) Let fn : (−1, 1) −→ R be given by fn(x) = sin(xn). Then all fn are con-
tinuously differentiable, with derivatives given by f ′n(x) = nxn−1 cos(xn).
For a ∈ (0, 1) the series

∑
f ′n converges uniformly on [−a, a] by the Weier-

strass criterion, as for x ∈ [−a, a] we have |f ′n(x)| ≤ nan−1, and the series∑
nan−1 is convergent. So s is differentiable on [−a, a] for all a ∈ (0, 1),

and therefore as well on (−1, 1).

7. The additional conditions imply a0 = 1, a2 = 0. Inserting the ansatz in the
equation yields

(x

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n−1 + 4x3

∞∑
n=0

anx
n = 0

and after rearranging and shifting the index

∞∑
n=1

(n+ 1)nan+1x
n −

∞∑
n=0

(n+ 1)an+1x
n + 4

∞∑
n=3

an−3x
n = 0.

Now applying the identity theorem (“comparison of coefficients”) yields:
for n = 0: a1 = 0,
for n = 2: 6a3 − 3a3, so a3 = 0,
for n ≥ 3: (n+ 1)(n− 1)an+1 = −4an−3.

So in general a4n+1 = a4n+2 = a4n+3 = 0, a4n = (−1)n/(2n)!, n ∈ N. The
power series converges on all of R and represents the function x 7→ cos(x2).
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