Solutions to final test Analysis 1 (2WA30) April 2019

Disclaimer:

- No rights can be derived from these solutions.
- Comparing your own solutions to the ones given here does not necessarily yield sufficient information on the former's correctness, as the problems often can be solved in various, different-looking ways.
- **Caution:** Reading these solutions can lead to an over-optimistic estimation of your abilities. It is no substitute to (trying to) solve the problems independently!
- **1.** For any $k \in \mathbb{N}$, due to $V_k \subset V_{k+1} \subset V$ we have $s_k \leq s_{k+1} \leq \sup V$. Therefore the sequence (s_k) is increasing and bounded and therefore convergent. Moreover, as $s_k \leq \sup V$ for all k, we also have $\lim_{k\to\infty} s_k \leq \sup V$.

To show the reverse inequality, fix $x \in V$. Then there is an $l \in \mathbb{N}$ such that $x \in V_l$. So

$$x \le s_l \le \sup\{s_k \,|\, k \in \mathbb{N}\} = \lim_{k \to \infty} s_k,$$

i.e. $\lim_{k\to\infty} s_k$ is an upper bound for V. $\sup V$ is the least upper bound, hence $\sup V \leq \lim_{k\to\infty} s_k$.

- **2.** For all $x \in \mathbb{R}$ we have $(x-1)^2 = x^2 2x + 1 \ge 0$ and thus $x \le \frac{x^2+1}{2}$. Therefore both (a_n) and (b_n) are increasing. If they converge, the limit L has to satisfy $L = \frac{L^2+1}{2}$ which implies L = 1. However, we have $b_n \ge 2$ for all $n \in \mathbb{N}$, so (b_n) cannot converge to 1 and is therefore divergent. A simple induction argument shows that $a_n < 1$ for all $n \in \mathbb{N}$, so (a_n) converges, and the limit is 1.
- **3.** If B is an accumulation point of (b_n) , then there is a subsequence (b_{n_k}) with $b_{n_k} \to B$ as $k \to \infty$. The subsequence (a_{n_k}) is bounded because (a_n) is bounded. Hence, by Bolzano-Weierstrass, (a_{n_k}) has a convergent subsequence $(a_{n_{k_l}})$. Its limit is an accumulation point of (a_n) , call it A_1 . Now, because of

$$a_{n_{k_l}+1} = b_{n_{k_l}} - a_{n_{k_l}} \to B - A_1 \qquad \text{as } l \to \infty,$$

we see that $A_2 := B - A_1$ is also an accumulation point of (a_n) .

4. a) As

$$\frac{\sqrt{\frac{n^2 - 2n + 5}{n^3 + 6}}}{\sqrt{\frac{1}{n}}} \to 1 \qquad \text{as } n \to \infty$$

(Verify!) there exists an $n_0 \in \mathbb{N}$ such that

$$\sqrt{\frac{n^2 - 2n + 5}{n^3 + 6}} \ge \frac{1}{2\sqrt{n}}$$
 for $n \ge n_0$.

So the (up to the factor 2) hyperharmonic series $\sum_{n=n_0}^{\infty} \frac{1}{2\sqrt{n}}$ is a divergent minorant for $\sum_{n=n_0}^{\infty} \sqrt{\frac{n^2-2n+5}{n^3+6}}$, and therefore the given series diverges.

- **b)** Recall that due to $(a \pm b)^2 \ge 0$ for $a, b \in \mathbb{R}$ we have $\pm 2ab \le a^2 + b^2$, hence also $|ab| \le a^2 + b^2$. Consequently, the convergent series $\sum (a_n^2 + b_n^2)$ is a convergent majorant for $\sum |a_n b_n|$, and the series $\sum a_n b_n$ is absolutely convergent.
- c) If $|x| < \min\{R_0, R_1\}$ then both $\sum_{k=0}^{\infty} a_{2k} x^{2k}$ and $\sum_{k=0}^{\infty} a_{2k+1} x^{2k+1}$ converge, so also their sum $\sum_{k=0}^{\infty} a_k x^k$ does. If $|x| > \min\{R_0, R_1\}$, say $|x| > R_0$ without loss of generality, then there is an $\varepsilon > 0$ such that $\sqrt[2^k]{|a_{2k}|} > (1+\varepsilon)/|x|$ for infinitely many indices k, and

$$|a_{2k}x^{2k}| \ge (\sqrt[2k]{|a_{2k}|}|x|)^{2k} \not\to 0,$$

so that $\sum_{k=0}^{\infty} a_k x^k$ is divergent. So the radius of convergence is min $\{R_0, R_1\}$.

5. a)

$$\forall \varepsilon > 0: \quad \exists x_0 \in \mathbb{R}: \quad \forall x \ge x_0: \quad |f(x) - L| < \varepsilon, \tag{1}$$

$$\forall M > 0: \quad \exists \delta > 0: \quad \forall t \in (2 - \delta, 2 + \delta) \setminus \{2\}: \quad g(t) > M \quad (2)$$

- **b)** As *h* is periodic, its range is $\{h(x) \mid x \in [0,T]\}$. The continuous function *h* takes on the bounded, closed interval [0,T] its minimum value *c* in a point $x_1 \in [0,T]$ and its maximum value *d* in a point $x_2 \in [0,T]$. If c < d then $x_1 \neq x_2$, say $x_1 < x_2$ without loss of generality, and by the Intermediate Value theorem applied to *h* on $[x_1, x_2]$, we find that all values in [c, d] are taken by *h* on $[x_1, x_2]$.
- c) We have to show

 $\forall \eta > 0: \ \exists \mu > 0: \ \forall t \in (2 - \mu, 2 + \mu) \setminus \{2\}: \quad |f(g(t) + h(t)) - L| < \eta.$

Fix $\eta > 0$. Set $\varepsilon := \eta$ in (1). So

$$\exists x_0 \in \mathbb{R} : \forall x \ge x_0 : \quad |f(x) - L| < \eta.$$
(3)

Choose such an x_0 and set $M := x_0 - c$ in (2). So

$$\exists \delta > 0: \forall t \in (2 - \delta, 2 + \delta): \quad g(t) > x_0 - c.$$

$$\tag{4}$$

Choose such a δ and set $\mu := \delta$.

Fix $t \in (2-\mu, 2+\mu) \setminus \{2\} = (2-\delta, 2+\delta) \setminus \{2\}$. Then by (4) and $h(t) \ge c$ we get $g(t) + h(t) \ge x_0$ and from this by (3) with x = g(t) + h(t) we get $|f(g(t) + h(t)) - L| < \eta$.

- a) The function F : R → R given by F(z) = z sin z has derivative F'(z) = 1 cos z ≥ 0 and is therefore increasing. As F(0) = 0 we have F(z) ≤ 0 for z ≤ 0 and F(z) ≥ 0 for z ≥ 0, This implies the statement.
 - **b)** Fix $x \in (-1, 1)$. Because of $|\sin(x^n)| \le |x^n| = |x|^n$, the convergent geometric series $\sum |x|^n$ is a convergent majorant for $\sum |\sin(x^n)|$, and therefore $\sum \sin(x^n)$ converges absolutely.
 - c) Similarly, for $x \in [-a, a]$ we have $|\sin(x^n)| \le a^n$, the sum $\sum a^n$ is convergent, and the function series is uniformly convergent by the Weierstrass criterion.
 - **d)** Fix $x \in (-1,1)$ and choose $a \in (|x|,1)$. The terms $x \mapsto \sin(x^n)$ are continuous, and due to the uniform convergence, the sum function s is continuous on [-a, a], so in particular in x.

- e) Let $f_n: (-1, 1) \longrightarrow \mathbb{R}$ be given by $f_n(x) = \sin(x^n)$. Then all f_n are continuously differentiable, with derivatives given by $f'_n(x) = nx^{n-1}\cos(x^n)$. For $a \in (0, 1)$ the series $\sum f'_n$ converges uniformly on [-a, a] by the Weierstrass criterion, as for $x \in [-a, a]$ we have $|f'_n(x)| \le na^{n-1}$, and the series $\sum na^{n-1}$ is convergent. So s is differentiable on [-a, a] for all $a \in (0, 1)$, and therefore as well on (-1, 1).
- **7.** The additional conditions imply $a_0 = 1$, $a_2 = 0$. Inserting the ansatz in the equation yields

$$\left(x\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} - \sum_{n=1}^{\infty}na_nx^{n-1} + 4x^3\sum_{n=0}^{\infty}a_nx^n = 0\right)$$

and after rearranging and shifting the index

$$\sum_{n=1}^{\infty} (n+1)na_{n+1}x^n - \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + 4\sum_{n=3}^{\infty} a_{n-3}x^n = 0.$$

Now applying the identity theorem ("comparison of coefficients") yields: for n = 0: $a_1 = 0$,

for n = 2: $6a_3 - 3a_3$, so $a_3 = 0$,

for $n \ge 3$: $(n+1)(n-1)a_{n+1} = -4a_{n-3}$.

So in general $a_{4n+1} = a_{4n+2} = a_{4n+3} = 0$, $a_{4n} = (-1)^n/(2n)!$, $n \in \mathbb{N}$. The power series converges on all of \mathbb{R} and represents the function $x \mapsto \cos(x^2)$.