Solutions to final test Analysis 1 (2WA30) April 2019

Disclaimer:

- No rights can be derived from these solutions.
- Comparing your own solutions to the ones given here does not necessarily yield sufficient information on the former's correctness, as the problems often can be solved in various, different-looking ways.
- Caution: Reading these solutions can lead to an over-optimistic estimation of your abilities. It is no substitute to (trying to) solve the problems independently!

1. For any $k \in \mathbb{N}$, due to $V_{k} \subset V_{k+1} \subset V$ we have $s_{k} \leq s_{k+1} \leq \sup V$. Therefore the sequence $\left(s_{k}\right)$ is increasing and bounded and therefore convergent. Moreover, as $s_{k} \leq \sup V$ for all k, we also have $\lim _{k \rightarrow \infty} s_{k} \leq \sup V$. .

To show the reverse inequality, fix $x \in V$. Then there is an $l \in \mathbb{N}$ such that $x \in V_{l}$. So

$$
x \leq s_{l} \leq \sup \left\{s_{k} \mid k \in \mathbb{N}\right\}=\lim _{k \rightarrow \infty} s_{k}
$$

i.e. $\lim _{k \rightarrow \infty} s_{k}$ is an upper bound for $V . \sup V$ is the least upper bound, hence $\sup V \leq \lim _{k \rightarrow \infty} s_{k}$. .
2. For all $x \in \mathbb{R}$ we have $(x-1)^{2}=x^{2}-2 x+1 \geq 0$ and thus $x \leq \frac{x^{2}+1}{2}$. Therefore both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are increasing. If they converge, the limit L has to satisfy $L=\frac{L^{2}+1}{2}$ which implies $L=1$. However, we have $b_{n} \geq 2$ for all $n \in \mathbb{N}$, so $\left(b_{n}\right)$ cannot converge to 1 and is therefore divergent . A simple induction argument shows that $a_{n}<1$ for all $n \in \mathbb{N}$, so $\left(a_{n}\right)$ converges, and the limit is 1.
3. If B is an accumulation point of $\left(b_{n}\right)$, then there is a subsequence $\left(b_{n_{k}}\right)$ with $b_{n_{k}} \rightarrow B$ as $k \rightarrow \infty$. The subsequence $\left(a_{n_{k}}\right)$ is bounded because $\left(a_{n}\right)$ is bounded. Hence, by Bolzano-Weierstrass, $\left(a_{n_{k}}\right)$ has a convergent subsequence $\left(a_{n_{k_{l}}}\right)$. Its limit is an accumulation point of $\left(a_{n}\right)$, call it A_{1}. Now, because of

$$
a_{n_{k_{l}}+1}=b_{n_{k_{l}}}-a_{n_{k_{l}}} \rightarrow B-A_{1} \quad \text { as } l \rightarrow \infty,
$$

we see that $A_{2}:=B-A_{1}$ is also an accumulation point of $\left(a_{n}\right)$.
4. a) As

$$
\frac{\sqrt{\frac{n^{2}-2 n+5}{n^{3}+6}}}{\sqrt{\frac{1}{n}}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

(Verify!) there exists an $n_{0} \in \mathbb{N}$ such that

$$
\sqrt{\frac{n^{2}-2 n+5}{n^{3}+6}} \geq \frac{1}{2 \sqrt{n}} \quad \text { for } n \geq n_{0}
$$

So the (up to the factor 2) hyperharmonic series $\sum_{n=n_{0}}^{\infty} \frac{1}{2 \sqrt{n}}$ is a divergent minorant for $\sum_{n=n_{0}}^{\infty} \sqrt{\frac{n^{2}-2 n+5}{n^{3}+6}}$, and therefore the given series diverges.
b) Recall that due to $(a \pm b)^{2} \geq 0$ for $a, b \in \mathbb{R}$ we have $\pm 2 a b \leq a^{2}+b^{2}$, hence also $|a b| \leq a^{2}+b^{2}$. Consequently, the convergent series $\sum\left(a_{n}^{2}+b_{n}^{2}\right)$ is a convergent majorant for $\sum\left|a_{n} b_{n}\right|$, and the series $\sum a_{n} b_{n}$ is absolutely convergent.
c) If $|x|<\min \left\{R_{0}, R_{1}\right\}$ then both $\sum_{k=0}^{\infty} a_{2 k} x^{2 k}$ and $\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1}$ converge, so also their sum $\sum_{k=0}^{\infty} a_{k} x^{k}$ does. If $|x|>\min \left\{R_{0}, R_{1}\right\}$, say $|x|>R_{0}$ without loss of generality, then there is an $\varepsilon>0$ such that $\sqrt[2 k]{\left|a_{2 k}\right|}>(1+\varepsilon) /|x|$ for infinitely many indices k, and

$$
\left|a_{2 k} x^{2 k}\right| \geq\left(\sqrt[2 k]{\left|a_{2 k}\right|}|x|\right)^{2 k} \nrightarrow 0
$$

so that $\sum_{k=0}^{\infty} a_{k} x^{k}$ is divergent. So the radius of convergence is $\min \left\{R_{0}, R_{1}\right\}$.
5. a)

$$
\begin{array}{rll}
\forall \varepsilon>0: & \exists x_{0} \in \mathbb{R}: & \forall x \geq x_{0}: \quad|f(x)-L|<\varepsilon, \\
\forall M>0: & \exists \delta>0: & \forall t \in(2-\delta, 2+\delta) \backslash\{2\}: \quad g(t)>M \tag{2}
\end{array}
$$

b) As h is periodic, its range is $\{h(x) \mid x \in[0, T]\}$. The continuous function h takes on the bounded, closed interval $[0, T]$ its minimum value c in a point $x_{1} \in[0, T]$ and its maximum value d in a point $x_{2} \in[0, T]$. If $c<d$ then $x_{1} \neq x_{2}$, say $x_{1}<x_{2}$ without loss of generality, and by the Intermediate Value theorem applied to h on $\left[x_{1}, x_{2}\right]$, we find that all values in $[c, d]$ are taken by h on $\left[x_{1}, x_{2}\right]$.
c) We have to show
$\forall \eta>0: \exists \mu>0: \forall t \in(2-\mu, 2+\mu) \backslash\{2\}: \quad|f(g(t)+h(t))-L|<\eta$.
Fix $\eta>0$. Set $\varepsilon:=\eta$ in (1). So

$$
\begin{equation*}
\exists x_{0} \in \mathbb{R}: \forall x \geq x_{0}: \quad|f(x)-L|<\eta . \tag{3}
\end{equation*}
$$

Choose such an x_{0} and set $M:=x_{0}-c$ in (2). So

$$
\begin{equation*}
\exists \delta>0: \forall t \in(2-\delta, 2+\delta): \quad g(t)>x_{0}-c \tag{4}
\end{equation*}
$$

Choose such a δ and set $\mu:=\delta$.
Fix $t \in(2-\mu, 2+\mu) \backslash\{2\}=(2-\delta, 2+\delta) \backslash\{2\}$. Then by (4) and $h(t) \geq c$ we get $g(t)+h(t) \geq x_{0}$ and from this by (3) with $x=g(t)+h(t)$ we get $|f(g(t)+h(t))-L|<\eta$.
6. a) The function $F: \mathbb{R} \longrightarrow \mathbb{R}$ given by $F(z)=z-\sin z$ has derivative $F^{\prime}(z)=1-\cos z \geq 0$ and is therefore increasing. As $F(0)=0$ we have $F(z) \leq 0$ for $z \leq 0$ and $F(z) \geq 0$ for $z \geq 0$, This implies the statement.
b) Fix $x \in(-1,1)$. Because of $\left|\sin \left(x^{n}\right)\right| \leq\left|x^{n}\right|=|x|^{n}$, the convergent geometric series $\sum|x|^{n}$ is a convergent majorant for $\sum\left|\sin \left(x^{n}\right)\right|$, and therefore $\sum \sin \left(x^{n}\right)$ converges absolutely.
c) Similarly, for $x \in[-a, a]$ we have $\left|\sin \left(x^{n}\right)\right| \leq a^{n}$, the sum $\sum a^{n}$ is convergent, and the function series is uniformly convergent by the Weierstrass criterion.
d) Fix $x \in(-1,1)$ and choose $a \in(|x|, 1)$. The terms $x \mapsto \sin \left(x^{n}\right)$ are continuous, and due to the uniform convergence, the sum function s is continuous on $[-a, a]$, so in particular in x.
e) Let $f_{n}:(-1,1) \longrightarrow \mathbb{R}$ be given by $f_{n}(x)=\sin \left(x^{n}\right)$. Then all f_{n} are continuously differentiable, with derivatives given by $f_{n}^{\prime}(x)=n x^{n-1} \cos \left(x^{n}\right)$. For $a \in(0,1)$ the series $\sum f_{n}^{\prime}$ converges uniformly on $[-a, a]$ by the Weierstrass criterion, as for $x \in[-a, a]$ we have $\left|f_{n}^{\prime}(x)\right| \leq n a^{n-1}$, and the series $\sum n a^{n-1}$ is convergent. So s is differentiable on $[-a, a]$ for all $a \in(0,1)$, and therefore as well on $(-1,1)$.
7. The additional conditions imply $a_{0}=1, a_{2}=0$. Inserting the ansatz in the equation yields

$$
\left(x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n a_{n} x^{n-1}+4 x^{3} \sum_{n=0}^{\infty} a_{n} x^{n}=0\right.
$$

and after rearranging and shifting the index

$$
\sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}+4 \sum_{n=3}^{\infty} a_{n-3} x^{n}=0
$$

Now applying the identity theorem ("comparison of coefficients") yields: for $n=0: a_{1}=0$, for $n=2: 6 a_{3}-3 a_{3}$, so $a_{3}=0$,
for $n \geq 3$: $(n+1)(n-1) a_{n+1}=-4 a_{n-3}$.
So in general $a_{4 n+1}=a_{4 n+2}=a_{4 n+3}=0, a_{4 n}=(-1)^{n} /(2 n)!, n \in \mathbb{N}$. The power series converges on all of \mathbb{R} and represents the function $x \mapsto \cos \left(x^{2}\right)$.

