Solutions intermediate test Analysis 1 december 2018

No rights can be derived from these solutions.

1. As

$$
\frac{|a|}{|a|+1}<1 \quad \text { for all } a \in A
$$

the number 1 is an upper bound for B, and therefore $\sup B \leq 1$. On the other hand, suppose $1-\varepsilon$ would be an upper bound for some $\varepsilon>0$. Then

$$
\frac{|a|}{|a|+1} \leq 1-\varepsilon \quad \text { and therefore } \quad|a| \leq \frac{1}{\varepsilon}-1 \quad \text { for all } a \in A
$$

which contradicts the unboundedness of A. So B has no bounds smaller than 1 , and therefore $\sup B=1$.
Alternative: $\sup B \leq 1$ as above. Suppose $\sup B<1$. Then

$$
\frac{|a|}{|a|+1} \leq \sup B \quad \text { and therefore } \quad|a| \leq \frac{\sup B}{1-\sup B} \quad \text { for all } a \in A
$$

which contradicts the unboundedness of A. So $\sup B=1$.
2. From

$$
\frac{1}{n+2018} \leq c_{n} \leq \frac{1}{n-1}
$$

we have

$$
\begin{equation*}
\left(1+\frac{1}{n+2018}\right)^{n} \leq\left(1+c_{n}\right)^{n} \leq\left(1+\frac{1}{n-1}\right)^{n} \tag{1}
\end{equation*}
$$

for $n \geq 2$. By standard limits and limit theorems,

$$
\left(1+\frac{1}{n+2018}\right)^{n}=\underbrace{\left(1+\frac{1}{n+2018}\right)^{n+2018}}_{\rightarrow e} \underbrace{\left(1+\frac{1}{n+2018}\right)^{-2018}}_{\rightarrow 1} \rightarrow e
$$

as well as

$$
\left(1+\frac{1}{n-1}\right)^{n}=\underbrace{\left(1+\frac{1}{n-1}\right)^{n-1}}_{\rightarrow e} \underbrace{\left(1+\frac{1}{n-1}\right)} \rightarrow 1 \rightarrow e
$$

So by the squeeze theorem, $\left(1+c_{n}\right)^{n} \rightarrow e$ as well.
3. As

$$
\frac{\frac{n^{2}}{n^{4}-1}}{\frac{1}{n^{2}}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

we have that there is an $n_{0} \in \mathbb{N}$ such that

$$
\frac{n^{2}}{n^{4}-1} \leq \frac{2}{n^{2}} \quad \text { for all } n \geq n_{0}
$$

Consequently,
$\sum_{n=n_{0}}^{\infty} \frac{2}{n^{2}} \quad$ (hyperharmonic series) is a convergent majorant for $\sum_{n=n_{0}}^{\infty} \frac{n^{2}}{n^{4}-1}$,
and therefore the series $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}-1}$ is convergent as well.
4. Observe first that because of $a_{n} \rightarrow 0$, for all $k \in \mathbb{N}_{+}$there is an $m_{k} \in \mathbb{N}_{+}$ such that

$$
a_{n}<\frac{1}{k^{2}} \quad \text { for all } n \geq m_{k} .
$$

Let $n_{1}=m_{1}$ and for $k \geq 2$ define $n_{k}:=\max \left\{m_{k}, n_{k-1}+1\right\}$. This ensures that $\left(n_{k}\right)$ is an index sequence with $a_{n_{k}}<\frac{1}{k^{2}}$. Therefore, the series

$$
\sum_{k} a_{n_{k}} \quad \text { has the convergent majorant } \quad \sum_{k} \frac{1}{k^{2}}
$$

and is therefore convergent.

