Solutions intermediate test Analysis 1 december 2018
No rights can be derived from these solutions.

1. As
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the number 1 is an upper bound for B, and therefore sup B < 1. On the
other hand, suppose 1 — ¢ would be an upper bound for some £ > 0. Then

<1 forallae€ A,

1
o <1-—¢ and therefore |a|]<—-—1 forallae€ A,
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which contradicts the unboundedness of A. So B has no bounds smaller
than 1, and therefore sup B = 1.
Alternative: sup B < 1 as above. Suppose sup B < 1. Then
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<sup B and therefore |a| < for all a € A,
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which contradicts the unboundedness of A. So sup B = 1.
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for n > 2. By standard limits and limit theorems,
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we have
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So by the squeeze theorem, (1 + ¢,)™ — e as well.

3. As
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we have that there is an ng € N such that
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Consequently,
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E — (hyperharmonic series) is a convergent majorant for E pramE
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and therefore the series Y~ , -~ is convergent as well.

. Observe first that because of a,, — 0, for all £k € N there is an my € Ny
such that

an < for all n > my.
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Let n; = my and for k > 2 define ny := max{ms, ny—1 + 1}. This ensures
that (ny) is an index sequence with a,, < ]712 Therefore, the series

Z Gn,  has the convergent majorant Z
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and is therefore convergent.



