Solutions intermediate test Analysis 1 december 2019

No rights can be derived from these solutions.

a) The statement is true. For every ε > 0 there is an a ∈ A and a b ∈ B such that a > sup A − ε and b < inf B + ε. Choose ε := (sup A − inf B)/2 which is positive by assumption. So there are a ∈ A and b ∈ B such that

$$a > \sup A - \varepsilon = (\sup A + \inf B)/2 = \inf B + \varepsilon > b.$$

- **b)** The statement is false. For a counterexample, choose $A = \{1, 4\}, B = \{2, 3\}.$
- **2. a)** The statement is true. We have

$$\forall \varepsilon > 0: \quad \exists n_0 \in \mathbb{N}: \quad \forall n \ge n_0: \quad x_n - 1 < \varepsilon. \tag{1}$$

We need to show:

$$\forall M > 0: \quad \exists n_0 \in \mathbb{N}: \quad \forall n \ge n_0: \quad \frac{x_n}{x_n - 1} > M.$$
(2)

Fix M > 0 and choose $\varepsilon := 1/M$ (1). So

$$\exists n_0 \in \mathbb{N}: \quad \forall n \ge n_0: \quad x_n - 1 < 1/M.$$

Choose such an n_0 and fix $n \ge n_0$. Then $\frac{x_n}{x_n-1} > M$. This proves (2).

b) The statement is true. For n sufficiently large we have $1 \le x_n \le 2 \le n$, so for these n it follows that

$$1 \leq \sqrt[n]{x_n} \leq \sqrt[n]{n},$$

and the result follows by the standard limit $\sqrt[n]{n} \to 1$ and the squeeze theorem.

- c) The statement is false. For a counterexample, choose $x_n = 1 + 1/n$. Then $x_n^n \to e \neq 1$.
- a) (Idea: The terms behave as (1/2)^k for large k. Therefore the series converges.)

As $\frac{k+1}{2k-1} \to \frac{1}{2}$ for $k \to \infty$, we have that there is a k_0 such that $\frac{k+1}{2k-1} < 2/3$ for all $k \ge k_0$. Therefore, the geometric series $\sum_{k=k_0}^{\infty} \left(\frac{2}{3}\right)^k$ is a convergent majorant for $\sum_{k=k_0}^{\infty} \frac{k+1}{2k-1}$, so also $\sum_{k=1}^{\infty} \frac{k+1}{2k-1}$ converges. Alternatively, the result follows directly from the root test.

b) (Idea: The terms behave as 1/k for large k. Therefore the series diverges.)

Let M be an upper bound for (a_k) . Then, for $k > \sqrt{M}$,

$$\frac{k+a_k}{k^2+a_{k+1}} > \frac{k}{k^2+M} > \frac{1}{2k}.$$

So with $k_0 > \sqrt{M}$, the harmonic series $\sum_{k=k_0}^{\infty} \frac{1}{2k}$ is a divergent minorant for $\sum_{k=k_0}^{\infty} \frac{k+a_k}{k^2+a_{k+1}}$, so also $\sum_{k=1}^{\infty} \frac{k+a_k}{k^2+a_{k+1}}$ diverges.