Solutions intermediate test Analysis 1 december 2019

No rights can be derived from these solutions.

1. a) The statement is true. For every $\varepsilon>0$ there is an $a \in A$ and a $b \in B$ such that $a>\sup A-\varepsilon$ and $b<\inf B+\varepsilon$. Choose $\varepsilon:=(\sup A-\inf B) / 2$ which is positive by assumption. So there are $a \in A$ and $b \in B$ such that

$$
a>\sup A-\varepsilon=(\sup A+\inf B) / 2=\inf B+\varepsilon>b
$$

b) The statement is false. For a counterexample, choose $A=\{1,4\}, B=$ $\{2,3\}$.
2. a) The statement is true. We have

$$
\begin{equation*}
\forall \varepsilon>0: \quad \exists n_{0} \in \mathbb{N}: \quad \forall n \geq n_{0}: \quad x_{n}-1<\varepsilon \tag{1}
\end{equation*}
$$

We need to show:

$$
\begin{equation*}
\forall M>0: \quad \exists n_{0} \in \mathbb{N}: \quad \forall n \geq n_{0}: \quad \frac{x_{n}}{x_{n}-1}>M \tag{2}
\end{equation*}
$$

Fix $M>0$ and choose $\varepsilon:=1 / M(1)$. So

$$
\exists n_{0} \in \mathbb{N}: \quad \forall n \geq n_{0}: \quad x_{n}-1<1 / M
$$

Choose such an n_{0} and fix $n \geq n_{0}$. Then $\frac{x_{n}}{x_{n}-1}>M$. This proves (2).
b) The statement is true. For n sufficiently large we have $1 \leq x_{n} \leq 2 \leq n$, so for these n it follows that

$$
1 \leq \sqrt[n]{x_{n}} \leq \sqrt[n]{n}
$$

and the result follows by the standard limit $\sqrt[n]{n} \rightarrow 1$ and the squeeze theorem.
c) The statement is false. For a counterexample, choose $x_{n}=1+1 / n$. Then $x_{n}^{n} \rightarrow e \neq 1$.
3. a) (Idea: The terms behave as $(1 / 2)^{k}$ for large k. Therefore the series converges.)
As $\frac{k+1}{2 k-1} \rightarrow \frac{1}{2}$ for $k \rightarrow \infty$, we have that there is a k_{0} such that $\frac{k+1}{2 k-1}<2 / 3$ for all $k \geq k_{0}$. Therefore, the geometric series $\sum_{k=k_{0}}^{\infty}\left(\frac{2}{3}\right)^{k}$ is a convergent majorant for $\sum_{k=k_{0}}^{\infty} \frac{k+1}{2 k-1}$, so also $\sum_{k=1}^{\infty} \frac{k+1}{2 k-1}$ converges.
Alternatively, the result follows directly from the root test.
b) (Idea: The terms behave as $1 / k$ for large k. Therefore the series diverges.)
Let M be an upper bound for $\left(a_{k}\right)$. Then, for $k>\sqrt{M}$,

$$
\frac{k+a_{k}}{k^{2}+a_{k+1}}>\frac{k}{k^{2}+M}>\frac{1}{2 k} .
$$

So with $k_{0}>\sqrt{M}$, the harmonic series $\sum_{k=k_{0}}^{\infty} \frac{1}{2 k}$ is a divergent minorant for $\sum_{k=k_{0}}^{\infty} \frac{k+a_{k}}{k^{2}+a_{k+1}}$, so also $\sum_{k=1}^{\infty} \frac{k+a_{k}}{k^{2}+a_{k+1}}$ diverges.

