Example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $f^*(x) = |x|$. Then $f_n \to f^*$ uniformly on \mathbb{R} . n = 1:

Example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $f^*(x) = |x|$. Then $f_n \to f^*$ uniformly on \mathbb{R} .

n = 2:

Example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $f^*(x) = |x|$. Then $f_n \to f^*$ uniformly on \mathbb{R} . n = 3:

Example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $f^*(x) = |x|$. Then $f_n \to f^*$ uniformly on \mathbb{R} .

n = 20:

Example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $f^*(x) = |x|$. Then $f_n \to f^*$ uniformly on \mathbb{R} . n = 100:

Example: $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, $f^*(x) = |x|$. Then $f_n \to f^*$ uniformly on \mathbb{R} .

n = 100 :

