Exam on "Non-linear Optimization (2DME20)" Test exam, Fall 2015

There are 8 questions worth a total of 80 points. You are not allowed to use any tools other than pen and paper: no books, no notes, no pocket calculators!
(1) (a) Formulate Jensen's inequality for a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $n=3$ variables.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Prove that the minimization of $f(a)+f(b)+f(c)$ subject to the constraint $a+b+c=3$ has $3 f(1)$ as optimal objective value.
(c) Determine the minimum value of $1 / \sin \alpha+1 / \sin \beta+1 / \sin \gamma$ where α, β, γ are the angles of a triangle in the plane.
(2) Prove that $f(X)=\log \operatorname{det} X$ is a concave function on the set S_{++}^{n} of positive definite matrices.
(3) For matrices $P, Q \in S^{n}$, consider the problem $\min \left\{x^{T} P x \mid x^{T} Q x \geq 1, x^{T} x=1\right\}$.
(a) Is this a convex optimization problem?
(b) Give the Lagrangian, the Lagrange dual function, and the Lagrange dual.
(4) An instance of THREE-CYCLE consists of an undirected graph $G=(V, E)$ with $|V|=3 n$. The question is whether the vertices of G can be covered by three simple cycles of length n.
(a) Prove that THREE-CYCLE lies in NP.
(b) Prove that THREE-CYCLE is NP-hard.
(5) (a) State the ILP for unit communication delay scheduling.
(b) Prove that the integrality gap of the LP relaxation is at least $4 / 3$.
(6) Let $A_{0}, A_{1}, \ldots, A_{k}, B, C$ be symmetric $n \times n$ matrices and let $q \in \mathbb{R}$. We want to find a matrix A in the set $\left\{A_{0}+x_{1} A_{1}+\cdots+x_{k} A_{k} \mid x \in \mathbb{R}^{k}\right\}$ such that no eigenvalue of $B A$ exceeds the bound q and such that the smallest eigenvalue of $C A$ is as large as possible. Formulate this problem as a semi-definite optimization problem.
(7) Are the three functions in (a)-(c) self-concordant? Prove.
(a) $f(x)=x^{6} / 30$ on \mathbb{R}
(b) $f(x)=x \log x-8 \log x$ on \mathbb{R}_{++}
(c) $f(x)=-\log \left(x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{4}^{2}\right)$ on \mathbb{R}^{4}
(d) Prove or disprove: If f is self-concordant on \mathbb{R}, then $\frac{1}{2} f$ is self-concordant on \mathbb{R}.
(8) (a) Define when a search direction Δx is a descent direction.
(b) Show that for strictly convex f, the Newton direction $\Delta x_{n t}$ is a descent direction.
(Recall that $\Delta x_{n t}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$.)
(c) Define the degree of a generalized logarithm for a cone K.
(d) State (without proof) a generalized logarithm for the semi-definite cone.

