
Optimization (2MMD10/2DME20) TU/e, fall 2015
Problem set for weeks 4 and 5

Exercise 69. State for each of the following decision problems whether you think that it
is contained in NP and/or co-NP. If you claim containment, then provide a corresponding
certificate. If you claim non-containment, then state your intuition about it.

(a) Instance: A logical formula F in CNF. Question: Does F possess at most one satisfying
truth assignment?

(b) Instance: A logical formula F in CNF. Question: Does F possess a unique satisfying truth
assignment?

(c) Instance: A logical formula F in CNF. Question: Is there a truth assignment for which
F evaluates to FALSE?

(d) Instance: A set of n cities; the distances between these cities; a bound B. Question: Is
the length of the shortest TSP-tour equal to B?

(e) Instance: An edge-weighted, undirected graph G; a bound B. Question: Does G have a
spanning tree of weight at least B?

(f) Instance: An edge-weighted, undirected graph G. Question: Is the minimum weight
perfect matching in G unique?

Exercise 70. Consider a decision problem X, and assume that every instance of X can be
rewritten in polynomial time into an equivalent instance of SAT.
(a) True or false: Then X lies in NP.
(b) True or false: Then X is NP-hard.

Exercise 71. We saw in the course that 3-SAT is NP-hard. Which of the following variants
of SAT are polynomially solvable?
(a) Every clause contains exactly two literals
(b) Every clause contains at most one un-negated literal
(c) Every clause contains at most one negated literal
(d) Every variable occurs in at most two clauses

Exercise 72. ODD-3SAT asks whether a given logical formula Φ in 3-CNF over variable set
X possesses a truth setting for X such that every clause contains an odd number of true literals.
Decide whether ODD-3SAT can be solved in polynomial time.

Exercise 73. A set of closed intervals on the real line is called independent, if no two of these
intervals share a common point. The problem INDEPENDENT INTERVAL SET asks for a
given set S of intervals and a given bound k, whether there exists an independent subset of at
least k intervals.
(a) Decide whether INDEPENDENT INTERVAL SET ≤p INDEPENDENT SET.
(b) Decide whether INDEPENDENT SET ≤p INDEPENDENT INTERVAL SET.

Exercise 74. Prove NP-hardness of the PARTITION problem. An instance consists of pos-
itive integers a1, . . . , an with

∑n
i=1 ai = 2A. The question is whether there exists an index set

I ⊆ {1, . . . , n} with
∑

i∈I ai = A.
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Exercise 75. Prove NP-hardness of the ZERO-CYCLE problem. An instance consists of an
undirected graph G = (V,E) together with a weight function w : E → Z. The question is
whether the graph contains a simple cycle so that the sum of edge weights along the cycle
equals zero.

Exercise 76. Prove NP-hardness of the HAMILTONIAN CYCLE problem in undirected
bipartite graphs.

Exercise 77. An instance of the HAMILTONIAN PATH problem consists of a graph G =
(V,E) and two vertices s.t ∈ V . The question is to decide whether the graph contains a simple
path connecting s to t and visiting every vertex in the graph exactly once.

Prove NP-hardness of the HAMILTONIAN PATH problem in (a) undirected graphs; (b)
directed graphs.

Exercise 78. An instance of the DEGREE CONSTRAINED SPANNING TREE problem
consists of an undirected graph G = (V,E) and a positive integer d, and asks whether G has
a spanning tree with maximum degree bounded by d. Prove NP-hardness of the DEGREE
CONSTRAINED SPANNING TREE problem.

Exercise 79. Prove NP-hardness of the SET-COVER problem. An instance consists of a
ground-set X, subsets S1, . . . , Sm of X, and an integer k. The question is whether there exists
a sub-collection of k of the given subsets whose union is X?

Exercise 80. Consider the single clause c = (x∨y∨z) and the following set Sc of ten clauses:

(x), (y), (z), (w); (x̄ ∨ ȳ), (x̄ ∨ z̄), (ȳ ∨ z̄); (x ∨ w̄), (y ∨ w̄), (z ∨ w̄)

(a) Show: If a truth-setting for x, y, z satisfies the clause c, then it can be extended to a
truth-setting for w such that seven clauses in Sc are satisfied.

(b) Show: If a truth-setting for x, y, z fails to satisfy clause c, then every extension to w
satisfies at most six clauses in Sc.

(c) Deduce (by a reduction from 3-SAT) the NP-hardness of the following problem: Given
a 2-SAT formula (where every clause contains at most two literals) and an integer k, decide
whether there is a truth-setting that satisfies at least k clauses.

Exercise 81. A graph possesses a 3-coloring, if its vertices can be colored with three colors
(red, blue, yellow) such that adjacent vertices always receive different colors.

Consider the following nine-vertex graph G9. Two triangles y1, y2, y3 and y4, y5, y6 are
connected to each other by the edge [y1, y4]. Furthermore there are three vertices a, b, c and
the three edges [a, y2], [b, y3] and [c, y5]. We consider 3-colorings of the vertices of G9.

(a) Prove: If a, b, c are all colored by the same color f , then also y6 must be colored f .

(b) Prove: Any coloring of a, b, c that assigns color f to at least one of a, b, c can be
extended to a coloring of G9 that assigns color f to vertex y6.

(c) Deduce (by a reduction from 3-SAT): Deciding whether a given input graph has a
3-coloring is NP-complete.
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Exercise 82. A single machine has to process n jobs j = 1, . . . , n; job j has an integer
processing time of pj time units, and should be completed by its due date dj . A job is said
to be late if it is completed after its due date; otherwise it is early. A fundamental problem
in scheduling theory is to schedule the jobs so as to minimize the number of late jobs. The
Moore-Hodgson algorithm solves this problem in O(n logn) time: Schedule the jobs in order of
non-decreasing due dates; as soon as a scheduled job is late, remove the job with the largest
processing time from the schedule, and mark it to be late. We consider three generalizations of
this problem.

(a) Each job j (j = 1, . . . , n) has a given weight wj ∈ Z
+, and we want to minimize the

weighted number of late jobs, that is, the sum of the weights of the late jobs. Prove that this
problem is NP-hard.

(b) Each job j has a release date rj (and hence cannot be processed before rj). Prove that
it is NP-hard to minimize the number of late jobs.

(c) Given is an acyclic directed graph G with the jobs as vertices. If G contains a directed
path from vertex j to vertex k, then job k cannot be started before job j has been completed.
We now want to minimize the number of late jobs subject to these precedence constraints. Prove
that this problem is NP-hard.

Exercise 83. You are helping to organize a summer sports camp that covers n different sports
(soccer, volleyball, etc). For each sport, the camp is supposed to have at least one councelor
who is skilled in that sport. You have received application letters from m potential councelors
that specify their skills. Your goal is to hire the smallest possible number of councelors so that
all n sports are covered.

Formulate the resulting optimization problem as a decision problem. Prove that the decision
problem is NP-complete.

Exercise 84. Harry Potter is looking for a Bowtruckle that has made itself invisible and is
hiding in one of the vertices of a graph. Harry Potter repeatedly points his magic wand at
some vertex and casts the SEMI-REVELIO spell. When the spell hits the Bowtruckle for the
first time, the Bowtruckle leaves its vertex and moves to an adjacent vertex; as the Bowtruckle
moves silently and invisibly, Harry is not aware of the move. When the spell hits the Bowtruckle
for the second time, it finally becomes visibile to Harry.

Harry wants to make the Bowtruckle visible while casting as few SEMI-REVELIO spells
as possible. A vertex sequence is called revealing, if casting the SEMI-REVELIO spells at the
vertices according to the sequence guarantees that the Bowtruckle eventually becomes visibile
(independently of its initial hiding place).

Problem: REVEALING SEQUENCE

Instance: A graph G = (V,E); a bound k

Question: Does there exist a revealing vertex sequence of length at most k?

(a) Prove that REVEALING SEQUENCE lies in NP.
(b) Prove that REVEALING SEQUENCE is NP-hard.

Exercise 85. “A peasant had to transport to the far side of a river a wolf, a goat, and a

bundle of cabbages. The only boat he could find was one which would carry only two of them.

For that reason he sought a plan which would enable them all to get to the far side unhurt. Let

him, who is able, say how it could be possible to transport them safely?” In a safe transportation
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plan, neither wolf & goat nor goat & cabbage can be left alone together. There exists a solution
where the peasant makes seven boat trips across the river.

Consider the following generalization to arbitrary graphs G = (V,E): Now the peasant has
to transport a set V of items/vertices across the river. Two items are connected by an edge in
E, if they are conflicting and thus cannot be left alone together without human supervision.
The available boat has capacity b ≥ 1, and thus can carry the man together with any subset
S ⊆ V of at most b items. The question is whether there exists a safe transportation plan that
allows the peasant to get all of V safely to the other side.

Problem: Feasible Transportation Plan

Instance: A graph G = (V,E); a boat of capacity b ≥ 1.

Question: Does there exist a safe transportation plan for G and b?

Problem: Short Transportation Plan

Instance: A graph G = (V,E); a boat of capacity b ≥ 1.

Question: Does there exist a safe transportation plan for G and b, in which the
peasant only makes three boat trips (one forward, one back, one forward)?

(a) Prove that FEASIBLE TRANSPORTATION PLAN is NP-hard.
(b) Prove that problem SHORT TRANSPORTATION PLAN is NP-hard.
(c) Prove that SHORT TRANSPORTATION PLAN lies in NP.

Exercise 86. In the SUBSET SUM problem, we are given positive integers a1, . . . , an and b.
The problem is to decide whether there exists an index set I ⊆ {1, . . . , n} with

∑
i∈I ai = b.

We introduce a Boolean array A[0 . . . n, 0 . . . b], and we set the entry A[m, c] to TRUE if and
only if there exists an index set I ⊆ {1, . . . ,m} with

∑
i∈I ai = c.

(a) Show that the array entries can be computed in overall time O(nb).
(b) Deduce that SUBSET SUM can be solved in time O(nb).
(c) Does this result imply P=NP?

Exercise 87. Assume that some decision problem X has a solution algorithm that uses poly-
nomial time to recognize NO-instances, but uses exponential time to recognize YES-instances.
Show that X lies in P .

Exercise 88. Assume that P=NP holds.
(a) Show that there exists a polynomial time algorithm that constructs a satisfying truth
assignment for YES-instances of SAT.
(b) Show that there exists a polynomial time algorithm that constructs a Hamiltonian cycle
for YES-instances of HAMILTONIAN CYCLE.

Exercise 89. Suppose that there is a black box that takes as input an undirected graph
G = (V,E) and an integer bound k, and then behaves as follows:

• If G is not connected, then the box returns “Not connected”.

• If G is connected and contains an independent set of size k, the box returns “NO!”.

• If G is connected and does not contain any independent set of size k, it returns “YES!”.

The box always finds its answer in polynomial time (measured in the size of G and k). Show
that with such a box you can solve the INDEPENDENT SET problem in polynomial time.

4



Exercise 90. Consider the FACTORING problem:

Instance: An integer n (written in decimal)

Solution: A list of primes whose product equals n

Describe a decision problem X that is polynomial-time equivalent to FACTORING. (Given a
black box for X, you can efficiently solve FACTORING. Given a black box for FACTORING,
you can efficiently solve X.)

Exercise 91. The GREEDY heuristic for VERTEX COVER repeats the following step until
the graph has no more edges: “Select a vertex v of highest degree, put v into the vertex cover,
and delete all edges incident to v.” Ties are broken arbitrarily. Show that the approximation
guarantee of this GREEDY heuristic is (a) strictly worse than 2; (b) strictly worse than 1000.

Exercise 92. Find TSP instances (with triangle inequality) that illustrate that our analysis
of the Double-Tree algorithm (worst case ratio 2) and our analysis of the Christofides algorithm
(worst case ratio 3/2) are essentially tight.

Exercise 93. Show that for the general TSP (without triangle inequality), the existence of a
polynomial time approximation algorithm with worst case ratio 2 would imply P=NP.

Exercise 94. An instance of the METRIC STEINER TREE problem consists of a complete
graph on a vertex set R∪S, and non-negative weights w(e) on the edges that satisfy the triangle
inequality. The vertices in R are called required vertices, and the vertices in S are called Steiner

vertices. The goal is to find a minimum weight tree that contains all required vertices and some
of the Steiner vertices.

A simple approximation algorithm uses the minimum spanning tree for the vertices in R as
approximation of the Steiner tree. Determine the worst case ratio of this algorithm.

Exercise 95. An instance of BIN PACKING consists of n items with real sizes a1, . . . , an ∈
[0, 1]. The goal is to pack these items into the smallest possible number of unit size bins. The
FIRST FIT algorithm for BIN PACKING works through the item list a1, . . . , an one by one,
and always packs the current item into the earliest (leftmost) bin into which it will fit.
(a) Show that the worst case ratio of FIRST FIT is at most 2.
(b) Show that the worst case ratio of FIRST FIT is at least 5/3.

Exercise 96. Show that for the BIN PACKING problem, the existence of a polynomial time
approximation algorithm with worst case ratio 4/3 would imply P=NP.

Exercise 97. An instance of the MAKESPAN minimization problem consists of n jobs with
(positive integer) lengths p1, . . . , pn and ofm identical machines. The goal is to assign the jobs to
the machines, so that the largest work-load is minimized. Consider the following approximation
algorithm for MAKESPAN that improves on LIST SCHEDULING: Sort and rename the jobs,
such that p1 ≥ p2 ≥ · · · ≥ pn, and then apply LIST SCHEDULING to the sorted instance.
Analyze this improved approximation algorithm LSI for MAKESPAN with m = 4 machines.

(a) Show that LSI has worst case ratio at most 5/4.

(b) Find a bad instance that matches this ratio 5/4.
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Exercise 98. An instance of the 3-SET PACKING problem consists of a ground set X to-
gether with a system S1, S2, . . . , Sm of 3-elements subsets of X. The goal is to find a maximum
cardinality subsystem of pairwise disjoint subsets.

Find a polynomial time approximation algorithm that finds a solution whose cardinality is
at least 1/3 of the optimal cardinality.

Exercise 99. Give a polynomial time approximation algorithm with worst case ratio 1/2 for
the ACYCLIC SUBGRAPH problem: An instance consists of a directed graph G = (V,A).
The goal is to find a maximum cardinality subset of the arcs that induces an acyclic subgraph.

Exercise 100. Design a polynomial time algorithm that takes as input a 3-colorable graph
G and finds a proper coloring of G with O(

√
n) colors. (Hence: the input graph is guaranteed

to be 3-colorable, but the corresponding 3-coloring is not known.)

Exercise 101. An instance of the MAX CUT problem consists of an undirected graph G =
(V,E). The goal is to find a partition V = L∪R that maximizes the number of edges between
L and R.

The FLIP algorithm starts with the trivial partition with L = V and R = ∅. As long as
the objective value can be improved by moving one vertex from L to R or from R to L, FLIP
moves the corresponding vertex. When there is no further improvement possible, FLIP outputs
the current partition. Show that FLIP has worst case ratio 1/2.

Exercise 102. An instance of the KNAPSACK problem consists of a knapsack of capacity
W together with n items with positive integer weights w1, . . . , wn ≤ W and positive integer
profits p1, . . . , pn, The goal is to find a subset S ⊆ {1, . . . , n} of the items with total weight at
most W that maximizes the total profit.

(a) The GREEDY algorithm first sorts the items by decreasing profit to weight ratios, and
then greedily selects and packs items in this order. Show that GREEDY has unbounded
worst case ratio.

(b) MODIFIED GREEDY uses the same item ordering as GREEDY. It finds the lowest
index k such that the weight of the first k items exceeds W , and outputs the better of
{1, . . . , k − 1} and {k}. Show that MODIFIED GREEDY has worst case ratio 2.

Exercise 103. State an ILP formulation of the KNAPSACK problem, and formulate the
corresponding LP relaxation. Analyze the integrality gap of the LP relaxation.

Exercise 104. A graph G = (V,E) with n vertices v1, . . . , vn forms an instance of the INDE-
PENDENT SET problem.

(a) Find an ILP formulation of INDEPENDENT SET: For every vertex vk introduce a cor-
responding indicator variable xk. Introduce appropriate constraints, and express the
objective function in terms of the xk.

(b) Relax your ILP formulation to an LP formulation with continuous variables xk. Prove:
For every integer R, there exists an instance of INDEPENDENT SET, for which the ratio
between the objective values of the LP and the ILP is at least R.

(c) What can you say about the integrality gap of this LP relaxation?
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Exercise 105. Consider the following ILP formulation of the MAKESPAN minimization
problem on identical machines with job processing times p1, . . . , pn.

min C

s.t.
∑m

i=1 xij = 1 for j = 1, . . . , n
∑n

j=1 xijpj = Li for i = 1, . . . ,m

Li ≤ C for i = 1, . . . ,m

pj ≤ C for j = 1, . . . , n

xij ∈ {0, 1} for i = 1, . . . ,m and j = 1, . . . , n

Note that the variables xij are integral, while the variables Li and C are continuous.

(a) Show that this ILP correctly models the MAKESPAN minimization problem.

(b) Formulate the corresponding LP relaxation.

(c) Analyze the integrality gap in dependence of the number m of machines.

Exercise 106. An instance of the MAX BISECTION problem consists of an undirected graph
with vertex set V = {1, 2, . . . , 2n} and positive real edge weights w(i, j) for [i, j] ∈ E. The goal
is to partition V into two parts V1 and V2 of size n, so that the total weight of the edges between
V1 and V2 is as large as possible. Consider the following ILP.

max
∑

[i,j]∈E

w(i, j) zi,j

s.t. zi,j ≤ xi + xj for [i, j] ∈ E

zi,j ≤ 2− xi − xj for [i, j] ∈ E
∑2n

i=1 xi = n

xi ∈ {0, 1} for i ∈ V

zi,j ∈ {0, 1} for [i, j] ∈ E

(a) Show that this ILP correctly models the MAX BISECTION problem.

(b) Show that any feasible solution x and z of the ILP satisfies zij = xi + xj − 2xixj .

Next, let us consider the LP relaxation of this ILP, where the integrality constraints xi ∈ {0, 1}
and zi,j ∈ {0, 1} are relaxed to the continuous constraints 0 ≤ xi ≤ 1 and 0 ≤ zi,j ≤ 1.
Furthermore we define the auxiliary value F (x) :=

∑
[i,j]∈E w(i, j) (xi + xj − 2xixj).

(c) Prove that any feasible solution x and z of the LP relaxation satisfies the inequality
F (x) ≥ 1

2

∑
[i,j]∈E w(i, j) zi,j .

(d) Consider a solution for the LP in which the two variables xi and xj are both fractional.
Argue that it is possible to increase one variable by ε > 0 and to decrease the other one
by the same ε, such that the value of F (x) does not decrease and one of the two variables
becomes integer.

(e) Use these arguments to design a polynomial time approximation algorithm for MAX
BISECTION that yields at least 1/2 of the optimal objective value.
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Exercise 107. An instance of the MAX SATISFIABILITY problem consists of a set X of
logical variables x1, . . . , xn; a set C of clauses c1, . . . , cm over X; a positive real weight wc

for every clause c ∈ C. Throughout this exercise we will assume that C does not contain
contradictory unit-clauses; this means that for any variable x, at most one of the two clauses
(x) and (¬x) is in C. The goal is to find a truth-setting of the variables in X that maximizes the
overall weight of all satisfied clauses. For example, for the three clauses c1 = (¬x1), c2 = (¬x2),
c3 = (x1 + x2) with weights w1 = w2 = 3 and w3 = 4, the optimal solution satisfies two clauses
with an overall weight of 7.

This exercise analyzes the quality of the bound W =
∑

c∈C wc for the optimal objective
value of MAX SATISFIABILITY without contradictory unit-clauses; clearly Opt ≤ W . Define
φ = 1

2(−1 +
√
5) ≈ 0.618 as the positive root of φ2 + φ = 1.

(a) Show that there always exist truth-settings with objective value at least φW . (Hint: Set
xi=TRUE with an appropriately chosen probability pi. Show that the expected value of
the overall weight of the satisfied clauses is at least φW .)

(b) Use the method of conditional expectation with the result in (a), and get a deterministic
polynomial time approximation algorithm with worst case guarantee φ.

(c) Find sets C of clauses, for which Opt comes arbitrarily close to φW .

Exercise 108. Consider n jobs Jj (j = 1, . . . , n) with positive integer processing times pj
on two identical machines. The goal is to find a schedule with machine loads L1 and L2 that
minimizes the following objective value:

(a) |L1 − L2|

(b) max{L1, L2}/min{L1, L2}

(c) (L1 − L2)
2

(d) L1 + L2 + L1 · L2

(e) max{L1, L2/2}

For each of these problems, you are asked to either design a PTAS or to find a convincing
argument against the existence of a PTAS.
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