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Our program for week 1

Tuesday:
• lots of examples from continuous optimization

(mainly very old, mainly Greek, mainly geometric)

Friday:
• lots of examples from discrete optimization

(mainly from the 20th century)
• some impossibility results

GJ Woeginger Optimization (2MMD10/2DME20), lecture 1b 2/26



The Minimum Spanning Tree problem (1)

• 1920s: Electrification of South-West Moravia
• 1925/26: Jindřich Saxel, employee of Západomoravské elektrárny

(West-Moravian Powerplants) contacts Otakar Borůvka
• Otakar Borůvka (1899–1995): Czech mathematician; Brno

Problem
Given n points in the plane,

join them by a net of minimum length
such that any two points are joined either directly or by means
of some other points.
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The Minimum Spanning Tree problem (2)

It is evident that a solution of this problem could have some im-
portace in electricity power-line network design; hence I present the
solution briefly using an example. The reader with a deeper interest
in the subject is referred to the above quoted paper.

I shall give a solution of the problem in the case of 40 points given
in Fig. 1. I shall join each of the given points with the nearest
neighbor. Thus, for example, point 1 with point 2, point 2 with
point 3, point 3 with point 4 (point 4 with point 3), point 5 with
point 2, point 6 with point 5, point 7 with point 6, point 8 with
point 9, (point 9 with point 8), etc. I shall obtain a sequence of
polygonal strokes 1, 2, . . . , 13 (Fig. 2).

I shall join each of these strokes with the nearest stroke in the short-
est possible way. Thus, for example, stroke 1 with stroke 2, (stroke
2 with stroke 1), stroke 3 with stroke 4, (stroke 4 with stroke 3), etc.
I shall obtain a sequence of polygonal strokes 1, 2, . . . , 4 (Fig. 3) I
shall join each of these strokes in the shortest way with the nearest
stroke. Thus stroke 1 with stroke 3, stroke 2 with stroke 3 (stroke 3
with stroke 1), stroke 4 with stroke 1. I shall finally obtain a single
polygonal stroke (Fig. 4), which solves the given problem.
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The Minimum Spanning Tree problem (3)

Theorem
A minimum spanning tree can be found by the greedy algorithm.

Kruskal’s algorithm:
Repeat “pick cheapest useful edge” until done

Prim’s algorithm:
Grow the tree by repeatedly picking the cheapest edge
between current tree and remaining points

Matroid = common generalization of cycle-free edge sets (graph theory)
and independent sets of vectors (linear algebra)
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The Soviet railway system problem (1)

Fig. 2. From Harris and Ross [11]: Schematic diagram of the railway network of the Western Soviet Union
and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe,
and a cut of capacity 163,000 tons indicated as “The bottleneck”
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The Soviet railway system problem (2)

Problem
Consider a rail network connecting two cities by way of a number of
intermediate cities, where each link of the network has a number assigned
to it representing its capacity.

Assuming a steady state condition, find a maximal flow from one given
city to the other.

Problem (Harris & Ross, 1954)

Air power is an effective means of interdicting an enemy’s rail system,
and such usage is a logical and important mission.

As in many military operations, however, the success of interdiction
depends largely on how complete, accurate, and timely is the
commander’s information, particularly concerning the effect of his
interdiction-program efforts on the enemy’s capability to move men and
supplies. This information should be available at the time the results are
being achieved.
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The Soviet railway system problem (3)

Given:
• a directed network G = (V ,A)
• source s and sink t in V
• arc capacities c : A→ R+

Definition

A flow is a mapping f : A→ R+
0 that satisfies

(a) f (u, v) ≤ c(u, v) for all arcs (u, v) ∈ A
(b)

∑
x :(x,u)∈A f (x , u) =

∑
y :(u,y)∈A f (u, y) for all u ∈ V − {s, t}

The value |f | of the flow is∑
x :(x,t)∈A f (x , t) (and hence equals

∑
x :(s,x)∈A f (s, x))
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The Soviet railway system problem (4)

Given:
• a directed network G = (V ,A)
• source s and sink t in V
• arc capacities c : A→ R+

Definition

An s-t cut (S ,T ) is a partition S and T of V
that satisfies s ∈ S and t ∈ T .

The cut-set of (S ,T ) is the set {(u, v) ∈ A : u ∈ S , v ∈ T}.

The capacity of cut (S ,T ) is the total capacity of all arcs in the cut-set.
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The Soviet railway system problem (5)

Easy observation

For an arbitrary flow f and for an arbitrary s-t cut (S ,T ) we have
value of flow ≤ capacity of cut.

Max-flow min-cut theorem
The value of the maximum flow

equals the capacity of the minimum cut.

• Lester R. Ford and Delbert R. Fulkerson (1955)
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The Stigler diet problem (1)

• George Stigler (1911–1991); 1982 Nobel prize in economics;
key leader of the Chicago School of Economics

Problem
For a moderately active man weighing 154 pounds,

how much of each of 77 foods should be eaten on a daily basis
so that the man’s intake of nine nutrients will be at least equal to
the recommended dietary allowances (RDAs)
suggested by the National Research Council in 1943,
with the cost of the diet being minimal?

• In 1939, Stigler found a solution of cost $39.93 (per year)
(Note: this would roughly correspond to $600 nowadays.)
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The Stigler diet problem (2)

Food Annual Quantities Annual Cost

Wheat Flour 370 lb. $13.33
Evaporated Milk 57 cans $3.84
Cabbage 111 lb. $4.11
Spinach 23 lb. $1.85
Dried Navy Beans 285 lb. $16.80
Total Annual Cost $39.93

Nutrient Daily Recommended Intake
Calories 3,000 Calories
Protein 70 grams
Calcium 0.8 grams
Iron 12 milligrams
Vitamin A 5,000 IU
Thiamine (Vitamin B1) 1.8 milligrams
Riboflavin (Vitamin B2) 2.7 milligrams
Niacin 18 milligrams
Ascorbic Acid (Vitamin C) 75 milligrams
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The Stigler diet problem (3)

• George Dantzig (1914–2005): American mathematical scientist;
important contributions to operations research, computer science,
economics, and statistics.

• Seven years after Stigler made his initial estimates, George Dantzig’s
Simplex algorithm found the exact optimal solution

• Optimal solution has cost $39.69 (per year)
“No one recommends these diets for anyone, let alone everyone.”
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The Stigler diet problem (4)

• The Stigler diet problem is a linear program

Definition
In a linear program, we want to solve

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
x = (x1, x2, . . . , xn) ∈ Rn

where f0 and all fi are linear functions

• Recall: LP duality
• Recall: Simplex algorithm
• Recall: Ellipsoid method solves LP in polynomial time
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The Stigler diet problem (5a)

The great mathematical Sputnik of 1979
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The Stigler diet problem (5b)
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Cliques and Matchings in social networks (1)

• Facebook friendship graph:
vertices=people; edges=friendships

Definition
A group S of vertices forms a clique,

if any two vertices u, v ∈ S are connected by an edge

Definition
A group S of vertices contains a perfect matching,

if S can be partitioned into pairs (groups of size 2)
that each are connected by an edge

• Recall: fast algorithm for finding perfect matchings
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The Travelling Salesman Problem (1)

Travelling Salesman Problem (TSP)

Given: n cities; distances d(i , j) between cities i and j

Compute: the shortest round-trip through all cities

• The travelling salesman starts in a city, visits all other cities, and
finally returns to his starting point; Goal = minimize gas

• TSP models many hard real-world problems
Merrill Flood (1930): school bus routing
VLSI microchip layout problem
Change-over times in machine scheduling
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The Travelling Salesman Problem (2)
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Some fundamental definitions

Definition
In an integer optimization problem, we want to solve

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s
x = (x1, x2, . . . , xn) ∈ Zn

• Recall: linear function; linear optimization problem
• Recall: Integer linear program (ILP)
• Recall: quadratic function; quadratic optimization problem
• Recall: non-linear optimization problem
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Hardness and undecidability (1)

(1) minimize x3 + y3 + z3

subject to x3 + y3 + z3 ≥ 29
x , y , z ∈ Z

(2) minimize x3 + y3 + z3

subject to x3 + y3 + z3 ≥ 30
x , y , z ∈ Z

(3) minimize x3 + y3 + z3

subject to x3 + y3 + z3 ≥ 33
x , y , z ∈ Z

• Solution to (1): (x , y , z) = (3, 1, 1) with value 29
• Solution to (2): (x , y , z) = (−283059965,−2218888517, 2220422932)

with value 30
• Solution to (3): nobody knows
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Hardness and undecidability (2)

The cattle problem of Archimedes

Story about milk-white, black, dappled and yellow cows that leads to the
equation x2 = 410286423278424 · y2 + 1.

In the smallest positive solution, x has 206545 digits

Theorem (Andrew Wiles, 1995)

The optimal objective value of the following problem is not zero.

minimize (xn + yn − zn)2

subject to x , y , z , n ∈ Z
x , y , z ≥ 1 and n ≥ 3

This has first been conjectured by Pierre de Fermat in 1637
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Hardness and undecidability (3)

Hilbert’s Tenth Problem

Given a polynomial P(x1, x2, . . . , xn) with coefficients in Z,
decide whether there exist integers x1, x2, . . . , xn
such that P(x1, x2, . . . , xn) = 0

Theorem (highschool knowledge)

The case n = 1 has an easy algorithmic solution.
(check all divisors of the constant term)

Theorem (Matiyasevich, 1970)

There is no algorithm that solves Hilbert’s Tenth Problem.
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Hardness and undecidability (4)

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s
x = (x1, x2, . . . , xn) ∈ Zn

Consequence

There is no algorithm that solves
optimization problems over the integers.

Consequence

There is no algorithm that solves
optimization problems with polynomial objective function
and polynomial constraints over the integers.
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Hardness and undecidability (5)

Two positive results:

Theorem
There is an algorithm that solves

optimization problems with linear objective function
and linear constraints over the integers.

Theorem (Tarski, 1951)

There is an algorithm that solves
optimization problems over the reals.
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An unsolvable algorithmic problem

Problem: CheckTermination
Input: two text pieces text.1 and text.2

Question: does the C++ program listed in text.1
terminate on the input in text.2?

• Suppose there exists an algorithm for CheckTermination
• Then there exists a C++ program that implements this algorithm

• We construct a new C++ program XXX that takes input text.3
• First, XXX checks whether the C++ program listed in text.3

terminates on the input in text.3
• If text.3 does terminate, then XXX goes into infinite loop
• If text.3 does not terminate, then XXX stops

QUESTION:
What does XXX do, if we input the C++ code of XXX to it?
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Another unsolvable algorithmic problem

Problem: Post Correspondence Problem

Input: two sequences x1, . . . , xn and y1, . . . , yn of strings

Question: does there exist a finite sequence s(1), s(2), . . . , s(m)
such that the concatenation xs(1)xs(2) · · · xs(m)

equals the concatenation ys(1)ys(2) · · · ys(m) ?

Example

n = 3, and
x1 = a, x2 = ab, x3 = bba, and
y1 = baa, y2 = aa, y3 = bb.
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Homework 1b

Recommended Exercises:
15, 16, 19, 20, 22, 23, 24

Collection of exercises can be downloaded from:
http://www.win.tue.nl/∼gwoegi/optimization/
http://www.win.tue.nl/∼gwoegi/optimization/exer-1.pdf

Attention!
Weeks 2-4 (Sep 8; Sep 15; Sep 22; Sep 29):
• Tuesday 1+2: instructions
• Tuesday 3+4: lecture
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