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Program for this week

Convexity, convexity, convexity, . . .

• Positive semi-definite matrices and functions
• Convex sets
• Convex functions
• Applications of convexity
• Useful inequalities
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Positive semi-definite matrices (1)

Definition

A real matrix A is symmetric if AT = A.
The set of symmetric n × n matrices is denoted by Sn.

Recall:

Theorem
For any matrix A ∈ Sn,

there exists an n × n matrix F and a diagonal matrix Λ
so that FTF = I and FTAF = Λ.

Let λ1, . . . , λn be the diagonal entries of Λ, and let f1, . . . , fn be the
columns of F . Then

f1, . . . , fn is an orthonormal basis of Rn.
Afi = λi fi for all i .
A = λ1f1f T

1 + · · ·+ λnfnf T
n .
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Positive semi-definite matrices (2)

A function f : Rn → R is positive semi-definite
if f (x) ≥ 0 for all x ∈ Rn.

If A ∈ Sn, then the function f (x) = xTAx =
∑

i
∑

j Aijxixj
is a homogeneous quadratic function (f : Rn → R).

Definition

Let A ∈ Sn. Then A is positive semi-definite (PSD) if

xTAx ≥ 0 for all x ∈ Rn.

The set of positive semi-definite matrices is denoted by Sn
+.

• An A ∈ Sn is positive definite (PD) if A is PSD and non-singular.
• The set of positive definite matrices is denoted by Sn

++.
• We write A � 0 to denote that A is PSD, and A � 0 if A is PD.
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Positive semi-definite matrices (3)

Most results on PSD matrices in this course are derived from this one:

Theorem
Let A ∈ Sn. The following three statements are equivalent:

1 A is positive semi-definite.
2 each eigenvalue of A is ≥ 0.
3 there is some real matrix Z such that A = ZTZ.

In particular,
A is PSD =⇒ det(A) ≥ 0
A is PSD =⇒ the diagonal entries of A are ≥ 0
if A is diagonal, then: A is PSD ⇐⇒ diagonal entries of A are ≥ 0

if A =

[
B 0
0 C

]
, then: A is PSD ⇐⇒ both B and C are PSD.
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Positive semi-definite matrices (4)

Matrices A,B ∈ Sn are congruent,
if B = UTAU for some non-singular U.

Lemma
Let A,B ∈ Sn be congruent. Then A � 0⇐⇒ B � 0.

Applying one or more of the following symmetric matrix operations to A
yields a congruent matrix:

scaling the i-th row and the i-the column by a λ 6= 0
interchanging the i-th row with the j-th row and the i-th column
with the j-th column
adding λ× the i-th row to the j-th row and adding λ× the i-th
column to the j-th column

By these operations, a matrix A may be transformed to a congruent
diagonal matrix D. Then, A � 0⇔ D � 0⇔ D ≥ 0.
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Linear, affine, convex sets (1)

Definition
Let x , y ∈ Rn, α, β ∈ R.

Then z := αx + βy is a linear combination of x and y .

z lies on the plane through 0, x , y
if α + β = 1, then z lies on the line through x , y
if in addition α, β ≥ 0, then z lies between x and y
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Linear, affine, convex sets (2)

Definition
A set L ⊆ Rn is
• linear, if αx + βy ∈ L for all x , y ∈ L and all α, β ∈ R
• affine, if αx + βy ∈ L for all x , y ∈ L and α, β ∈ R with α + β = 1

Theorem
Let L ⊆ Rn. The following are equivalent:

L is affine
L = {x | Ax = b} for some A, b
L = {Cx + d | x} for some C , d
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Linear, affine, convex sets (3)

Definition
A set C ⊆ Rn is

convex, if αx + βy ∈ C for all x , y ∈ C and α, β ≥ 0 with α + β = 1

Example

affine sets are convex.
a hyperplane Ha,b := {x ∈ Rn | aT x = b} is convex
a halfspace H≤a,b := {x ∈ Rn | aT x ≤ b} is convex
the unit ball Bn := {x ∈ Rn | ‖x‖ ≤ 1} is convex
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Linear, affine, convex sets (4)

Definition
A set C ⊆ Rn is a cone, if αx + βy ∈ C for all x , y ∈ C and all α, β ≥ 0.

• Note: cones are convex sets.

Example

linear sets are cones
the Lorentz cone Ln+1 := {(x , t) | x ∈ Rn, t ∈ R, ‖x‖ ≤ t} is a cone
the positive semi-definite (PSD) matrices

Sn
+ := {A ∈ Sn | A � 0}

form a cone
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Linear, affine, convex sets (5)

Definition
A function f : Rn → R is a norm if

f (x) ≥ 0 for all x ∈ Rn

f (x) = 0⇐⇒ x = 0
f (λx) = λf (x) for all λ ∈ R+, x ∈ Rn

f (x + y) ≤ f (x) + f (y) for all x , y ∈ Rn

Definition
If f is a norm,
• then the norm ball is {x ∈ Rn | f (x) ≤ 1}
• and the norm cone is {(x , t) ∈ Rn+1 | f (x) ≤ t}.

For any norm, the norm ball is a convex set and the norm cone is a cone.
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Making convex sets (1)

Intersection of convex sets:

Lemma
Let Cα ⊆ Rn be convex for all α ∈ A.

Then
⋂
α∈A Cα is convex.

Example

The set of copositive polynomials of degree n:

Pn
+ := {(p0, . . . , pn) | 0 ≤ p0 + p1x + · · ·+ pnxn for all x ∈ [0,∞)}

can be written as Pn
+ =

⋂
x∈[0,∞) P

n
x , where

Pn
x := {(p0, . . . , pn) | 0 ≤ p0 + p1x + · · ·+ pnxn}.

Each Pn
x is a halfspace in Rn+1, hence Pn

+ is convex.
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Making convex sets (2)

Polyhedra:

Definition
A polyhedron is

a set P = {x ∈ Rn | Ax ≤ b} for some linear inequalities Ax ≤ b.

• Example: the n-simplex {x ∈ Rn | x ≥ 0,
∑

xi = 1}
• Polyhedra are convex sets
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Making convex sets (3a)

Balls and Ellipsoids:

Example

The unit ball Bn = {x ∈ Rn| ||x || ≤ 1} is convex.

Definition
Let Z be a non-singular n × n matrix; let c ∈ Rn.

Then E (Z , c) := {c + Zx | ‖x‖ ≤ 1} is an ellipsoid.

So ellipsoids are scaled, rotated and shifted balls.

Lemma
A set E ⊆ Rn is an ellipsoid if and only if

E = {y ∈ Rn | (y − c)TA−1(y − c) ≤ 1}

for some c ∈ Rn and some positive definite A.
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Making convex sets (3b)

Balls and Ellipsoids:

Lemma

Let f : Rn → Rm be affine (i.e. f : x 7→ Ax + b); let C ⊆ Rn be convex.
Then f [C ] := {f (x) | x ∈ C} is convex.

Example

Consider an ellipsoid E (Z , c) = {Zx + c | ‖x‖ ≤ 1}.
For f : x 7→ Zx + c , we have E (Z , c) = f [Bn].
Hence ellipsoids are convex sets.
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Making convex sets (4)

Convex hulls:

Definition

Let a1, . . . , am ∈ Rn. Let λ1, . . . , λm ≥ 0 and
∑

i λi = 1.
Then λ1a1 + · · ·+ λmam is a convex combination of a1, . . . , am.

Definition
The convex hull of a1, . . . , am is

conv{a1, . . . , am} := {
∑

i

λiai |
∑

i

λi = 1, λi ≥ 0}.

For the affine function f : λ 7→
∑

i λiai and
for the convex set C := {λ |

∑
i λi = 1, λi ≥ 0},

we have conv{a1, . . . , am} = f [C ].
Hence conv{a1, . . . , am} is convex.
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Making convex sets (5)

Inverse image of an affine function:

Lemma

Let f : Rn → Rm be affine (i.e. f : x 7→ Ax + b); let C ⊆ Rm be convex.
Then f −1[C ] := {x ∈ Rn | f (x) ∈ C} is convex.

Example

Let A0, . . . ,An ∈ Sn. Then the set

X := {x ∈ Rn | A0 + x1A1 + · · ·+ xmAm � 0}

is convex, as X = f −1[Sn
+], where f : Rm → Sn is the affine map

f : x 7→ A0 + x1A1 + · · ·+ xmAm.
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More about convex sets (1)

Definition
Let C ⊆ Rn be convex and non-empty.
A point x ∈ C is an extreme point of C ,

if x = λx1 + (1− λ)x2 with x1, x2 ∈ C and 0 < λ < 1
implies x = x1 = x2.

Example

What are the extreme points of
(a) a closed disk in R2 (b) a convex polygon in R2?

Lemma
Let P ⊆ Rn be a polyhedron. Then P has finitely many extreme points.

Krein-Milman theorem
A compact convex set C is the convex hull of its extreme points.
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More about convex sets (2)

Theorem
Let C ⊆ Rn be a closed, convex set. Let x0 6∈ C.
Then there exists a nonzero y ∈ Rn and a z ∈ R such that

yT x > z for all x ∈ C and yT x0 < z.

Theorem

Let C ,D ⊆ Rn be convex sets with C ∩ D = ∅.
Then there exist a nonzero vector y ∈ Rn and a z ∈ R such that

yT x ≤ z for all x ∈ C and yT x ≥ z for all x ∈ D.

The hyperplane H = {x | yT x = z} is said to separate C from D.

Theorem
Let C ⊆ Rn be a convex set, and let x0 lie on the boundary of C .
Then there exist a nonzero vector y ∈ Rn and a z ∈ R such that

yT x ≤ z for all x ∈ C and yT x0 = z.

The hyperplane H = {x | yT x = z} is said to support C at x0.
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Convex functions (1)

Definition

A function f : Rn → R ∪ {∞} is convex if

f (αx + βy) ≤ αf (x) + βf (y)

for all x , y ∈ Rn and α, β ≥ 0 with α + β = 1.

• Function f strictly convex: strict inequality if α, β > 0
• Function f concave: if −f is convex.

Example

Norm functions are convex
If C ⊆ Rn is a convex set, then the function f : Rn → R defined by

f (x) =

{
0 if x ∈ C
∞ otherwise

is convex.
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Convex functions (2)

Definition

Let f : Rn → R ∪ {∞} be a function. Then the epigraph of f is

Epi(f ) := {(x , t) | x ∈ Rn, t ∈ R, f (x) ≤ t}.

Theorem

f is a convex function ⇐⇒ Epi(f ) is a convex set.

Lemma

Let f : Rn → R ∪ {∞} be convex and let γ ∈ R.
Then the sublevel set {x ∈ Rn | f (x) ≤ γ} is a convex set.
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First-order condition (1)

The gradient of a function f : Rn → R is the vector

∇f = (
∂f
∂x1

, . . . ,
∂f
∂xn

)T

Theorem
Let f : Rn → R be a differentiable function.
Then f is convex if and only if

f (y) ≥ f (x) +∇f (x)T (y − x)

for all x , y ∈ Rn.

For convex f ,
f (x∗) = min{f (y) | y ∈ Rn} ⇐⇒ ∇f (x∗) = 0
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First-order condition (2)

Example

For a matrix A ∈ Sn, a vector b ∈ Rn, and c ∈ R,
the quadratic function f (x) = xTAx + bx + c is convex

if and only if A is positive semi-definite.

Proof:
• First-order condition f (y) ≥ f (x) +∇f (x)T (y − x)
• ∇f (x) = 2xTA + b

• yTAy + by + c ≥ xTAx + bx + c + (2xTA + b)(y − x)
is equivalent to (y − x)TA(y − x) ≥ 0

Well-known special case

For a, b, c ∈ R, the univariate quadratic function f (x) = ax2 + bx + c is
convex if and only if a ≥ 0.
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Second-order condition (1)

The Hessian of a twice differentiable function f : Rn → R is a symmetric
matrix ∇2f ∈ Sn such that

(∇2f )ij =
∂2f
∂xi∂xj

Example

Let Q ∈ Sn and let c be a vector.
Then the Hessian of f (x) = 1

2x
TQx + cT x is ∇2f (x) = Q.
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Second-order condition (2)

Recall: a function is analytic, if it has a Taylor series for each point x in
its domain that converges to the function in an open neighborhood of x .

Univariate case
For univariate analytic functions f : R→ R we have:

f (x + h) = f (x) + f ′(x)h +
1
2
f ′′(x + αh)h2

for some α ∈ [0, 1].

Multivariate case
For multivariate analytic functions f : Rn → R we have:

f (x + h) = f (x) +∇f (x)Th +
1
2
hT∇2f (x + αh)h

for some α ∈ [0, 1].
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Second-order condition (3)

Theorem
Let f : Rn → R be a twice differentiable function.

Then f is convex if and only if ∇2f (x) � 0 for all x ∈ Rn.

The proof uses:

Lemma
A function f : Rn → R is convex,

if and only if g(λ) := f (x + λd) is convex for all x , d ∈ Rn.
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Examples

x 7→ exp(ax) is convex on R, for all a ∈ R
x 7→ xa is convex on R+, for all a ≤ 0 and a ≥ 1 (concave otherwise)
x 7→ log(x) is concave on R+

x 7→ x log(x) is convex on R+

(x , y) 7→ x2

y is convex on {(x , y) | y > 0}
x 7→ log(

∑
i exp(xi )) is convex on Rn

x 7→ (
∏

i xi )
1/n is concave on Rn

+
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Operations that preserve convexity

Lemma
If f , g : Rn → R are convex functions, then so is

αf + βg

for all α, β ≥ 0

Lemma

If f , g : Rn → R are convex, then so is max{f , g}.

Lemma
If f : Rn → R is convex and g : Rm → Rn is affine, then f ◦ g is convex.
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Example

Three lines in space have a unique waist

Given: three fixed lines in space that are made of iron wire;
these lines are pairwise disjoint and pairwise non-parallel.

We stretch an elastic band around the lines, which then by elasticity
will slip to a position where its total circumference is minimal.

Show: final position of band does not depend on initial position.

Mathematical formulation

Let `1, `2, `3 be three lines in R3.

Find min f (p1, p2, p3) = ||p1 − p2||+ ||p2 − p3||+ ||p3 − p1||
such that pi ∈ `i for i = 1, 2, 3

• f (p1, p2, p3) is strictly convex
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Inequalities from convexity

Almost all elementary (and many other) inequalities follow from
convexity.

A well-known inequality

ez ≥ 1 + z for all real numbers z .

Proof:
• First-order condition f (y) ≥ f (x) +∇f (x)T (y − x)
• Choose f (t) = et , x = 0 and y = z
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Inequalities: Jensen (1)

• Johan Jensen (1859–1925): Danish mathematician and engineer

Theorem (Jensen, 1906)

For a convex function f : R→ R and real numbers x1, . . . , xn, we have

1
n
·

n∑
i=1

f (xi ) ≥ f

(
1
n

n∑
i=1

xi

)
.

• Question: When does equality hold for strictly convex f ?
• If f is concave: then the inequality holds with ≤ instead of ≥

Theorem
For a convex function f : R→ R and real numbers x1, . . . , xn, and
positive real numbers a1, . . . , an, we have∑n

i=1 ai f (xi )∑n
i=1 ai

≥ f
(∑n

i=1 aixi∑n
i=1 ai

)
.
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Inequalities: Jensen (2)

Theorem
For positive real numbers a1, . . . , an, we have

(a1a2 · · · an)1/n ≤ a1 + a2 + · · ·+ an

n

Proof: let xi = ln ai , and use Jensen with f (x) = ex
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Inequalities: Jensen (3)

Information theory considers the information content of a system that
produces messages mk with probability pk ,
where p1, p2, . . . , pn ≥ 0 and

∑n
k=1 pk = 1.

The entropy of a probability distribution is defined as

H(p) = −
n∑

k=1

pk log pk .

The entropy satisfies the bound

H(p) ≤ log n.
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Inequalities: Master (1)

Master inequality

Let g : R→ R be a strictly concave function, and let f : R× R→ R be
the function that is defined by

f (x , y) = y · g
(
x
y

)
.

Then all real numbers x1, . . . , xn and all positive real numbers y1, . . . , yn
satisfy the inequality

n∑
i=1

f (xi , yi ) ≤ f

(
n∑

i=1

xi ,

n∑
i=1

yi

)

Equality holds if and only if the two sequences xi and yi are proportional
(that is, if there exists a real number t such that xi/yi = t for all i).
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Inequalities: Master (2)

How to prove the master inequality
by induction on n
case n = 1 holds with equality
case n = 2 holds with α = y1/(y1 + y2) and β = y2/(y1 + y2):

f (x1, y1) + f (x2, y2) =

= y1 · g
(
x1

y1

)
+ y2 · g

(
x2

y2

)
= (y1 + y2)

{
y1

y1 + y2
· g
(
x1

y1

)
+

y2

y1 + y2
· g
(
x2

y2

)}
≤ (y1 + y2) · g

(
x1 + x2

y1 + y2

)
= f (x1 + x2, y1 + y2) .

As g is strictly concave, equality holds if and only if x1/y1 = x2/y2.
The inductive step for n ≥ 3 also follows from the inequality.
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Inequalities: Master (3)

Cauchy inequality

For real numbers a1, . . . , an and b1, . . . , bn, we have

(a2
1 +a2

2 + · · ·+a2
n) (b2

1 +b2
2 + · · ·+b2

n) ≥ (a1b1 +a2b2 + · · ·+anbn)2.

Proof:
use the strictly concave function g(x) =

√
x

set xi = a2
i and yi = b2

i
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Homework 2

• Read chapters 2 and 3 in the book of Boyd & Vandenberghe
• Recommended exercises:

25, 28, 30, 34, 36, 37, 39, 42

Collection of exercises can be downloaded from:
http://www.win.tue.nl/∼gwoegi/optimization/

Attention!
Weeks 2-5 (Sep 8; Sep 15; Sep 22; Sep 29):
• Tuesday 1+2: instructions
• Tuesday 3+4: lecture
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