Optimization (2MMD10/2DME20), lecture 2

Gerhard Woeginger

Technische Universiteit Eindhoven

Fall 2015, Q1

Program for this week

Convexity, convexity, convexity, ...

- Positive semi-definite matrices and functions
- Convex sets
- Convex functions
- Applications of convexity
- Useful inequalities

Positive semi-definite matrices (1)

Definition

A real matrix A is symmetric if $A^{T}=A$.
The set of symmetric $n \times n$ matrices is denoted by S^{n}.
Recall:

Theorem

For any matrix $A \in S^{n}$, there exists an $n \times n$ matrix F and a diagonal matrix \wedge so that $F^{\top} F=I$ and $F^{T} A F=\Lambda$.

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the diagonal entries of Λ, and let f_{1}, \ldots, f_{n} be the columns of F. Then

- f_{1}, \ldots, f_{n} is an orthonormal basis of \mathbb{R}^{n}.
- $A f_{i}=\lambda_{i} f_{i}$ for all i.
- $A=\lambda_{1} f_{1} f_{1}^{T}+\cdots+\lambda_{n} f_{n} f_{n}^{T}$.

Positive semi-definite matrices (2)

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is positive semi-definite if $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$.
If $A \in S^{n}$, then the function $f(x)=x^{T} A x=\sum_{i} \sum_{j} A_{i j} x_{i} x_{j}$ is a homogeneous quadratic function $\left(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right)$.

Definition

Let $A \in S^{n}$. Then A is positive semi-definite (PSD) if

$$
x^{T} A x \geq 0 \text { for all } x \in \mathbb{R}^{n} .
$$

The set of positive semi-definite matrices is denoted by S_{+}^{n}.

- An $A \in S^{n}$ is positive definite (PD) if A is PSD and non-singular.
- The set of positive definite matrices is denoted by S_{++}^{n}.
- We write $A \succeq 0$ to denote that A is PSD, and $A \succ 0$ if A is PD.

Positive semi-definite matrices (3)

Most results on PSD matrices in this course are derived from this one:

Theorem

Let $A \in S^{n}$. The following three statements are equivalent:
(1) A is positive semi-definite.
(2) each eigenvalue of A is ≥ 0.

- there is some real matrix Z such that $A=Z^{\top} Z$.

In particular,

- A is PSD $\Longrightarrow \operatorname{det}(A) \geq 0$
- A is PSD \Longrightarrow the diagonal entries of A are ≥ 0
- if A is diagonal, then: A is PSD \Longleftrightarrow diagonal entries of A are ≥ 0
- if $A=\left[\begin{array}{ll}B & 0 \\ 0 & C\end{array}\right]$, then: A is PSD \Longleftrightarrow both B and C are PSD.

Positive semi-definite matrices (4)

Matrices $A, B \in S^{n}$ are congruent, if $B=U^{T} A U$ for some non-singular U.

Lemma

Let $A, B \in S^{n}$ be congruent. Then $A \succeq 0 \Longleftrightarrow B \succeq 0$.

Applying one or more of the following symmetric matrix operations to A yields a congruent matrix:

- scaling the i-th row and the i-the column by a $\lambda \neq 0$
- interchanging the i-th row with the j-th row and the i-th column with the j-th column
- adding $\lambda \times$ the i-th row to the j-th row and adding $\lambda \times$ the i-th column to the j-th column
By these operations, a matrix A may be transformed to a congruent diagonal matrix D. Then, $A \succeq 0 \Leftrightarrow D \succeq 0 \Leftrightarrow D \geq 0$.

Linear, affine, convex sets (1)

Definition

Let $x, y \in \mathbb{R}^{n}, \alpha, \beta \in \mathbb{R}$.
Then $z:=\alpha x+\beta y$ is a linear combination of x and y.

- z lies on the plane through $0, x, y$
- if $\alpha+\beta=1$, then z lies on the line through x, y
- if in addition $\alpha, \beta \geq 0$, then z lies between x and y

Linear, affine, convex sets (2)

Definition

A set $L \subseteq \mathbb{R}^{n}$ is

- linear, if $\alpha x+\beta y \in L$ for all $x, y \in L$ and all $\alpha, \beta \in \mathbb{R}$
- affine, if $\alpha x+\beta y \in L$ for all $x, y \in L$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha+\beta=1$

Theorem

Let $L \subseteq \mathbb{R}^{n}$. The following are equivalent:

- L is affine
- $L=\{x \mid A x=b\}$ for some A, b
- $L=\{C x+d \mid x\}$ for some C, d

Linear, affine, convex sets (3)

Definition

A set $C \subseteq \mathbb{R}^{n}$ is convex, if $\alpha x+\beta y \in C$ for all $x, y \in C$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$

Example

- affine sets are convex.
- a hyperplane $H_{a, b}:=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=b\right\}$ is convex
- a halfspace $H_{a, b}^{\leq}:=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq b\right\}$ is convex
- the unit ball $B^{n}:=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ is convex

Linear, affine, convex sets (4)

Definition

A set $C \subseteq \mathbb{R}^{n}$ is a cone, if $\alpha x+\beta y \in C$ for all $x, y \in C$ and all $\alpha, \beta \geq 0$.

- Note: cones are convex sets.

Example

- linear sets are cones
- the Lorentz cone $L^{n+1}:=\left\{(x, t) \mid x \in \mathbb{R}^{n}, t \in \mathbb{R},\|x\| \leq t\right\}$ is a cone
- the positive semi-definite (PSD) matrices

$$
S_{+}^{n}:=\left\{A \in S^{n} \mid A \succeq 0\right\}
$$

form a cone

Linear, affine, convex sets (5)

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a norm if

- $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$
- $f(x)=0 \Longleftrightarrow x=0$
- $f(\lambda x)=\lambda f(x)$ for all $\lambda \in \mathbb{R}^{+}, x \in \mathbb{R}^{n}$
- $f(x+y) \leq f(x)+f(y)$ for all $x, y \in \mathbb{R}^{n}$

Definition

If f is a norm,

- then the norm ball is $\left\{x \in \mathbb{R}^{n} \mid f(x) \leq 1\right\}$
- and the norm cone is $\left\{(x, t) \in \mathbb{R}^{n+1} \mid f(x) \leq t\right\}$.

For any norm, the norm ball is a convex set and the norm cone is a cone.

Making convex sets (1)

Intersection of convex sets:

Lemma

Let $C_{\alpha} \subseteq \mathbb{R}^{n}$ be convex for all $\alpha \in A$.
Then $\bigcap_{\alpha \in A} C_{\alpha}$ is convex.

Example

The set of copositive polynomials of degree n :

$$
P_{+}^{n}:=\left\{\left(p_{0}, \ldots, p_{n}\right) \mid 0 \leq p_{0}+p_{1} x+\cdots+p_{n} x^{n} \text { for all } x \in[0, \infty)\right\}
$$

can be written as $P_{+}^{n}=\bigcap_{x \in[0, \infty)} P_{x}^{n}$, where

$$
P_{x}^{n}:=\left\{\left(p_{0}, \ldots, p_{n}\right) \mid 0 \leq p_{0}+p_{1} x+\cdots+p_{n} x^{n}\right\} .
$$

Each P_{x}^{n} is a halfspace in \mathbb{R}^{n+1}, hence P_{+}^{n} is convex.

Making convex sets (2)

Polyhedra:

Definition

A polyhedron is a set $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ for some linear inequalities $A x \leq b$.

- Example: the n-simplex $\left\{x \in \mathbb{R}^{n} \mid x \geq 0, \sum x_{i}=1\right\}$
- Polyhedra are convex sets

Making convex sets (3a)

Balls and Ellipsoids:

Example

The unit ball $B^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ is convex.

Definition

Let Z be a non-singular $n \times n$ matrix; let $c \in \mathbb{R}^{n}$.
Then $E(Z, c):=\{c+Z x \mid\|x\| \leq 1\}$ is an ellipsoid.
So ellipsoids are scaled, rotated and shifted balls.

Lemma

A set $E \subseteq \mathbb{R}^{n}$ is an ellipsoid if and only if

$$
E=\left\{y \in \mathbb{R}^{n} \mid(y-c)^{T} A^{-1}(y-c) \leq 1\right\}
$$

for some $c \in \mathbb{R}^{n}$ and some positive definite A.

Making convex sets (3b)

Balls and Ellipsoids:

Lemma

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be affine (i.e. $f: x \mapsto A x+b$); let $C \subseteq \mathbb{R}^{n}$ be convex. Then $f[C]:=\{f(x) \mid x \in C\}$ is convex.

Example

Consider an ellipsoid $E(Z, c)=\{Z x+c \mid\|x\| \leq 1\}$.
For $f: x \mapsto Z x+c$, we have $E(Z, c)=f\left[B^{n}\right]$.
Hence ellipsoids are convex sets.

Making convex sets (4)

Convex hulls:

Definition

Let $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$. Let $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ and $\sum_{i} \lambda_{i}=1$.
Then $\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m}$ is a convex combination of a_{1}, \ldots, a_{m}.

Definition

The convex hull of a_{1}, \ldots, a_{m} is

$$
\operatorname{conv}\left\{a_{1}, \ldots, a_{m}\right\}:=\left\{\sum_{i} \lambda_{i} a_{i} \mid \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0\right\}
$$

For the affine function $f: \lambda \mapsto \sum_{i} \lambda_{i} a_{i}$ and for the convex set $C:=\left\{\lambda \mid \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0\right\}$, we have $\operatorname{conv}\left\{a_{1}, \ldots, a_{m}\right\}=f[C]$.
Hence conv $\left\{a_{1}, \ldots, a_{m}\right\}$ is convex.

Making convex sets (5)

Inverse image of an affine function:

Lemma

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be affine (i.e. $f: x \mapsto A x+b$); let $C \subseteq \mathbb{R}^{m}$ be convex. Then $f^{-1}[C]:=\left\{x \in \mathbb{R}^{n} \mid f(x) \in C\right\}$ is convex.

Example

Let $A_{0}, \ldots, A_{n} \in S^{n}$. Then the set

$$
X:=\left\{x \in \mathbb{R}^{n} \mid A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m} \succeq 0\right\}
$$

is convex, as $X=f^{-1}\left[S_{+}^{n}\right]$, where $f: \mathbb{R}^{m} \rightarrow S^{n}$ is the affine map

$$
f: x \mapsto A_{0}+x_{1} A_{1}+\cdots+x_{m} A_{m} .
$$

More about convex sets (1)

Definition

Let $C \subseteq \mathbb{R}^{n}$ be convex and non-empty.
A point $x \in C$ is an extreme point of C,
if $x=\lambda x_{1}+(1-\lambda) x_{2}$ with $x_{1}, x_{2} \in C$ and $0<\lambda<1$
implies $x=x_{1}=x_{2}$.

Example

What are the extreme points of
(a) a closed disk in \mathbb{R}^{2} (b) a convex polygon in \mathbb{R}^{2} ?

Lemma

Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron. Then P has finitely many extreme points.

Krein-Milman theorem

A compact convex set C is the convex hull of its extreme points.

More about convex sets (2)

Theorem

Let $C \subseteq \mathbb{R}^{n}$ be a closed, convex set. Let $x_{0} \notin C$.
Then there exists a nonzero $y \in \mathbb{R}^{n}$ and $a z \in \mathbb{R}$ such that

$$
y^{\top} x>z \text { for all } x \in C \quad \text { and } \quad y^{\top} x_{0}<z
$$

Theorem

Let $C, D \subseteq \mathbb{R}^{n}$ be convex sets with $C \cap D=\emptyset$.
Then there exist a nonzero vector $y \in \mathbb{R}^{n}$ and a $z \in \mathbb{R}$ such that

$$
y^{\top} x \leq z \text { for all } x \in C \quad \text { and } \quad y^{\top} x \geq z \text { for all } x \in D .
$$

The hyperplane $H=\left\{x \mid y^{\top} x=z\right\}$ is said to separate C from D.

Theorem

Let $C \subseteq \mathbb{R}^{n}$ be a convex set, and let x_{0} lie on the boundary of C. Then there exist a nonzero vector $y \in \mathbb{R}^{n}$ and a $z \in \mathbb{R}$ such that

$$
y^{\top} x \leq z \text { for all } x \in C \quad \text { and } \quad y^{\top} x_{0}=z
$$

The hyperplane $H=\left\{x \mid y^{\top} x=z\right\}$ is said to support C at x_{0}.

Convex functions (1)

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex if

$$
f(\alpha x+\beta y) \leq \alpha f(x)+\beta f(y)
$$

for all $x, y \in \mathbb{R}^{n}$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

- Function f strictly convex: strict inequality if $\alpha, \beta>0$
- Function f concave: if $-f$ is convex.

Example

- Norm functions are convex
- If $C \subseteq \mathbb{R}^{n}$ is a convex set, then the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{aligned}
0 & \text { if } x \in C \\
\infty & \text { otherwise }
\end{aligned}\right.
$$

is convex.

Convex functions (2)

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be a function. Then the epigraph of f is

$$
\operatorname{Epi}(f):=\left\{(x, t) \mid x \in \mathbb{R}^{n}, t \in \mathbb{R}, f(x) \leq t\right\} .
$$

Theorem

f is a convex function $\Longleftrightarrow \operatorname{Epi}(f)$ is a convex set.

Lemma

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be convex and let $\gamma \in \mathbb{R}$.
Then the sublevel set $\left\{x \in \mathbb{R}^{n} \mid f(x) \leq \gamma\right\}$ is a convex set.

First-order condition (1)

The gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the vector

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{T}
$$

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function.
Then f is convex if and only if

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \mathbb{R}^{n}$.

For convex f,

$$
f\left(x^{*}\right)=\min \left\{f(y) \mid y \in \mathbb{R}^{n}\right\} \Longleftrightarrow \nabla f\left(x^{*}\right)=0
$$

First-order condition (2)

Example

For a matrix $A \in S^{n}$, a vector $b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$, the quadratic function $f(x)=x^{T} A x+b x+c$ is convex
if and only if A is positive semi-definite.
Proof:

- First-order condition $f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$
- $\nabla f(x)=2 x^{\top} A+b$
- $y^{T} A y+b y+c \geq x^{T} A x+b x+c+\left(2 x^{T} A+b\right)(y-x)$
is equivalent to $(y-x)^{\top} A(y-x) \geq 0$

Well-known special case

For $a, b, c \in \mathbb{R}$, the univariate quadratic function $f(x)=a x^{2}+b x+c$ is convex if and only if $a \geq 0$.

Second-order condition (1)

The Hessian of a twice differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a symmetric matrix $\nabla^{2} f \in S^{n}$ such that

$$
\left(\nabla^{2} f\right)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

Example

Let $Q \in S^{n}$ and let c be a vector.
Then the Hessian of $f(x)=\frac{1}{2} x^{\top} Q x+c^{T} x$ is $\nabla^{2} f(x)=Q$.

Second-order condition (2)

Recall: a function is analytic, if it has a Taylor series for each point x in its domain that converges to the function in an open neighborhood of x.

Univariate case

For univariate analytic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ we have:

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x+\alpha h) h^{2}
$$

for some $\alpha \in[0,1]$.

Multivariate case

For multivariate analytic functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have:

$$
f(x+h)=f(x)+\nabla f(x)^{T} h+\frac{1}{2} h^{T} \nabla^{2} f(x+\alpha h) h
$$

for some $\alpha \in[0,1]$.

Second-order condition (3)

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice differentiable function.
Then f is convex if and only if $\nabla^{2} f(x) \succeq 0$ for all $x \in \mathbb{R}^{n}$.
The proof uses:

Lemma

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, if and only if $g(\lambda):=f(x+\lambda d)$ is convex for all $x, d \in \mathbb{R}^{n}$.

Examples

- $x \mapsto \exp (a x)$ is convex on \mathbb{R}, for all $a \in \mathbb{R}$
- $x \mapsto x^{a}$ is convex on \mathbb{R}^{+}, for all $a \leq 0$ and $a \geq 1$ (concave otherwise)
- $x \mapsto \log (x)$ is concave on \mathbb{R}^{+}
- $x \mapsto x \log (x)$ is convex on \mathbb{R}^{+}
- $(x, y) \mapsto \frac{x^{2}}{y}$ is convex on $\{(x, y) \mid y>0\}$
- $x \mapsto \log \left(\sum_{i} \exp \left(x_{i}\right)\right)$ is convex on \mathbb{R}^{n}
- $x \mapsto\left(\prod_{i} x_{i}\right)^{1 / n}$ is concave on \mathbb{R}_{+}^{n}

Operations that preserve convexity

Lemma

If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions, then so is

$$
\alpha f+\beta g
$$

for all $\alpha, \beta \geq 0$

Lemma

If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex, then so is $\max \{f, g\}$.

Lemma

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is affine, then $f \circ g$ is convex.

Example

Three lines in space have a unique waist

Given: three fixed lines in space that are made of iron wire; these lines are pairwise disjoint and pairwise non-parallel.
We stretch an elastic band around the lines, which then by elasticity will slip to a position where its total circumference is minimal.

Show: final position of band does not depend on initial position.

Mathematical formulation

Let $\ell_{1}, \ell_{2}, \ell_{3}$ be three lines in \mathbb{R}^{3}.
Find $\min f\left(p_{1}, p_{2}, p_{3}\right)=\left\|p_{1}-p_{2}\right\|+\left\|p_{2}-p_{3}\right\|+\left\|p_{3}-p_{1}\right\|$ such that $p_{i} \in \ell_{i}$ for $i=1,2,3$

- $f\left(p_{1}, p_{2}, p_{3}\right)$ is strictly convex

Inequalities from convexity

Almost all elementary (and many other) inequalities follow from convexity.

A well-known inequality

$e^{z} \geq 1+z \quad$ for all real numbers z.

Proof:

- First-order condition $f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$
- Choose $f(t)=e^{t}, x=0$ and $y=z$

Inequalities: Jensen (1)

- Johan Jensen (1859-1925): Danish mathematician and engineer

Theorem (Jensen, 1906)

For a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and real numbers x_{1}, \ldots, x_{n}, we have

$$
\frac{1}{n} \cdot \sum_{i=1}^{n} f\left(x_{i}\right) \geq f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)
$$

- Question: When does equality hold for strictly convex f ?
- If f is concave: then the inequality holds with \leq instead of \geq

Theorem

For a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ and real numbers x_{1}, \ldots, x_{n}, and positive real numbers a_{1}, \ldots, a_{n}, we have

$$
\frac{\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)}{\sum_{i=1}^{n} a_{i}} \geq f\left(\frac{\sum_{i=1}^{n} a_{i} x_{i}}{\sum_{i=1}^{n} a_{i}}\right)
$$

Inequalities: Jensen (2)

Theorem

For positive real numbers a_{1}, \ldots, a_{n}, we have

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}
$$

Proof: let $x_{i}=\ln a_{i}$, and use Jensen with $f(x)=e^{x}$

Inequalities: Jensen (3)

Information theory considers the information content of a system that produces messages m_{k} with probability p_{k}, where $p_{1}, p_{2}, \ldots, p_{n} \geq 0$ and $\sum_{k=1}^{n} p_{k}=1$.

The entropy of a probability distribution is defined as

$$
H(p)=-\sum_{k=1}^{n} p_{k} \log p_{k} .
$$

The entropy satisfies the bound

$$
H(p) \leq \log n .
$$

Inequalities: Master (1)

Master inequality

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly concave function, and let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the function that is defined by

$$
f(x, y)=y \cdot g\left(\frac{x}{y}\right) .
$$

Then all real numbers x_{1}, \ldots, x_{n} and all positive real numbers y_{1}, \ldots, y_{n} satisfy the inequality

$$
\sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \leq f\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} y_{i}\right)
$$

Equality holds if and only if the two sequences x_{i} and y_{i} are proportional (that is, if there exists a real number t such that $x_{i} / y_{i}=t$ for all i).

Inequalities: Master (2)

How to prove the master inequality

- by induction on n
- case $n=1$ holds with equality
- case $n=2$ holds with $\alpha=y_{1} /\left(y_{1}+y_{2}\right)$ and $\beta=y_{2} /\left(y_{1}+y_{2}\right)$:

$$
\begin{aligned}
& f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right)= \\
& \quad=y_{1} \cdot g\left(\frac{x_{1}}{y_{1}}\right)+y_{2} \cdot g\left(\frac{x_{2}}{y_{2}}\right) \\
& \quad=\left(y_{1}+y_{2}\right)\left\{\frac{y_{1}}{y_{1}+y_{2}} \cdot g\left(\frac{x_{1}}{y_{1}}\right)+\frac{y_{2}}{y_{1}+y_{2}} \cdot g\left(\frac{x_{2}}{y_{2}}\right)\right\} \\
& \quad \leq\left(y_{1}+y_{2}\right) \cdot g\left(\frac{x_{1}+x_{2}}{y_{1}+y_{2}}\right)=f\left(x_{1}+x_{2}, y_{1}+y_{2}\right) .
\end{aligned}
$$

- As g is strictly concave, equality holds if and only if $x_{1} / y_{1}=x_{2} / y_{2}$.
- The inductive step for $n \geq 3$ also follows from the inequality.

Inequalities: Master (3)

Cauchy inequality

For real numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, we have

$$
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right) \geq\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} .
$$

Proof:
use the strictly concave function $g(x)=\sqrt{x}$ set $x_{i}=a_{i}^{2}$ and $y_{i}=b_{i}^{2}$

Homework 2

- Read chapters 2 and 3 in the book of Boyd \& Vandenberghe
- Recommended exercises: 25, 28, 30, 34, 36, 37, 39, 42

Collection of exercises can be downloaded from: http://www.win.tue.nl/~gwoegi/optimization/

Attention!

Weeks 2-5 (Sep 8; Sep 15; Sep 22; Sep 29):

- Tuesday $1+2$: instructions
- Tuesday 3+4: lecture

