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Program for this week

Convexity, convexity, convexity, . ..

e Positive semi-definite matrices and functions
e Convex sets

e Convex functions

e Applications of convexity

e Useful inequalities
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Positive semi-definite matrices (1)

A real matrix A is symmetric if AT = A.
The set of symmetric n X n matrices is denoted by S”.

Recall:

For any matrix A € S",

there exists an n X n matrix F and a diagonal matrix A
so that FTF =1 and FTAF = A.

Let A\1,...,\, be the diagonal entries of A, and let f1,...,f, be the
columns of F. Then

@ fi,...,f,is an orthonormal basis of R".
o Af; = \f; for all |.
o A= MART + -+ Apfuf .
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Positive semi-definite matrices (2)

A function f : R" — R is positive semi-definite
if f(x) >0 for all x € R".

If A€ S, then the function f(x) =xTAx =3, > Aixixj
is a homogeneous quadratic function (f : R" — R).

Definition
Let A € S". Then A is positive semi-definite (PSD) if

xTAx >0 for all x € R".

The set of positive semi-definite matrices is denoted by S7.

e An A € 5" is positive definite (PD) if A is PSD and non-singular.
e The set of positive definite matrices is denoted by ST, .
o We write A > 0 to denote that A is PSD, and A~ 0 if A is PD.

GJ Woeginger Optimization (2MMD10/2DME20), lecture 2

4/37



Positive semi-definite matrices (3)

Most results on PSD matrices in this course are derived from this one:

Let A € S". The following three statements are equivalent:

© A is positive semi-definite.
© each eigenvalue of A is > 0.
@ there is some real matrix Z such that A=Z" Z.

In particular,
o Ais PSD = det(A) >0
@ Ais PSD = the diagonal entries of A are >0
o if Ais diagonal, then: A is PSD <= diagonal entries of A are > 0

oifA:{B 0

0 C ] then: A is PSD <= both B and C are PSD.
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Positive semi-definite matrices (4)

Matrices A, B € S" are congruent,
if B = UT AU for some non-singular U.

Lemma
Let A,B € S" be congruent. Then A> 0<= B = 0.

Applying one or more of the following symmetric matrix operations to A
yields a congruent matrix:
@ scaling the i-th row and the i-the column by a A # 0
@ interchanging the i-th row with the j-th row and the i-th column
with the j-th column
@ adding Ax the i-th row to the j-th row and adding Ax the i-th
column to the j-th column

By these operations, a matrix A may be transformed to a congruent
diagonal matrix D. Then, A= 0< D >0 D > 0.
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Linear, affine, convex sets (1)

Let x,y e R", o, 5 € R.
Then z := ax + By is a linear combination of x and y.

@ z lies on the plane through 0, x, y
o if a+ 8 =1, then z lies on the line through x, y
e if in addition «, 8 > 0, then z lies between x and y
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Linear, affine, convex sets (2)

Aset LCR"is
e linear, if ax+ By € Lforall x,y € L and all o, 8 € R

e affine, if ax+ By € Lforall x,y € Land o, € Rwitha+ =1

Theorem

Let L C R". The following are equivalent:
o L is affine
o L={x| Ax = b} for some A, b
o L ={Cx+d|x} for some C,d
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Linear, affine, convex sets (3)

Aset CCR"is
convex, if ax+ By € C forall x,y € C and o, >0 witha+ 8 =1

Example

o affine sets are convex.
e a hyperplane H, := {x € R" | a” x = b} is convex
o a halfspace HS, := {x € R" | a7 x < b} is convex

o the unit ball B" := {x € R" | ||x|| < 1} is convex
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Linear, affine, convex sets (4)

Aset C CR"is a cone, if ax+ By € C for all x,y € C and all a, 8 > 0.

e Note: cones are convex sets.

o linear sets are cones
o the Lorentz cone L™ :={(x,t) | x e R",t € R, ||x|| < t} is a cone
o the positive semi-definite (PSD) matrices

n.—{AeS"|Ax0}

form a cone
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Linear, affine, convex sets (5)

A function f : R” — R is a norm if

f(x) > 0 for all x € R"

f(x )—0<:>X—0

f(Ax) = M (x) for all A € RT, x € R”
f(x+y) <f(x)+f(y) forall x,y € R"

Definition

If fis a norm,
o then the norm ball is {x € R" | f(x) < 1}
e and the norm cone is {(x,t) € R"1 | f(x) < t}.

For any norm, the norm ball is a convex set and the norm cone is a cone.
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Making convex sets (1)

Intersection of convex sets:

Let C, C R" be convex for all a € A.
Then (4 Co is convex.

acA

The set of copositive polynomials of degree n:
P? :={(po,---,pn) | 0 < po+ p1x + - - + ppx" for all x € [0,00)}

can be written as P} =) P2, where

x€[0,00)
Pe:={(po,---Pn) | 0 < po+ p1x+ -+ pax"}.

Each P? is a halfspace in R™™!, hence P is convex.
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Making convex sets (2)

Polyhedra:

Definition
A polyhedron is
aset P = {x € R" | Ax < b} for some linear inequalities Ax < b.

e Example: the n-simplex {x e R" | x > 0,> x; = 1}
e Polyhedra are convex sets
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Making convex sets (3a)

Balls and Ellipsoids:

The unit ball B” = {x € R”| ||x|| < 1} is convex.

Let Z be a non-singular n X n matrix; let ¢ € R".
Then E(Z,c) :={c+ Zx | ||x|| < 1} is an ellipsoid.

So ellipsoids are scaled, rotated and shifted balls.

Lemma
A set E C R" is an ellipsoid if and only if

E={yeR"|[(y—c)TA(y—c)<1}

for some ¢ € R" and some positive definite A.
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Making convex sets (3b)

Balls and Ellipsoids:

Let f : R" — R™ be affine (i.e. f : x — Ax+ b); let C CR" be convex.
Then f[C]:={f(x)|x € C} s convex.

SEE

Consider an ellipsoid E(Z,c) = {Zx+ c | ||x| < 1}
For f : x — Zx + ¢, we have E(Z,c) = f[B"].
Hence ellipsoids are convex sets.

GJ Woeginger Optimization (2MMD10/2DME20), lecture 2 15/37



Making convex sets (4)

Convex hulls:

Let aj,...,am € R". Let A\y,...,A\p, >0and >, \; = 1.

Then \ia; + -+ + Apnam is a convex combination of ay, ..., an.
The convex hull of a;,...,an, is

conv{a,...,am} = {Z Aia; | Z)\; =1,)\; > 0}.

For the affine function f : A +— >, A;a; and

for the convex set C:={A| > ; Ai =1,); > 0},
we have conv{ay,...,am} = f[C].

Hence conv{ai,...,an} is convex.
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Making convex sets (5)

Inverse image of an affine function:

Lemma

Let f : R" — R™ be affine (i.e. f : x — Ax + b); let C CR™ be convex.
Then f~1[C]:={x€R"|f(x)€ C} s convex.

Example
Let Ao,...,An € S". Then the set

X :={xeR"| Ay +x1A1 + -+ + XmAm = 0}
is convex, as X = f‘l[SJ’;], where f : R™ — S" is the affine map

fix— Ag+x1A1+ - + XmAm.
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More about convex sets (1)

Let C C R" be convex and non-empty.

A point x € C is an extreme point of C,
if x=Xxq +(1—X)x with x;,xo€ Cand0 <A <1
implies x = x; = xp.

What are the extreme points of
(a) a closed disk in R? (b) a convex polygon in R??

Lemma

Let P C R" be a polyhedron. Then P has finitely many extreme points.

Krein-Milman theorem

A compact convex set C is the convex hull of its extreme points.
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More about convex sets (2)

Let C C R" be a closed, convex set. Let xo & C.
Then there exists a nonzero y € R" and a z € R such that
yTx >z forallx e C and yTxo < z.

Let C,D C R" be convex sets with CN D = (.
Then there exist a nonzero vector y € R" and a z € R such that
yTx<zforallxe C and yTx >z forall x € D.

The hyperplane H = {x | y"x = z} is said to separate C from D.

Let C C R" be a convex set, and let xq lie on the boundary of C.

Then there exist a nonzero vector y € R" and a z € R such that
yTx < zforallxe C and yTxo = z.

The hyperplane H = {x | y"x = z} is said to support C at xo.
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Convex functions (1)

A function f : R” — R U {oo} is convex if

flax + By) < af(x) + Bf(y)
for all x,y € R" and o, 8 > 0 with o+ 3 = 1.

e Function f strictly convex: strict inequality if o, 5 >0
e Function f concave: if —f is convex.

SEE

@ Norm functions are convex

o If C CR"is a convex set, then the function f : R” — R defined by

f(x):{ 0 ifxeC

oo otherwise

is convex.
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Convex functions (2)

Let f: R” - R U {oo} be a function. Then the epigraph of f is

Epi(f) :={(x,t) | x e R",t € R, f(x) < t}.

f is a convex function <= Epi(f) is a convex set.

Lemma

Let f : R" — R U {oo} be convex and let v € R.
Then the sublevel set {x € R" | f(x) < ~} is a convex set.
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First-order condition (1)

The gradient of a function f : R” — R is the vector

of of ;

f= e, —
v (6X1 ’ ’ 8x,,)
Theorem

Let f : R" — R be a differentiable function.
Then f is convex if and only if

F(y) > f(x) + VF(x)T(y = x)

for all x,y € R".

For convex f,
f(x*)=min{f(y) |y e R"} < VI(x*)=0
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First-order condition (2)

For a matrix A € S", a vector b € R”, and c € R,
the quadratic function f(x) = xT Ax + bx + c is convex
if and only if A is positive semi-definite.

Proof:
e First-order condition f(y) > f(x) + Vf(x)T(y — x)
o Vi(x)=2xTA+b

o yTAy+by+c>x"TAx+bx+c+ (2xTA+ b)(y — x)
is equivalent to  (y —x)TA(y —x) >0

Well-known special case

For a, b, c € R, the univariate quadratic function f(x) = ax® + bx + c is
convex if and only if a > 0.
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Second-order condition (1)

The Hessian of a twice differentiable function f : R” — R is a symmetric
matrix V2f € S" such that

B 0°f
a Ox;0x;

(V26);

Example

Let Q € S” and let ¢ be a vector.
Then the Hessian of f(x) = 2x7 Qx + ¢"x is V2f(x) = Q.
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Second-order condition (2)

Recall: a function is analytic, if it has a Taylor series for each point x in
its domain that converges to the function in an open neighborhood of x.

Univariate case

For univariate analytic functions f : R — R we have:

Fix+h) = Fx) + F(x)h+ %f”(x + ah)h?
for some « € [0, 1].

Multivariate case

For multivariate analytic functions f : R" — R we have:
f(x+h) = f(xX)+VF(x)Th+ %hTV2f(x + ah)h
for some « € [0, 1].
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Second-order condition (3)

Let f : R™ — R be a twice differentiable function.
Then f is convex if and only if V2f(x) = 0 for all x € R".

The proof uses:

Lemma

A function f : R" — R is convex,
if and only if g(X) := f(x + A\d) is convex for all x,d € R".
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x > exp(ax) is convex on R, for all a € R
x > x? is convex on RY, for all 2 < 0 and a > 1 (concave otherwise)

x > log(x) is concave on R™

x + x log(x) is convex on R*

(x,y) — X72 is convex on {(x,y) |y > 0}

x — log(>"; exp(x;)) is convex on R”

x = (I1; x:)*/" is concave on R7.
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Operations that preserve convexity

If f,g : R" — R are convex functions, then so is

af + Bg

for all a, 8 >0

Lemma

Iff,g :R" — R are convex, then so is max{f,g}.

Lemma

If f :R" — R is convex and g : R™ — R" js affine, then f o g is convex.
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Example

Three lines in space have a unique waist

Given: three fixed lines in space that are made of iron wire;
these lines are pairwise disjoint and pairwise non-parallel.

We stretch an elastic band around the lines, which then by elasticity
will slip to a position where its total circumference is minimal.

Show: final position of band does not depend on initial position.

Mathematical formulation

Let ¢1, 0>, ¢35 be three lines in R3.

Find min f(p1, p2, p3) = ||p1 — p2ll + [lp2 — ps3l| + |Ips — p1l|
such that p; € ¢; for i =1,2,3

o f(p1, p2, p3) is strictly convex
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Inequalities from convexity

Almost all elementary (and many other) inequalities follow from
convexity.

A well-known inequality

ee>1+~z for all real numbers z.

Proof:
e First-order condition f(y) > f(x) + VFf(x)T(y — x)
e Choose f(t)=e', x=0andy =z
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Inequalities: Jensen (1)

e Johan Jensen (1859-1925): Danish mathematician and engineer

Theorem (Jensen, 1906)

For a convex function ¥ : R — R and real numbers xg, ..., x,, we have

%.En:f(x,-) > f (%Zx>

e Question: When does equality hold for strictly convex f7
e If f is concave: then the inequality holds with < instead of >

Theorem
For a convex function f : R — R and real numbers xq, . .., x,, and
positive real numbers ay, . .., a,, we have

i aif(x) (Z{'_l aiXi>
== > | <ZF— ).
Ei:l aj Ei:l aj
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Inequalities: Jensen (2)

For positive real numbers ay, . .., a,, we have

ap+a+---+ap
n

(3132...3’7)1/" S

Proof: let x; = In a;, and use Jensen with f(x) = e*
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Inequalities: Jensen (3)

Information theory considers the information content of a system that
produces messages my with probability pg,
where p1,p2,....,pp > 0and Y], pk = 1.

The entropy of a probability distribution is defined as

n
H(p) = —>_ pxlog pi.
k=1

The entropy satisfies the bound

H(p) < logn.
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Inequalities: Master (1)

Master inequality

Let g : R — R be a strictly concave function, and let f : R x R — R be
the function that is defined by

fx,y) = y-g <;> :

Then all real numbers xq, ..., x, and all positive real numbers y,...,y,
satisfy the inequality

Zf(xi,)/i) < f(ZXi,Zy,)
1 R |

Equality holds if and only if the two sequences x; and y; are proportional
(that is, if there exists a real number t such that x;/y; = t for all /).
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Inequalities: Master (2)

How to prove the master inequality
@ by induction on n
@ case n = 1 holds with equality
@ case n =2 holds with & = y1/(y1 + y2) and 8 = yo/(y1 + y2):
fxa, )+ f(xe,y2) =

X1 X2
i-g\— | +y2-8|—
i Y2
i X1 Y2 X2
+ . — )4+ . il
I yQ){Y1+y2 g()’l) -ty g()’2>}

X1 + Xo

< nty)-g <> = f(xa+x,y+y).
( ) n+y ( ’ )

@ As g is strictly concave, equality holds if and only if x1/y1 = x2/ya.

@ The inductive step for n > 3 also follows from the inequality.
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Inequalities: Master (3)

Cauchy inequality

For real numbers a;,...,a, and by,..., b,, we have

(a+a5+---+a3) (b3 +b5+--+b7) > (arbi+azbo+---+anbn)’.

Proof:
use the strictly concave function g(x) = /x
set x; = a,-2 and y; = b,-2
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e Read chapters 2 and 3 in the book of Boyd & Vandenberghe
e Recommended exercises:
25, 28, 30, 34, 36, 37, 39, 42

Collection of exercises can be downloaded from:
http://www.win.tue.nl/~gwoegi/optimization/

Attention!

Weeks 2-5 (Sep 8; Sep 15; Sep 22; Sep 29):
e Tuesday 142: instructions

e Tuesday 3+4: lecture
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