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Program for this week

• Recall: unconstrained optimization in Rn

• The Lagrangian approach
• Karush-Kuhn-Tucker conditions
• Lagrangian duality
• Lagrangian duality for convex programs
• A catalogue of duality theorems
• Solving convex programs
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Recall, recall, recall (1)

Definition
In a continuous optimization problem, we want to solve

minimize f (x)

subject to x ∈ U

where f : Rn → R is the objective function and
where U ⊆ Rn is the feasible region.

• “minimize −f (x)” equivalent to “maximize f (x)”
• U = Rn: unconstrained optimization problem
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Recall, recall, recall (2)

• Compact subset of Rn: closed and bounded

Theorem (Weierstrass)

If function f is continuous and if the feasible region U is compact,
then f attains its minimum (and its maximum) in U.

Theorem (Weierstrass)

If continuous function f : Rn → R goes to +infinity whenever ‖x‖ → ∞,
then f attains its minimum.
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Unconstrained optimization (1)

Recall from the univariate case (f : R→ R):
• x̄ minimizes f =⇒ f ′(x̄) = 0
• f ′′(x̄) > 0 or f ′′(x̄) < 0 or f ′′(x̄) = 0

Definition
Let f : Rn → R be differentiable.
A point x̄ with ∇f (x̄) = 0 is called stationary point.

Necessary optimality condition (first order)

If f : Rn → R is differentiable and if x̄ ∈ R is a local minimum,
then x̄ is a stationary point.

• Often called “Fermat’s theorem”
• Condition is necessary, but not sufficient (f (x) = x3)
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Unconstrained optimization (2)

Necessary optimality condition (second order)

If f is twice continuously differentiable and if x̄ is a local minimum, then
(i) x̄ is a stationary point, and
(ii) the Hessian ∇2f (x̄) is positive semi-definite.

• Condition is necessary, but not sufficient (f (x) = x3)

Sufficient optimality condition (second order)

If f is twice continuously differentiable and if x̄ is a local minimum, then
(i) x̄ is a stationary point, and
(ii) the Hessian ∇2f (x̄) is positive definite.

• Condition is sufficient, but not necessary (f (x) = x4)

Example

f (x , y) = x2 + xy + y2 − 2x − y + 3
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Unconstrained optimization (3)

Iterative algorithms

An iterative algorithm for the optimization problem p∗ = minx f (x)
generates a sequence x (0), x (1), . . . of points,

so that f (x (k))→ p∗ as k →∞.

In the k-th step, a typical iterative algorithm
• chooses a search direction ∆x (k) ∈ Rn

• chooses a step size t(k) ∈ R
• puts x (k+1) = x (k) + t(k)∆x (k)

The search direction ∆x is a descent direction, if (∇f (x))T ∆x < 0.
Then there exists a t so that f (x + t∆x) < f (x).

• gradient descent; steepest descent; Newton descent; line search
• Michiel Hochstenbach will talk on this in weeks 6 and 7
• methods work well (and fast) for minimization of convex functions
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Constrained optimization (1)

Joseph-Louis Lagrange (1788)

“One can state the following general principle:
If one is looking for the maximum or minimum of some function of
many variables subject to the condition that these variables are
related by a constraint given by one or more equations,

then one should add to the function whose extremum is sought
the functions that yield the constraint equations each multiplied
by undetermined multipliers and seek the maximum or minimum
of the resulting sum as if the variables were independent.

The resulting equations, combined with the constraint equations, will
serve to determine all unknowns.”
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Constrained optimization (2)

Continuous optimization problem

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s
x = (x1, x2, . . . , xn) ∈ Rn

• an equality constraint can be rewritten into two inequality constraints
• we assume throughout that all fi and all hi are differentiable

Definition (technical)

For a point x ∈ Rn, let J(x) = {i ≥ 1 | fi (x) = 0}.
Point x is called regular,

if the set of all vectors ∇fi (x) with i ∈ J(x) and
of all vectors ∇hi (x) with i = 1, . . . , s is linearly independent.
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Constrained optimization (3)

Definition
The Lagrangian of this problem is:

L(x , λ, µ) := f0(x) +
r∑

i=1

λi fi (x) +
s∑

i=1

µihi (x)

where λ ≥ 0 and µ arbitrary.

Lemma
If λ ≥ 0, then

f0(x) ≥ L(x , λ, µ)

for any x such that all fi (x) ≤ 0 and hi (x) = 0.
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Constrained optimization (4)

Karush-Kuhn-Tucker (KKT) conditions

If a feasible point x̄ is a local optimum,
then there exist real numbers λ0, λ1, . . . , λr and µ1, . . . , µs
(that not all are 0) such that

λ0∇f (x̄) +
r∑

i=1

λi∇fi (x̄) +
s∑

i=1

µi∇hi (x̄) = 0

λi fi (x̄) = 0 for i = 1, . . . , r

λi ≥ 0 for i = 1, . . . , r

• λ0, . . . , λr and µ1, . . . , µs are called Lagrange multipliers
• Often convenient: separate treatment of non-negativity constraints
• Often convenient: separate treatment of entire boundary

If point x̄ is regular, then one may choose λ0 = 1
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Constrained optimization (5)

Example

Let a, c ∈ Rn with c 6= 0.

minimize
∑n

i=1 cixi

subject to
∑n

i=1(xi − ai )
2 ≤ 1

• KKT yields ci + 2λ(xi − ai ) = 0 for i = 1, . . . , n
and λ

(∑n
i=1(xi − ai )

2 − 1
)

= 0
and λ ≥ 0

• This leads to xi = ai − ci/‖c‖
and cT x = cTa− ‖c‖
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Constrained optimization (6)

Where does the name KKT come from?

For a long time known as KT (Kuhn-Tucker) conditions
First appeared in publication by Kuhn and Tucker in 1951
Later people found out that Karush had the condition in his master
thesis of 1939 (Univ. of Chicago)

• William Karush (1917–1997): American mathematician
• Harold Kuhn (1925–2014): famous American mathematician;

inventor of the Hungarian method for the assignment problem
• Albert Tucker (1905–1995): famous American mathematician
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Lagrangian duality (1)

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s

Definition

The Lagrangian L(x , λ, µ) = f0(x) +
r∑

i=1

λi fi (x) +
s∑

i=1

µihi (x)

Lemma
If λ ≥ 0, then

f0(x) ≥ L(x , λ, µ)

for any x such that all fi (x) ≤ 0 and hi (x) = 0.
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Lagrangian duality (2)

Let p∗ :=

minimize f0(x)
subject to fi (x) ≤ 0 i = 1, . . . , r

hi (x) = 0 i = 1, . . . , s

The Lagrange dual function of this problem is:

g(λ, µ) := min
x

L(x , λ, µ)

Lemma
If λ ≥ 0, then

p∗ ≥ g(λ, µ)
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Lagrangian duality (3)

Consider the (primal) problem

minimize f0(x)
subject to fi (x) ≤ 0 i = 1, . . . , r

hi (x) = 0 i = 1, . . . , s

with value p∗.

Its Lagrange dual is the problem

maximize g(λ, µ)
subject to λi ≥ 0 i = 1, . . . , r

with value d∗.

Lemma
We have p∗ ≥ d∗.
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Lagrangian duality (4a)

Example

For A ∈ Sn, show that min{xTAx | xT x = 1} yields the smallest
Eigenvalue λmin(A) of matrix A.

L(x , µ) = xTAx + µ(1− xT x) = µ+ xT (A− µI )x

∇xTAx + µ∇(1− xT x) = 0

2xTA− 2µxT = 0

• If xTA = µxT then
either: x = 0
or: µ is an Eigenvalue and x is the corresponding Eigenvector
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Lagrangian duality (4b)

Example (continued)

For A ∈ Sn, give the Lagrangian, Lagrange dual function, and Lagrange
dual of the problem min{xTAx | xT x = 1}.

L(x , µ) = xTAx + µ(1− xT x) = µ+ xT (A− µI )x

g(µ) = min
x

µ+ xT (A− µI )x

• If A− µI ∈ PSD, then minx xT (A− µI )x = 0
If A− µI /∈ PSD, then minx xT (A− µI )x = −∞

• A− µI ∈ PSD if and only if µ ≤ λmin(A)
• Hence g(µ) = µ for µ ≤ λmin

and g(µ) = −∞ for µ > λmin

• Lagrange dual: maximize µ subject to µ ≤ λmin
• Hence in this case p∗ = d∗ (no duality gap in this case)
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Lagrangian duality (5)

Example

Determine the optimal primal and the optimal dual objective value
for the problem min{x | x3 − y ≥ 0, y ≥ 0}.

L(x , y , α, β) = x + α(y − x3)− βy

Primal problem (P)

p∗ = 0 with x∗ = y∗ = 0.

Dual problem (D)

g(α, β) = minx,y (x − αx3) + (α− β)y
• If α > 0, then x − αx3 goes to −∞ as x goes to ∞
• If α = 0, then x − αx3 = x can be made arbitrarily small

As p∗ = 0 and d∗ = −∞, the duality gap is infinite in this case.
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Convex Lagrangian duality (1)

Let p∗ :=

minimize f0(x)
subject to fi (x) ≤ 0 i = 1, . . . , r

hi (x) = 0 i = 1, . . . , s

and d∗ :=

maximize g(λ, µ)
subject to λi ≥ 0 i = 1, . . . , r

Theorem (strong duality for convex optimization)

Suppose (convex program) and (Slater’s condition is satisfied):
f0, . . . , fr are convex and h1, . . . , hs are affine
∃y : fi (y) < 0 for i = 1, . . . , r , and

hi (y) = 0 for i = 1, . . . , s
Then p∗ = d∗.
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Convex Lagrangian duality (2)

Assume s = 0.

Sketch of proof (strong duality for convex optimization)

Consider A := {
[

u
t

]
| ∃x : fi (x) ≤ ui , i = 1, . . . , r , f0(x) ≤ t}.

A is a convex set

p∗ = min{t |
[

0
t

]
∈ A}

some hyperplane supports A at (0, p∗); say[
λ∗

µ∗

]T[ u
t

]
≥ α for

[
u
t

]
∈ A;

[
λ∗

µ∗

]T[ 0
p∗

]
= α

µ∗ ≥ 0, λ∗ ≥ 0
If µ∗ = 0, then 0 >

∑
i λ
∗
i fi (y) ≥ α = 0; contradiction.

If µ∗ > 0, then g(λ∗/µ∗) = p∗.
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Convex Lagrangian duality (3)

Equivalent formulation of strong duality for convex optimization:

Theorem

The KKT conditions characterize an optimal solution (and hence are
both necessary and sufficient),

if f0, . . . , fr are convex and h1, . . . , hs are affine; and
if Slater’s condition is satisfied: there exists a point that satisfies all
inequality constraints strictly.
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Convex Lagrangian duality (4)

Another equivalent formulation of strong duality for convex optimization:

Theorem
Assume that a convex optimization problem satisfies Slater’s condition
(there exists a point that satisfies all inequality constraints strictly).

Then vector x∗ is an optimal solution,
if and only if there exists (λ∗, µ∗) with λ∗ ≥ 0 such that the inequality

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x , λ∗, µ∗)

is satisfied for all vectors x and for all vectors (λ, µ) with λ ≥ 0.

• Such a point (x∗, λ∗, µ∗) is called saddle point
• Under the assumptions of the theorem, saddle point = KKT point
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Duality theorems (1)

Linear programming duality

Consider the linear program

min{cT x | Ax ≥ b}

The Lagrangian is

L(x , λ) := cT x + λT (b − Ax)

The Lagrange dual function is

g(λ) = min
x

cT x + λT (b − Ax) =

{
λTb if cT = λTA
−∞ otherwise

So the dual is

max{g(λ) | λ ≥ 0} = max{λTb | cT = λTA, λ ≥ 0}

Strong convex duality implies LP duality.
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Duality theorems (2)

• Dénes König (1884–1944):
Hungarian mathematician; founder of graph theory

Theorem (König, 1931)

In a bipartite graph G = (X ∪ Y ,E ),
the number of edges in a maximum matching
is equal to
the number of vertices in a minimum vertex cover.
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Duality theorems (3)

• Philip Hall (1904–1982): English algebraist; Cambridge

Theorem (Hall’s marriage theorem, 1935)

A bipartite graph G = (X ∪ Y ,E ) contains a matching that covers X ,
if and only if
|N(S)| ≥ |S | for all S ⊂ X .
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Duality theorems (4)

• Robert Palmer Dilworth (1914–1993): American mathematician

Theorem (Dilworth, 1950)

For any (finite) partially ordered set,
the maximum size of an antichain
is equal to
the minimum number of chains in a partition into chains
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Duality theorems (5)

• Karl Menger (1902–1985): Austrian mathematician

Theorem (Menger, 1927)

For any undirected graph G = (V ,E ) and x , y ∈ V ,
the maximum number of pairwise vertex-disjoint paths from x to y
is equal to
the minimum of vertices in a cut separating x from y .

• Predecessor and close relative of the max-flow min-cut theorem
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Solving convex programs (1)

Reduction to equality constrained minimization:

Convex optimization problem

min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b}

This problem is equivalent to the problem

min{f0(x) +
r∑

i=1

I−(fi (x)) | Ax = b}

where I− : R→ R is the indicator function of the set {u | u ≤ 0} :

I−(u) =

{
0 if u ≤ 0
∞ otherwise

Trouble
This indicator function I− is not differentiable!

GJ Woeginger Optimization (2MMD10,2DME20), lecture 3 29/38



Solving convex programs (2): the logarithmic barrier

Definition
Consider the following approximate indicator function:

Î−(u) =

{
− 1

t log(−u) if u < 0
∞ otherwise

• The function Î− is convex and non-decreasing
• The function Î− is differentiable
• All sublevel sets of Î− are closed

• As t →∞, function Î− approximates I− increasingly well
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Solving convex programs (3): the logarithmic barrier

We approximate min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b} by

min{f0(x) +
1
t
φ(x) | Ax = b}

where t > 0 and φ(x) :=
∑r

i=1− log(−fi (x)).

Function φ(x) is called logarithmic barrier.

Definition

The set {x∗(t) | t > 0} is the central path, where

x∗(t) := argmin{f0(x) +
1
t
φ(x) | Ax = b}
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Solving convex programs (4): the central path

Theorem
The central path leads to the optimum.

The Lagrange dual function of p∗ = min{f0(x) | fi (x) ≤ 0,Ax = b} is

g(λ, µ) := inf
x

f0(x) +
∑

i

λi fi (x) + µT (Ax − b)

For x∗ = argmin{f0(x) + 1
t φ(x) | Ax = b}, we have by KKT that

∇f0(x∗) +
∑

i

1
−tfi (x∗)

∇fi (x∗) + ATµ∗ = 0

for some µ∗. By setting λ∗i := 1/(−tfi (x∗)) > 0, we get

g(λ∗, µ∗) = f0(x∗) +
r∑

i=1

λ∗i fi (x
∗) + (µ∗)T (Ax∗ − b) = f0(x∗)− r

t

Hence p∗ ≤ f0(x∗) = g(λ∗, µ∗) + r/t ≤ p∗ + r/t.
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Solving convex programs (5)

In order to approximate p∗ = min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b}
within some additive error ε > 0, it hence suffices to solve

x∗(t) = argmin{f0(x) +
1
t
φ(x) | Ax = b}

with t = r/ε (so that r/t = ε).
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Solving convex programs (6)

Linear equality constraints are harmless:

Equality constrained minimization problem

Consider the optimization problem min{f (x) | Ax = b}.

If {x | Ax = b} = {Wy + v | y ∈ Rk},
then this problem is equivalent to the

Unconstrained minimization problem

min{f (Wy + v) | y ∈ Rk},
that is, the unconstrained minimization of g : y 7→ f (Wy + v).

In the same fashion, the equality constraints can be eliminated from

min{f0(x) +
1
t
φ(x) | Ax = b}
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Solving convex programs (7): the barrier method

In order to approximate p∗ = min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b}
within error ε > 0, it suffices to solve the unconstrained problem

y∗(t) = argmin{f0(Wy + v) +
1
t
φ(Wy + v)}

with t = r/ε.

As directly solving this problem for high t is usually inefficient, there is:

The barrier method

Given a strictly feasible y = y (0) and t = t(0) > 0, do
1 compute y∗(t), starting the solution algorithm with y (centering)
2 put y ← y∗(t) (update)
3 if r/t < ε then quit; else put t ← µt and repeat. (increase)

• Centering step: by using the Newton method
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A final example

Problem
Design a cylindrical tin can with volume at least v units,

such that the total surface area is minimal.

For height h and radius r , this problem becomes

minimize f (r , h) := 2π(r2 + rh)

subject to πr2h ≥ v
r > 0 and h > 0

This is not a convex optimization problem!
The substitution r = ex and h = ey yields the convex problem

minimize g(x , y) := 2π(e2x + ex+y )

subject to ln(v/π)− 2x − y ≤ 0
x , y ∈ R
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A final example (continued)

minimize g(x , y) := 2π(e2x + ex+y )

subject to ln(v/π)− 2x − y ≤ 0
x , y ∈ R

L(x , λ) = 2π(e2x + ex+y ) + λ (ln(v/π)− 2x − y)

2π
[

2e2x + ex+y

ex+y

]
= λ

[
2
1

]
• Hence 2e2x + ex+y = 2ex+y , whence 2ex = ey and 2r = h.
• As the constraint holds with equality (why?),

we can express r and h in terms of v .
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Homework 3

• Read chapters 4, 5 and 11.1–11.3 in Boyd & Vandenberghe
• Recommended exercises:

43, 45, 51, 55, 60, 62, 63, 66, 68

Collection of exercises can be downloaded from:
http://www.win.tue.nl/∼gwoegi/optimization/

Attention!
Weeks 2-5 (Sep 8; Sep 15; Sep 22; Sep 29):
• Tuesday 1+2: instructions
• Tuesday 3+4: lecture
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