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Program for this week

• Basic definitions: discrete problems, algorithms, time complexity
• P versus NP
• Reductions
• NP-hardness
• A catalogue of NP-hard problems
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Basic concepts (1)

Discrete problem:
• Optimization problem (min/max)
• Decision problem (with answer YES/NO)

Example: Optimization problem

Instance: a graph G = (V ,E )
Goal: find a clique of maximum size in G

Example: Decision problem

Instance: a graph G = (V ,E ); a bound k
Question: does G contain a clique of size (at least) k?
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Basic concepts (2)

Instance:
• specification of problem data

Example: Instance of decision version of clique

V = {1, 2, 3, 4, 5};
E = {[1, 2], [1, 3], [4, 5], [2, 3], [3, 5]};
k = 3
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Basic concepts (3)

Problem size:
• length (number of symbols) of reasonable encoding of instance

Example

Graph: adjacency list; adjacency matrix
Set: list of elements; bit vector
Number: decimal; binary; hex; unary

We do not really care whether
an n-vertex graph is encoded with 4n2 + 3n or with 7n2 + 2 symbols.

Recall: big-Oh notation; 4n2 + 3n ∈ O(n2) and 7n2 + 2 ∈ O(n2)
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Basic concepts (4)

Algorithm:
• an unambiguous recipe for solving a discrete problem

(If you want: just think of ‘algorithm’ as C++ program)

Time complexity of an algorithm:
• number of elementary steps an algorithm makes

The time complexity is measured as a function of the instance size:
• TA(I ) = number of steps that algorithm A makes on instance I
• T (n) = maximum number of steps that algorithm A makes

on any instance I of size O(n)

GJ Woeginger Optimization (2MMD10/2DME20), lecture 4 6/31



Basic concepts (5): Polynomial versus exponential

Polynomial growth rate:
• O(poly(n)) for some polynomial poly

Example: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
• everything that grows faster than polynomial

Example: 2n; 3n; n!; 22n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible
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Basic concepts (6)

Observation
Every discrete optimization problem can be rewritten into
a short sequence of decision problems:

use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.

Does G contain a clique of size at least n/2? – YES
Does G contain a clique of size at least 3n/4? – YES
Does G contain a clique of size at least 7n/8? – NO
Does G contain a clique of size at least 13n/16? – YES
Etc.

Search takes logarithmic number of steps –> fast and simple
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P versus NP

Definition
A decision problem X lies in the complexity class P,

if X is solved by an algorithm with polynomial time complexity

Definition
A decision problem X lies in the complexity class NP,

if for every YES-instance of X
there exists a certificate of polynomial length
that can be verified in polynomial time

Example

A certificate for the decision version of clique:
subset C ⊆ V of size k that induces a clique

GJ Woeginger Optimization (2MMD10/2DME20), lecture 4 9/31



Exercise: Satisfiability

Satisfiability (SAT)

Instance:
a logical formula Φ in CNF over logical variable set X = {x1, . . . , xn}

Question: does there exist a truth setting for X that satisfies Φ?

Examples

Φ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)
Φ = (x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y)

Question
What’s a good NP-certificate for SAT?
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Exercise: Integer programming

Integer linear programming (ILP)

Instance: an integer matrix A; an integer vector b

Question: does there exist an integer vector x with Ax ≤ b?

Question
What’s a good NP-certificate for ILP?
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Exercise: Hamiltonian cycle / TSP

Hamiltonian cycle (HC)

Instance: an undirected graph G = (V ,E )
Question: does G contain a Hamiltonian cycle?

(a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: cities 1, . . . , n; distances d(i , j) ; a bound B
Question: does there exist a roundtrip of length at most B?

Question
What’s a good NP-certificate for HC?
What’s a good NP-certificate for TSP?
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Exercise: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . ,Sm of X

Question: do there exist some subsets Si that form a partition of X?

Question
What’s a good NP-certificate for Ex-Cov?
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Exercise: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = b?

Question
What’s a good NP-certificate for SS?
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Back to P versus NP

• P = class of all problems that are easy to solve
P stands for Polynomial Time

• NP = huge class of problems that fulfill some soft condition
NP contains lots of interesting and important decision problems
NP stands for Non-deterministic Polynomial Time

Big open question

P=NP ????

Answer YES:
• would trigger a revolution in computing
• if a short solution exists, it can be found quickly

Answer NO:
• that’s what most people expect
• even very short solutions may be very hard to find
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NP-hardness (1)

Definition
For two decision problems X and Y ,

we say that X reduces to Y (and we write X ≤p Y )
if there exists a polynomial time transformation f

that translates instance of X into instances of Y
with I ∈YES(X) ⇐⇒ f (I ) ∈YES(Y).

Intuition:
• X can be modelled as a special case of Y
• If Y is easy, then also X is easy
• If X is difficult, then also Y is difficult
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NP-hardness (2)

Problem: EvenPath

Instance: an undirected graph G = (V ,E ); two vertices s, t ∈ V
Question: does there exist a simple path from s to t

that uses an even number of edges?

Problem: OddPath

Instance: an undirected graph G ′ = (V ′,E ′); two vertices s ′, t ′ ∈ V ′

Question: does there exist a simple path from s ′ to t ′

that uses an odd number of edges?

Lemma

(a) EvenPath ≤p OddPath.
(b) OddPath ≤p EvenPath.
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NP-hardness (3)

Lemma
Reducibility is a transitive relation:

X ≤p Y and Y ≤p Z implies X ≤p Z

Proof: by putting the two tranformations into series
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NP-hardness (4)

Definition
A decision problem X is NP-hard,

if all problems Y ∈ NP can be reduced to it
(that is, if Y ≤p X holds for all Y ∈ NP)

Definition
A decision problem X is NP-complete,

if X ∈ NP and X is NP-hard.

Intuition:
• NP-complete problems are the hardest problems in NP
• Recall: NP is huge and contains tons of important problems
• NP-complete problems are considered to be intractable

GJ Woeginger Optimization (2MMD10/2DME20), lecture 4 19/31



NP-hardness (5)

Theorem
If one NP-complete problem X has a polynomial time algorithm

then all NP-complete problems have polynomial time algorithms
(and hence P=NP)

Cook’s theorem (1971)

SAT is NP-complete.

• Stephen Cook (born 1939):
American-Canadian computer scientist and mathematician
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NP-hardness: Satisfiability

Satisfiability (SAT)

Instance:
a logical formula Φ in CNF over logical variable set X = {x1, . . . , xn}

Question: does there exist a truth setting for X that satisfies Φ?

• 3-SAT: all clauses contain three literals

Examples

Φ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z)
Φ = (x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y)

Theorem
SAT is NP-complete.
3-SAT is NP-complete.
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NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b

Question: does there exist an integer vector x with Ax ≤ b?

Theorem
ILP is NP-complete.

Consequence: Every problem in NP can be modelled as an ILP.
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NP-hardness: Clique

Clique

Instance: a graph G = (V ,E ); an integer k

Question: does G contain a clique of size (at least) k?

Theorem
CLIQUE is NP-complete.
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NP-hardness: Independent set / Vertex cover

Independent set (IS)

Instance: a graph G = (V ,E ); an integer k
Question: does G contain an independent set of size (at least) k?

(a set of vertices that does not span any edge)

Vertex cover (VC)

Instance: a graph G = (V ,E ); an integer k
Question: does G contain a vertex cover of size (at most) k?

(a set of vertices that touches every edge)

Theorem
IS is NP-complete.
VC is NP-complete.
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NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X ; subsets S1, . . . ,Sm of X

Question: do there exist some subsets Si that form a partition of X?

Theorem
Ex-Cov is NP-complete.
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NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a1, . . . , an; a bound b

Question: does there exist an index set I ⊆ {1, . . . , n} with
∑

i∈I ai = b?

Theorem
SS is NP-complete.
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NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

Instance: a directed graph (X ,A)
Question: does this graph contain a directed Hamiltonian cycle?

Hamiltonian cycle (HC)

Instance: an undirected graph G = (V ,E )
Question: does G contain a Hamiltonian cycle?

Travelling Salesman Problem (TSP)

Instance: cities 1, . . . , n; distances d(i , j); a bound B
Question: does there exist a roundtrip of length at most B?

Theorem
dir-HC is NP-complete. HC is NP-complete. TSP is NP-complete.
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NP versus coNP (1)

Recall:

Definition
A decision problem X lies in the complexity class NP,

if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time

A decision problem X is NP-complete,
if X ∈ NP and all problems Y ∈ NP can be reduced to it.

Now we define:

Definition
A decision problem X lies in the complexity class coNP,

if the NO-instances of X possess certificates of polynomial length
that can be verified in polynomial time

A decision problem X is coNP-complete,
if X ∈ coNP and all problems Y ∈ coNP can be reduced to it.
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NP versus coNP (2)

Problems in NP ∩ coNP have
• good certificates for YES-instances
• good certificates for NO-instances

Example

Linear Programming (LP):
Instance: a matrix A; vectors c and b; a bound t
Question: does there exist a real vector x with Ax ≤ b and cx ≤ t?

• LP lies in NP
• LP lies in coNP

• Similar: MaxFlow in NP and in coNP
• Recall: Duality theorems
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NP versus coNP (3)

• FACT: P ⊆ NP ∩ coNP
• Some people think that P 6= NP ∩ coNP
• Some people think that P = NP ∩ coNP

• Most people think that NP 6= coNP.

Theorem
If coNP contains some NP-complete problem X , then NP=coNP.

Hence:
• X being NP-complete is indication for X /∈ coNP
• X being coNP-complete is indication for X /∈ NP
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Homework 4

• Read the paper by Lenstra & Rinnooy Kan
• Recommended Exercises:

69, 73, 75, 78, 80, 84, 86, 88

Collection of exercises can be downloaded from:
http://www.win.tue.nl/∼gwoegi/optimization/

Attention!
Weeks 2-5 (Sep 8; Sep 15; Sep 22; Sep 29):
• Tuesday 1+2: instructions
• Tuesday 3+4: lecture

GJ Woeginger Optimization (2MMD10/2DME20), lecture 4 31/31


