Optimization (2MMD10/2DME20), lecture 4

Gerhard Woeginger

Technische Universiteit Eindhoven

Fall 2015, Q1

Program for this week

- Basic definitions: discrete problems, algorithms, time complexity
- P versus NP
- Reductions
- NP-hardness
- A catalogue of NP-hard problems

Basic concepts (1)

Discrete problem:

- Optimization problem (min/max)
- Decision problem (with answer YES/NO)

Example: Optimization problem

Instance: a graph $G=(V, E)$
Goal: find a clique of maximum size in G

Example: Decision problem

Instance: a graph $G=(V, E)$; a bound k
Question: does G contain a clique of size (at least) k ?

Basic concepts (2)

Instance:

- specification of problem data

Example: Instance of decision version of clique

$V=\{1,2,3,4,5\}$;
$E=\{[1,2],[1,3],[4,5],[2,3],[3,5]\} ;$
$k=3$

Basic concepts (3)

Problem size:

- length (number of symbols) of reasonable encoding of instance

Example

- Graph: adjacency list; adjacency matrix
- Set: list of elements; bit vector
- Number: decimal; binary; hex; unary

We do not really care whether an n-vertex graph is encoded with $4 n^{2}+3 n$ or with $7 n^{2}+2$ symbols.
Recall: big-Oh notation; $4 n^{2}+3 n \in O\left(n^{2}\right)$ and $7 n^{2}+2 \in O\left(n^{2}\right)$

Basic concepts (4)

Algorithm:

- an unambiguous recipe for solving a discrete problem
(If you want: just think of 'algorithm' as C++ program)

Time complexity of an algorithm:

- number of elementary steps an algorithm makes

The time complexity is measured as a function of the instance size:

- $T_{A}(I)=$ number of steps that algorithm A makes on instance I
- $T(n)=$ maximum number of steps that algorithm A makes on any instance I of size $O(n)$

Basic concepts (5): Polynomial versus exponential

Polynomial growth rate:

- $O($ poly $(n))$ for some polynomial poly

Example: $O(n) ; O(n \log n) ; O\left(n^{3}\right) ; O\left(n^{100}\right)$

Exponential growth rate:

- everything that grows faster than polynomial

Example: $2^{n} ; 3^{n} ; n!; 2^{2^{n}} ; n^{n}$
Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

Basic concepts (6)

Observation

Every discrete optimization problem can be rewritten into a short sequence of decision problems:
use bisection search on the interval of objective values

Example

Let G be a graph on n vertices.
Does G contain a clique of size at least $n / 2$? - YES
Does G contain a clique of size at least $3 n / 4$? - YES
Does G contain a clique of size at least $7 n / 8$? - NO Does G contain a clique of size at least $13 n / 16$? - YES Etc.

Search takes logarithmic number of steps $->$ fast and simple

P versus NP

Definition

A decision problem X lies in the complexity class P , if X is solved by an algorithm with polynomial time complexity

Definition

A decision problem X lies in the complexity class NP, if for every YES-instance of X
there exists a certificate of polynomial length that can be verified in polynomial time

Example

A certificate for the decision version of clique: subset $C \subseteq V$ of size k that induces a clique

Exercise: Satisfiability

Satisfiability (SAT)

Instance:
a logical formula Φ in CNF over logical variable set $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Question: does there exist a truth setting for X that satisfies Φ ?

Examples

$\Phi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z)$
$\Phi=(x \vee y) \wedge(\neg x \vee y) \wedge(x \vee \neg y) \wedge(\neg x \vee \neg y)$

Question

What's a good NP-certificate for SAT?

Exercise: Integer programming

Integer linear programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector x with $A x \leq b$?

Question

What's a good NP-certificate for ILP?

Exercise: Hamiltonian cycle / TSP

Hamiltonian cycle (HC)

Instance: an undirected graph $G=(V, E)$
Question: does G contain a Hamiltonian cycle?
(a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: cities $1, \ldots, n$; distances $d(i, j)$; a bound B
Question: does there exist a roundtrip of length at most B ?

Question

What's a good NP-certificate for HC?
What's a good NP-certificate for TSP?

Exercise: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_{1}, \ldots, S_{m} of X
Question: do there exist some subsets S_{i} that form a partition of X ?

Question

What's a good NP-certificate for Ex-Cov?

Exercise: Subset Sum

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $I \subseteq\{1, \ldots, n\}$ with $\sum_{i \in I} a_{i}=b$?

Question

What's a good NP-certificate for SS?

Back to P versus $N P$

- $P=$ class of all problems that are easy to solve

P stands for Polynomial Time

- NP = huge class of problems that fulfill some soft condition NP contains lots of interesting and important decision problems NP stands for Non-deterministic Polynomial Time

Big open question

$P=N P$????

Answer YES:

- would trigger a revolution in computing
- if a short solution exists, it can be found quickly

Answer NO:

- that's what most people expect
- even very short solutions may be very hard to find

NP-hardness (1)

Definition

For two decision problems X and Y, we say that X reduces to Y (and we write $X \leq_{p} Y$)
if there exists a polynomial time transformation f that translates instance of X into instances of Y with $I \in Y E S(X) \Longleftrightarrow f(I) \in Y E S(Y)$.

Intuition:

- X can be modelled as a special case of Y
- If Y is easy, then also X is easy
- If X is difficult, then also Y is difficult

NP-hardness (2)

Problem: EvenPath

Instance: an undirected graph $G=(V, E)$; two vertices $s, t \in V$
Question: does there exist a simple path from s to t that uses an even number of edges?

Problem: OddPath

Instance: an undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$; two vertices $s^{\prime}, t^{\prime} \in V^{\prime}$
Question: does there exist a simple path from s^{\prime} to t^{\prime} that uses an odd number of edges?

Lemma

(a) EvenPath \leq_{p} OddPath.
(b) OddPath \leq_{p} EvenPath.

NP-hardness (3)

Lemma

Reducibility is a transitive relation:

$$
X \leq_{p} Y \text { and } Y \leq_{p} Z \text { implies } X \leq_{p} Z
$$

Proof: by putting the two tranformations into series

NP-hardness (4)

Definition

A decision problem X is NP-hard, if all problems $Y \in N P$ can be reduced to it (that is, if $Y \leq_{p} X$ holds for all $Y \in N P$)

Definition

A decision problem X is $N P$-complete, if $X \in N P$ and X is NP-hard.

Intuition:

- NP-complete problems are the hardest problems in NP
- Recall: NP is huge and contains tons of important problems
- NP-complete problems are considered to be intractable

NP-hardness (5)

Theorem

If one NP-complete problem X has a polynomial time algorithm then all NP-complete problems have polynomial time algorithms (and hence $P=N P$)

Cook's theorem (1971)

SAT is NP-complete.

- Stephen Cook (born 1939):

American-Canadian computer scientist and mathematician

NP-hardness: Satisfiability

Satisfiability (SAT)

Instance:
a logical formula Φ in CNF over logical variable set $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Question: does there exist a truth setting for X that satisfies Φ ?

- 3-SAT: all clauses contain three literals

Examples

$$
\begin{aligned}
& \Phi=(x \vee y \vee z) \wedge(\neg x \vee \neg y \vee \neg z) \\
& \Phi=(x \vee y) \wedge(\neg x \vee y) \wedge(x \vee \neg y) \wedge(\neg x \vee \neg y)
\end{aligned}
$$

Theorem

SAT is NP-complete. 3-SAT is NP-complete.

NP-hardness: Integer programming

Integer programming (ILP)

Instance: an integer matrix A; an integer vector b
Question: does there exist an integer vector x with $A x \leq b$?

Theorem
 ILP is NP-complete.
 Consequence: Every problem in NP can be modelled as an ILP.

NP-hardness: Clique

Clique
Instance: a graph $G=(V, E)$; an integer k
Question: does G contain a clique of size (at least) k ?

Theorem

CLIQUE is NP-complete.

NP-hardness: Independent set / Vertex cover

Independent set (IS)

Instance: a graph $G=(V, E)$; an integer k
Question: does G contain an independent set of size (at least) k ?
(a set of vertices that does not span any edge)

Vertex cover (VC)

Instance: a graph $G=(V, E)$; an integer k
Question: does G contain a vertex cover of size (at most) k ?
(a set of vertices that touches every edge)

Theorem

IS is NP-complete.
VC is NP-complete.

NP-hardness: Exact cover

Exact cover (Ex-Cov)

Instance: a ground set X; subsets S_{1}, \ldots, S_{m} of X
Question: do there exist some subsets S_{i} that form a partition of X ?

Theorem

Ex-Cov is NP-complete.

NP-hardness: Subset Sum

Subset Sum (SS)

Instance: positive integers a_{1}, \ldots, a_{n}; a bound b
Question: does there exist an index set $I \subseteq\{1, \ldots, n\}$ with $\sum_{i \in I} a_{i}=b$?

Theorem
SS is NP-complete.

NP-hardness: Hamiltonian cycle / TSP

Directed Hamiltonian cycle (dir-HC)

Instance: a directed graph (X, A)
Question: does this graph contain a directed Hamiltonian cycle?

Hamiltonian cycle (HC)

Instance: an undirected graph $G=(V, E)$
Question: does G contain a Hamiltonian cycle?
Travelling Salesman Problem (TSP)
Instance: cities $1, \ldots, n$; distances $d(i, j)$; a bound B
Question: does there exist a roundtrip of length at most B ?

Theorem

dir-HC is NP-complete. HC is NP-complete. TSP is NP-complete.

NP versus coNP (1)

Recall:

Definition

A decision problem X lies in the complexity class NP, if the YES-instances of X possess certificates of polynomial length that can be verified in polynomial time

A decision problem X is NP-complete, if $X \in N P$ and all problems $Y \in N P$ can be reduced to it.

Now we define:

Definition

A decision problem X lies in the complexity class coNP, if the NO-instances of X possess certificates of polynomial length that can be verified in polynomial time

A decision problem X is coNP-complete, if $X \in \operatorname{coNP}$ and all problems $Y \in c o N P$ can be reduced to it.

NP versus coNP (2)

Problems in $N P \cap$ coNP have

- good certificates for YES-instances
- good certificates for NO-instances

Example

Linear Programming (LP):
Instance: a matrix A; vectors c and b; a bound t Question: does there exist a real vector x with $A x \leq b$ and $c x \leq t$?

- LP lies in NP
- LP lies in coNP
- Similar: MaxFlow in NP and in coNP
- Recall: Duality theorems

NP versus coNP (3)

- FACT: $P \subseteq N P \cap \operatorname{coNP}$
- Some people think that $P \neq N P \cap \operatorname{coNP}$
- Some people think that $P=N P \cap \operatorname{coNP}$
- Most people think that $N P \neq$ coNP.

Theorem

If coNP contains some NP-complete problem X, then NP=coNP.
Hence:

- X being NP-complete is indication for $X \notin$ coNP
- X being coNP-complete is indication for $X \notin N P$

Homework 4

- Read the paper by Lenstra \& Rinnooy Kan
- Recommended Exercises: $69,73,75,78,80,84,86,88$

Collection of exercises can be downloaded from: http://www.win.tue.nl/~gwoegi/optimization/

Attention!
Weeks 2-5 (Sep 8; Sep 15; Sep 22; Sep 29):

- Tuesday $1+2$: instructions
- Tuesday 3+4: lecture

