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Program for this week

Dealing with NP-hard problems: Approximation

• Basic definitions
• Ad-hoc approaches
• LP-based approaches
• Limits of approximability
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Basic definitions

First comment:
We leave decision problems, and return to optimization problems

Definition
Let X be a minimization problem.
• The optimal objective value of instance I is denoted opt(I ).
• The objective value returned by algorithm A is denoted A(I ).

The worst case guarantee of algorithm A is supI A(I )/opt(I ).

• worst case guarantee always ≥ 1
• small worst case guarantee = good

For maximization problems
• worst case guarantee is inf I A(I )/opt(I )
• always ≤ 1; large guarantee = good
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Ad-hoc approaches
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Vertex cover (1)

Vertex cover (VC)

Instance: a graph G = (V ,E )
Goal: find a vertex cover of smallest possible size

(vertex cover = subset of vertices that touches every edge)

Approximation algorithm

1. Determine a maximal matching M
2. Output: the set S that contains all endpoints of edges in M

Theorem
This poly-time approximation algorithm has worst case guarantee 2.

• time complexity; feasibility; guarantee
• lower bound: opt(I ) ≥ |M|
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Makespan minimization (1)

Makespan minimization

Instance: m machines; n jobs with processing times p1, . . . , pn
Goal: assign jobs to machines so that the maximum workload

(= makespan) is minimized

Lower bounds:
• opt(I ) ≥ max pi
• opt(I ) ≥ 1

m

∑n
i=1 pi

List scheduling algorithm

Work through the job list one by one,
and always assign current job to machine with currently smallest workload

Example

m = 3 machines, and jobs with processing times 1, 1, 1, 1, 1, 1, 3
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Makespan minimization (2)

Theorem

List scheduling has worst case guarantee 2− 1/m.

Proof:
• Consider machine i that determines the makespan
• Consider last job j assigned to machine i
• Consider moment when j was assigned to i

Worst case example

m machines;
(m − 1)m jobs with processing time 1; one job with processing time m
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Travelling Salesman Problem (1)

Travelling Salesman Problem (TSP)

Instance: cities 1, . . . , n; distances d(i , j)
Goal: find roundtrip of smallest possible length

Assumption (!!!)

We now assume that the distances satisfy the triangle inequality
d(x , y) + d(y , z) ≥ d(x , z) for all cities x , y , z

Lower bounds:
• opt(I ) ≥ length of minimum spanning tree MST
• opt(I ) ≥ twice the length of minimum weight perfect matching

for any (even size) subset of cities
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Travelling Salesman Problem (2)

Double-tree algorithm

1. Compute a minimum spanning tree MST
2. Double every edge in MST to get a Eulerian graph
3. Compute a Euler tour in the doubled MST
4. Shortcut the Euler tour to a TSP tour

Theorem
Double-tree algorithm has worst case guarantee 2.
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Travelling Salesman Problem (3)

Christofides-Serdyukov algorithm

1. Compute a minimum spanning tree MST
2. Compute a minimum perfect matching M for odd-degree cities in MST
3. Construct the union of MST and M to get a Eulerian graph
4. Compute a Euler tour in MST union M
5. Shortcut the Euler tour to a TSP tour

Theorem

Christofides-Serdyukov algorithm has worst case guarantee 3/2.
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LP-based approaches

1. Find an exact IP formulation
2. Relax integrality constraints (IP → LP)
3. Solve the LP relaxation
4. Round the optimal LP solution to approximate IP solution
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Weighted vertex cover (1)

Weighted vertex cover (VC)

Instance: a graph G = (V ,E ); weights w : V → R+

Goal: find a vertex cover of smallest possible weight

IP formulation

minimize
∑

v∈V w(v) · xv

subject to xu + xv ≥ 1 for every edge [u, v ] ∈ E
xv ∈ {0, 1} for every vertex v ∈ V

LP relaxation

minimize
∑

v∈V w(v) · xv

subject to xu + xv ≥ 1 for every edge [u, v ] ∈ E
0 ≤ xv ≤ 1 (or simply 0 ≤ xv ) for v ∈ V
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Weighted vertex cover (2)

Lower bound: opt(I ) = IP-opt ≥ LP-opt

Approximation algorithm

1. Compute the optimal LP solution x∗v
2. Round the LP solution x∗v to a feasible IP-solution x̃v :

If x∗v < 1/2 then x̃v = 0
If x∗v ≥ 1/2 then x̃v = 1

Theorem
This poly-time approximation algorithm has worst case guarantee 2.

• time complexity; feasibility; guarantee
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Weighted vertex cover (3): Gaps

Note that the approach is centered around three values:
• the optimal value of the IP: optIP
• the optimal value of the LP: optLP
• the result of the rounding: app

Observation
optLP ≤ optIP ≤ app ≤ 2optLP

Two examples (with unit weights)

• Odd cycle C2k+1 yields optLP = k + 1
2 , optIP = k + 1, app = 2k + 1.

• Complete graph K2k yields optLP = k , optIP = 2k − 1, app = 2k .

Therefore the integrality gap of the LP relaxation is optIP/optLP = 2
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Communication delay scheduling (1)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn;
precedence constraints between some jobs

Goal: find a feasible schedule on n machines
that obeys unit communication delays and minimizes makespan

• unit time jobs: job Ja runs from S(Ja) to C (Ja) := S(Ja) + 1

• precedence constraints = partial order ”→ ” on the jobs
• if Ja → Jb then C (Ja) ≤ S(Jb)
⇐⇒ Ja must be completed before Jb is started

• unit communication delay for Ja → Jb
if Ja and Jb run on same machine then C (Ja) ≤ S(Jb)
if Ja and Jb run on different machines then C (Ja) + 1 ≤ S(Jb)

• number n of machines is not a bottleneck
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Communication delay scheduling (2)

Example

• Four jobs J1, J2, J3, J4
• Precedence constraints:

J1 → J2; J1 → J3; J2 → J4; J3 → J4;

• Simple schedule:
If all four jobs are run on different machines then makespan=5

• Better schedule:
If all four jobs are run on same machine then makespan=4

GJ Woeginger Optimization (2MMD10/2DME20), lecture 5 16/33



Communication delay scheduling (3a)

Notation:
• Pred(Ja) denotes the set of all predecessors Jb of Ja (with Jb → Ja)
• Succ(Ja) denotes the set of all successors Jb of Ja (with Ja → Jb)

Observation

At most one predecessor of Ja can complete at C (Ja)− 1.
At most one successor of Ja can start at C (Ja).

Modelling idea:
Introduce 0-1-variable xab that indicates the delay of Ja → Jb
• xab = 0 means that Jb starts directly after Ja on same machine
• xab = 1 means that Jb starts at time C (Ja) + 1 or later

Corresponding inequality: C (Jb) ≥ C (Ja) + 1+ xab

Observation

C (Jb) = max {C (Ja) + 1+ xab : Ja → Jb}
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Communication delay scheduling (3b)

IP formulation

min C

s.t.
∑

i∈Pred(j) xij ≥ |Pred(j)| − 1 for j = 1, . . . , n∑
i∈Succ(j) xji ≥ |Succ(j)| − 1 for j = 1, . . . , n

Ci + 1+ xij ≤ Cj for Ji → Jj

1 ≤ Cj ≤ C for j = 1, . . . , n

xij ∈ {0, 1} for Ji → Jj

Variables:
• Cj : real variable encodes completion time of Ji
• xij : 0-1-variable encodes delay of Ji → Jj
• C : real variable encodes makespan of schedule
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Communication delay scheduling (3c)

LP relaxation

min C

s.t.
∑

i∈Pred(j) xij ≥ |Pred(j)| − 1 for j = 1, . . . , n∑
i∈Succ(j) xji ≥ |Succ(j)| − 1 for j = 1, . . . , n

Ci + 1+ xij ≤ Cj for Ji → Jj

1 ≤ Cj ≤ C for j = 1, . . . , n

0 ≤ xij ≤ 1 for Ji → Jj

Variables:
• Cj : real variable encodes completion time of Ji
• xij : real variable encodes relaxed delay of Ji → Jj
• C : real variable encodes makespan of schedule
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Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution x∗ij , C
∗
j , C

∗.
2. Round the LP solution to a feasible IP-solution x̃ij , C̃j , C̃ .

How to round the LP solution
For every precedence constraint Ji → Jj do:

If x∗ij < 1/2 then x̃ij = 0
If x∗ij ≥ 1/2 then x̃ij = 1

For every job Jj do:

C̃j = max
{
C̃i + 1+ x̃ij : Ji → Jj

}
For the makespan do:

C̃ = max{C̃i}
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Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution x̃ij , C̃j , C̃ is feasible for the IP.∑
i∈Pred(j)

x̃ij ≥ |Pred(j)| − 1 and
∑

i∈Succ(j)

x̃ij ≥ |Succ(j)| − 1
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Communication delay scheduling (6)

Lemma (guarantee, part 1)

For every constraint Ji → Jj , we have 1+ x̃ij ≤ 4
3 (1+ x∗ij ).

Proof: trivial if x̃ij = 0; easy if x̃ij = 1

Lemma (guarantee, part 2)

For every job Ji , we have C̃i ≤ 4
3C
∗
i .

Proof: Induction plus C̃j = max
{
C̃i + 1+ x̃ij : Ji → Jj

}

Lemma (guarantee, part 3)

The makespan satisfies C̃ ≤ 4
3C
∗.
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Communication delay scheduling (7)

Lower bound: opt(I ) = IP-opt ≥ LP-opt

Theorem

This poly-time approximation algorithm has worst case guarantee 4/3.

• time complexity; feasibility; guarantee
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Communication delay scheduling (8a): Gaps

Example

• 3k + 1 jobs A1, . . . ,Ak+1; B1, . . . ,Bk ; C1, . . . ,Ck
• Precedence constraints:

Ai → Bi and Ai → Ci for i = 1, . . . , k
Bi → Ai+1 and Ci → Ai+1 for i = 1, . . . , k

• optIP ≤ 3k + 1
(A1,B1,C1, A2,B2,C2, A3,B3,C3, . . . ,Ak ,Bk ,Ck , Ak+1)

• app ≥ 4k + 1
(x∗ij = 1/2 for all constraints Ji → Jj ; and hence x̃ij ≡ 1)

Observation

For large numbers of jobs, app may come arbitrarily close to 4
3optIP .
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Communication delay scheduling (8b): Gaps

Example

• Job are partitioned into k + 1 levels 0, 1, . . . , k, with 2i jobs at level i
• Every job at level i has two successors at level i + 1

Every job at level i has one predecessor at level i − 1

• optIP ≥ 2k + 1

• optLP ≤ 3
2k + 1 (x∗ij = 1/2 for all constraints Ji → Jj)

Observation

For large numbers of jobs, optIP may come arbitrarily close to 4
3optLP .

Therefore the integrality gap of our LP relaxation is 4/3.
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Limits of approximability
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Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is
a family of approximation algorithms Aε for ε > 0

with approximation guarantee 1+ ε, and
for every fixed ε running time polynomially bounded in instance size

Typical running times for PTAS:
n1/ε, n2/ε3

, (1/ε)1/εn4, n2/ε5, 31/εn3, (4/ε)! n2/ε

For maximization problems
approximation guarantee of Aε is 1− ε
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Makespan minimization (1)

Makespan minimization on m = 2 machines

Instance: n jobs with processing times p1, . . . , pn
Goal: assign jobs to two machines so that the makespan is minimized

• Let L := max
{
max pi ,

1
m

∑n
i=1 pi

}
, and recall L ≤ opt(I )

• Let ε > 0 be desired precision (for worst case ratio 1+ ε)
• Classify processing times into big (pj > εL) and small (pj ≤ εL)

• There are at most 2/ε big jobs
• There are at most 22/ε assignments of big jobs to machines
• If the value ε is fixed, then the values 2/ε and 22/ε are constants
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Makespan minimization (2)

Approximation algorithm

1. Compute all 22/ε assignments of big jobs to machines
2. For each such assignment,

add the small jobs greedily to the schedule for big jobs
3. Output the best schedule found

• One of the 22/ε assignments agrees with
the assignment of big jobs in optimal schedule

• Let B denote the makespan (of big jobs) in that assignment
• If Greedy does not increase B: optimal schedule found

If Greedy increases B: workload difference ≤ εL

Theorem
Makespan minimization on m = 2 machines has a PTAS.
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In-approximability (1)

Chromatic number χ(G ) = minimum number of colors in proper coloring

Chromatic number (COLORING)

Instance: an undirected graph G = (V ,E )
Goal: find proper coloring of V with smallest possible number of colors

(colors 1, 2, . . . , k ; adjacent vertices receive different colors)

Fact (from Exercise 81)

There exists polynomial time transformation from 3-SAT to COLORING
such that

satisfiable 3-SAT instances translate into graphs with χ(G ) ≤ 3
unsatisfiable 3-SAT instances translate into graphs with χ(G ) ≥ 4

Theorem

If COLORING has poly-time approximation algorithm with ratio r < 4/3,
then P=NP.
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In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J1, . . . , Jn;
precedence constraints between some jobs

Goal: find a feasible schedule on n machines
that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra & Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY
such that

satisfiable 3-SAT instances translate into I s with opt(I ) ≤ 6
unsatisfiable 3-SAT instances translate into graphs with opt(I ) ≥ 7

Theorem

If COMM-DELAY has poly-time approximation algo with ratio r < 7/6,
then P=NP.
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In-approximability (3)

The Gap Technique is a method for establishing in-approximability
of a minimization problem X with integral objective values:

1. Take an NP-hard problem Y

2. Construct a poly-time transformation from Y to X
such that
YES-instances of Y translate into X -instances with value ≤ A
NO-instances of Y translate into X -instances with value ≥ B

3. Conclude:
If X has poly-time approximation algorithm with ratio r < B/A
then P=NP
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Homework 5

• Read chapters 1, 2, and 5 in the lecture notes of David Williamson
• Recommended exercises:

93, 94, 95, 97, 98, 99, 101, 104, 106, 108

Collection of exercises can be downloaded from:
http://www.win.tue.nl/∼gwoegi/optimization/

Attention!
Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):
• 2MMD10: lecture tue 1+2,3+4; instructions fri 5+6
• 2DME20: lecture tue 3+4, fri 5+6; instructions tue 1+2

• 2MMD10: same lecture rooms as in weeks 1-5
• 2DME20: all lectures in flux 1.06
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