Optimization (2MMD10/2DME20), lecture 5

Gerhard Woeginger

Technische Universiteit Eindhoven

Fall 2015, Q1

Program for this week

Dealing with NP-hard problems: Approximation

- Basic definitions
- Ad-hoc approaches
- LP-based approaches
- Limits of approximability

Basic definitions

First comment:
We leave decision problems, and return to optimization problems

Definition

Let X be a minimization problem.

- The optimal objective value of instance I is denoted opt(I).
- The objective value returned by algorithm A is denoted $A(I)$.

The worst case guarantee of algorithm A is sup, $A(I) / \operatorname{opt}(I)$.

- worst case guarantee always ≥ 1
- small worst case guarantee $=$ good

For maximization problems

- worst case guarantee is inf, $A(I) /$ opt (I)
- always ≤ 1; large guarantee $=$ good

Ad-hoc approaches

Vertex cover (1)

Vertex cover (VC)

Instance: a graph $G=(V, E)$
Goal: find a vertex cover of smallest possible size
(vertex cover $=$ subset of vertices that touches every edge)

Approximation algorithm

1. Determine a maximal matching M
2. Output: the set S that contains all endpoints of edges in M

Theorem

This poly-time approximation algorithm has worst case guarantee 2 .

- time complexity; feasibility; guarantee
- lower bound: opt $(I) \geq|M|$

Makespan minimization (1)

Makespan minimization

Instance: m machines; n jobs with processing times p_{1}, \ldots, p_{n} Goal: assign jobs to machines so that the maximum workload (= makespan) is minimized

Lower bounds:

- $\operatorname{opt}(I) \geq \max p_{i}$
- opt $(I) \geq \frac{1}{m} \sum_{i=1}^{n} p_{i}$

List scheduling algorithm

Work through the job list one by one, and always assign current job to machine with currently smallest workload

Example

$m=3$ machines, and jobs with processing times $1,1,1,1,1,1,3$

Makespan minimization (2)

Theorem

List scheduling has worst case guarantee $2-1 / m$.

Proof:

- Consider machine i that determines the makespan
- Consider last job j assigned to machine i
- Consider moment when j was assigned to i

Worst case example

m machines;
($m-1$) m jobs with processing time 1 ; one job with processing time m

Travelling Salesman Problem (1)

Travelling Salesman Problem (TSP)

Instance: cities $1, \ldots, n$; distances $d(i, j)$
Goal: find roundtrip of smallest possible length

Assumption (!!!)

We now assume that the distances satisfy the triangle inequality $d(x, y)+d(y, z) \geq d(x, z)$ for all cities x, y, z

Lower bounds:

- $\operatorname{opt}(I) \geq$ length of minimum spanning tree MST
- $\operatorname{opt}(I) \geq$ twice the length of minimum weight perfect matching for any (even size) subset of cities

Travelling Salesman Problem (2)

Double-tree algorithm

1. Compute a minimum spanning tree MST
2. Double every edge in MST to get a Eulerian graph
3. Compute a Euler tour in the doubled MST
4. Shortcut the Euler tour to a TSP tour

Theorem

Double-tree algorithm has worst case guarantee 2.

Travelling Salesman Problem (3)

Christofides-Serdyukov algorithm

1. Compute a minimum spanning tree MST
2. Compute a minimum perfect matching M for odd-degree cities in MST
3. Construct the union of MST and M to get a Eulerian graph
4. Compute a Euler tour in MST union M
5. Shortcut the Euler tour to a TSP tour

Theorem

Christofides-Serdyukov algorithm has worst case guarantee 3/2.

LP-based approaches

1. Find an exact IP formulation
2. Relax integrality constraints (IP \rightarrow LP)
3. Solve the LP relaxation
4. Round the optimal LP solution to approximate IP solution

Weighted vertex cover (1)

Weighted vertex cover (VC)

Instance: a graph $G=(V, E)$; weights $w: V \rightarrow \mathbb{R}^{+}$
Goal: find a vertex cover of smallest possible weight

IP formulation

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{v \in V} w(v) \cdot x_{v} \\
\text { subject to } & x_{u}+x_{v} \geq 1 \quad \text { for every edge }[u, v] \in E \\
& x_{v} \in\{0,1\} \quad \text { for every vertex } v \in V
\end{array}
$$

LP relaxation

minimize $\quad \sum_{v \in V} w(v) \cdot x_{v}$
subject to $\quad x_{u}+x_{v} \geq 1$ for every edge $[u, v] \in E$ $0 \leq x_{v} \leq 1 \quad$ (or simply $0 \leq x_{v}$) for $v \in V$

Weighted vertex cover (2)

Lower bound: opt $(I)=$ IP-opt \geq LP-opt

Approximation algorithm

1. Compute the optimal LP solution x_{v}^{*}
2. Round the LP solution x_{v}^{*} to a feasible IP-solution \tilde{x}_{v} :

If $x_{v}^{*}<1 / 2$ then $\tilde{x}_{v}=0$
If $x_{v}^{*} \geq 1 / 2$ then $\tilde{x}_{v}=1$

Theorem

This poly-time approximation algorithm has worst case guarantee 2.

- time complexity; feasibility; guarantee

Weighted vertex cover (3): Gaps

Note that the approach is centered around three values:

- the optimal value of the IP: opt ${ }_{I P}$
- the optimal value of the LP: opt ${ }_{L P}$
- the result of the rounding: app

Observation

opt $_{L P} \leq$ opt $_{I P} \leq \mathrm{app} \leq 2$ opt $_{L P}$

Two examples (with unit weights)

- Odd cycle $C_{2 k+1}$ yields opt ${ }_{L P}=k+\frac{1}{2}$, opt ${ }_{I P}=k+1$, app $=2 k+1$.
- Complete graph $K_{2 k}$ yields opt ${ }_{L P}=k$, opt ${ }_{I P}=2 k-1$, app $=2 k$.

Therefore the integrality gap of the LP relaxation is opt ${ }_{I P} / \mathrm{opt}_{L P}=2$

Communication delay scheduling (1)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J_{1}, \ldots, J_{n};
precedence constraints between some jobs
Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

- unit time jobs: job J_{a} runs from $S\left(J_{a}\right)$ to $C\left(J_{a}\right):=S\left(J_{a}\right)+1$
- precedence constraints $=$ partial order " \rightarrow " on the jobs
- if $J_{a} \rightarrow J_{b}$ then $C\left(J_{a}\right) \leq S\left(J_{b}\right)$
$\Longleftrightarrow J_{a}$ must be completed before J_{b} is started
- unit communication delay for $J_{a} \rightarrow J_{b}$
if J_{a} and J_{b} run on same machine then $C\left(J_{a}\right) \leq S\left(J_{b}\right)$
if J_{a} and J_{b} run on different machines then $C\left(J_{a}\right)+1 \leq S\left(J_{b}\right)$
- number n of machines is not a bottleneck

Communication delay scheduling (2)

Example

- Four jobs $J_{1}, J_{2}, J_{3}, J_{4}$
- Precedence constraints:

$$
J_{1} \rightarrow J_{2} ; J_{1} \rightarrow J_{3} ; J_{2} \rightarrow J_{4} ; J_{3} \rightarrow J_{4}
$$

- Simple schedule:

If all four jobs are run on different machines then makespan=5

- Better schedule: If all four jobs are run on same machine then makespan=4

Communication delay scheduling (3a)

Notation:

- $\operatorname{Pred}\left(J_{a}\right)$ denotes the set of all predecessors J_{b} of J_{a} (with $J_{b} \rightarrow J_{a}$)
- $\operatorname{Succ}\left(J_{a}\right)$ denotes the set of all successors J_{b} of J_{a} (with $J_{a} \rightarrow J_{b}$)

Observation

At most one predecessor of J_{a} can complete at $C\left(J_{a}\right)-1$.
At most one successor of J_{a} can start at $C\left(J_{a}\right)$.

Modelling idea:
Introduce 0-1-variable $x_{a b}$ that indicates the delay of $J_{a} \rightarrow J_{b}$

- $x_{a b}=0$ means that J_{b} starts directly after J_{a} on same machine
- $x_{a b}=1$ means that J_{b} starts at time $C\left(J_{a}\right)+1$ or later

Corresponding inequality: $C\left(J_{b}\right) \geq C\left(J_{a}\right)+1+x_{a b}$

Observation

$C\left(J_{b}\right)=\max \left\{C\left(J_{a}\right)+1+x_{a b}: J_{a} \rightarrow J_{b}\right\}$

Communication delay scheduling (3b)

IP formulation

$$
\begin{array}{lll}
\min & C & \\
\text { s.t. } & \sum_{i \in \operatorname{Pred}(j)} x_{i j} \geq|\operatorname{Pred}(j)|-1 & \text { for } j=1, \ldots, n \\
& \sum_{i \in \operatorname{Succ}(j)} x_{j i} \geq|\operatorname{Succ}(j)|-1 & \text { for } j=1, \ldots, n \\
& C_{i}+1+x_{i j} \leq C_{j} & \text { for } J_{i} \rightarrow J_{j} \\
& 1 \leq C_{j} \leq C & \text { for } j=1, \ldots, n \\
& x_{i j} \in\{0,1\} & \text { for } J_{i} \rightarrow J_{j}
\end{array}
$$

Variables:

- C_{j} : real variable encodes completion time of J_{i}
- $x_{i j}$: 0-1-variable encodes delay of $J_{i} \rightarrow J_{j}$
- C: real variable encodes makespan of schedule

Communication delay scheduling (3c)

LP relaxation

$$
\begin{array}{lll}
\min & C & \\
\text { s.t. } & \sum_{i \in \operatorname{Pred}(j)} x_{i j} \geq|\operatorname{Pred}(j)|-1 & \text { for } j=1, \ldots, n \\
& \sum_{i \in \operatorname{Succ}(j)} x_{j i} \geq|\operatorname{Succ}(j)|-1 & \text { for } j=1, \ldots, n \\
& C_{i}+1+x_{i j} \leq C_{j} & \text { for } J_{i} \rightarrow J_{j} \\
& 1 \leq C_{j} \leq C & \text { for } j=1, \ldots, n \\
& 0 \leq x_{i j} \leq 1 & \text { for } J_{i} \rightarrow J_{j}
\end{array}
$$

Variables:

- C_{j} : real variable encodes completion time of J_{i}
- $x_{i j}$: real variable encodes relaxed delay of $J_{i} \rightarrow J_{j}$
- C: real variable encodes makespan of schedule

Communication delay scheduling (4)

Approximation algorithm

1. Compute the optimal LP solution $x_{i j}^{*}, C_{j}^{*}, C^{*}$.
2. Round the LP solution to a feasible IP-solution $\tilde{x}_{i j}, \tilde{C}_{j}, \tilde{C}$.

How to round the LP solution

For every precedence constraint $J_{i} \rightarrow J_{j}$ do:
If $x_{i j}^{*}<1 / 2$ then $\tilde{x}_{i j}=0$
If $x_{i j}^{*} \geq 1 / 2$ then $\tilde{x}_{i j}=1$
For every job J_{j} do:

$$
\tilde{C}_{j}=\max \left\{\tilde{C}_{i}+1+\tilde{x}_{i j}: J_{i} \rightarrow J_{j}\right\}
$$

For the makespan do:

$$
\tilde{C}=\max \left\{\tilde{C}_{i}\right\}
$$

Communication delay scheduling (5)

Lemma (feasibility)

The rounded solution $\tilde{x}_{i j}, \tilde{C}_{j}, \tilde{C}$ is feasible for the IP.

$$
\sum_{i \in \operatorname{Pred}(j)} \tilde{x}_{i j} \geq|\operatorname{Pred}(j)|-1 \quad \text { and } \quad \sum_{i \in \operatorname{Succ}(j)} \tilde{x}_{i j} \geq|\operatorname{Succ}(j)|-1
$$

Communication delay scheduling (6)

Lemma (guarantee, part 1)

For every constraint $J_{i} \rightarrow J_{j}$, we have $1+\tilde{x}_{i j} \leq \frac{4}{3}\left(1+x_{i j}^{*}\right)$.
Proof: trivial if $\tilde{x}_{i j}=0$; easy if $\tilde{x}_{i j}=1$

Lemma (guarantee, part 2)

For every job J_{i}, we have $\tilde{C}_{i} \leq \frac{4}{3} C_{i}^{*}$.
Proof: Induction plus $\tilde{C}_{j}=\max \left\{\tilde{C}_{i}+1+\tilde{x}_{i j}: J_{i} \rightarrow J_{j}\right\}$

Lemma (guarantee, part 3)

The makespan satisfies $\tilde{C} \leq \frac{4}{3} C^{*}$.

Communication delay scheduling (7)

Lower bound: opt $(I)=$ IP-opt \geq LP-opt

Theorem

This poly-time approximation algorithm has worst case guarantee 4/3.

- time complexity; feasibility; guarantee

Communication delay scheduling (8a): Gaps

Example

- $3 k+1$ jobs $A_{1}, \ldots, A_{k+1} ; B_{1}, \ldots, B_{k} ; C_{1}, \ldots, C_{k}$
- Precedence constraints:

$$
\begin{aligned}
& A_{i} \rightarrow B_{i} \text { and } A_{i} \rightarrow C_{i} \text { for } i=1, \ldots, k \\
& B_{i} \rightarrow A_{i+1} \text { and } C_{i} \rightarrow A_{i+1} \text { for } i=1, \ldots, k
\end{aligned}
$$

- opt $_{\text {IP }} \leq 3 k+1$
$\left(A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}, A_{3}, B_{3}, C_{3}, \ldots, A_{k}, B_{k}, C_{k}, A_{k+1}\right)$
- app $\geq 4 k+1$
$\left(x_{i j}^{*}=1 / 2\right.$ for all constraints $J_{i} \rightarrow J_{j} ;$ and hence $\left.\tilde{x}_{i j} \equiv 1\right)$

Observation

For large numbers of jobs, app may come arbitrarily close to $\frac{4}{3} \mathrm{opt}_{\text {IP }}$.

Communication delay scheduling (8b): Gaps

Example

- Job are partitioned into $k+1$ levels $0,1, \ldots, k$, with 2^{i} jobs at level i
- Every job at level i has two successors at level $i+1$ Every job at level i has one predecessor at level $i-1$
- opt $_{\text {IP }} \geq 2 k+1$
- opt $_{L P} \leq \frac{3}{2} k+1 \quad\left(x_{i j}^{*}=1 / 2\right.$ for all constraints $\left.J_{i} \rightarrow J_{j}\right)$

Observation

For large numbers of jobs, opt ${ }_{I P}$ may come arbitrarily close to $\frac{4}{3} \mathrm{opt}_{L P}$.
Therefore the integrality gap of our LP relaxation is $4 / 3$.

Limits of approximability

Approximation Schemes

Definition (for minimization problem)

A Polynomial Time Approximation Scheme (PTAS) is
a family of approximation algorithms A_{ε} for $\varepsilon>0$
with approximation guarantee $1+\varepsilon$, and for every fixed ε running time polynomially bounded in instance size

Typical running times for PTAS:

$$
n^{1 / \varepsilon}, \quad n^{2 / \varepsilon^{3}}, \quad(1 / \varepsilon)^{1 / \varepsilon} n^{4}, \quad n^{2} / \varepsilon^{5}, \quad 3^{1 / \varepsilon} n^{3}, \quad(4 / \varepsilon)!n^{2 / \varepsilon}
$$

For maximization problems approximation guarantee of A_{ε} is $1-\varepsilon$

Makespan minimization (1)

Makespan minimization on $m=2$ machines

Instance: n jobs with processing times p_{1}, \ldots, p_{n}
Goal: assign jobs to two machines so that the makespan is minimized

- Let $L:=\max \left\{\max p_{i}, \frac{1}{m} \sum_{i=1}^{n} p_{i}\right\}$, and recall $L \leq \operatorname{opt}(I)$
- Let $\varepsilon>0$ be desired precision (for worst case ratio $1+\varepsilon$)
- Classify processing times into big ($p_{j}>\varepsilon L$) and small ($p_{j} \leq \varepsilon L$)
- There are at most $2 / \varepsilon$ big jobs
- There are at most $2^{2 / \varepsilon}$ assignments of big jobs to machines
- If the value ε is fixed, then the values $2 / \varepsilon$ and $2^{2 / \varepsilon}$ are constants

Makespan minimization (2)

Approximation algorithm

1. Compute all $2^{2 / \varepsilon}$ assignments of big jobs to machines
2. For each such assignment, add the small jobs greedily to the schedule for big jobs
3. Output the best schedule found

- One of the $2^{2 / \varepsilon}$ assignments agrees with the assignment of big jobs in optimal schedule
- Let B denote the makespan (of big jobs) in that assignment
- If Greedy does not increase B : optimal schedule found If Greedy increases B : workload difference $\leq \varepsilon L$

Theorem

Makespan minimization on $m=2$ machines has a PTAS.

In-approximability (1)

Chromatic number $\chi(G)=$ minimum number of colors in proper coloring

Chromatic number (COLORING)

Instance: an undirected graph $G=(V, E)$
Goal: find proper coloring of V with smallest possible number of colors (colors $1,2, \ldots, k$; adjacent vertices receive different colors)

Fact (from Exercise 81)

There exists polynomial time transformation from 3-SAT to COLORING such that
satisfiable 3-SAT instances translate into graphs with $\chi(G) \leq 3$ unsatisfiable 3-SAT instances translate into graphs with $\chi(G) \geq 4$

Theorem

If COLORING has poly-time approximation algorithm with ratio $r<4 / 3$, then $P=N P$.

In-approximability (2)

Communication delay scheduling (COMM-DELAY)

Instance: unit time jobs J_{1}, \ldots, J_{n}; precedence constraints between some jobs
Goal: find a feasible schedule on n machines that obeys unit communication delays and minimizes makespan

Fact (Hoogeveen, Lenstra \& Veltman, 1994)

There exists poly-time transformation from 3-SAT to COMM-DELAY such that
satisfiable 3-SAT instances translate into $/ \mathrm{s}$ with opt $(I) \leq 6$ unsatisfiable 3-SAT instances translate into graphs with $\operatorname{opt}(I) \geq 7$

Theorem

If COMM-DELAY has poly-time approximation algo with ratio $r<7 / 6$, then $P=N P$.

In-approximability (3)

The Gap Technique is a method for establishing in-approximability of a minimization problem X with integral objective values:

1. Take an NP-hard problem Y
2. Construct a poly-time transformation from Y to X such that YES-instances of Y translate into X-instances with value $\leq A$ NO-instances of Y translate into X-instances with value $\geq B$
3. Conclude:

If X has poly-time approximation algorithm with ratio $r<B / A$ then $\mathrm{P}=\mathrm{NP}$

Homework 5

- Read chapters 1,2 , and 5 in the lecture notes of David Williamson
- Recommended exercises: 93, 94, 95, 97, 98, 99, 101, 104, 106, 108

Collection of exercises can be downloaded from: http://www.win.tue.nl/~gwoegi/optimization/

Attention!

Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):

- 2MMD10: lecture tue $1+2,3+4$; instructions fri $5+6$
- 2DME20: lecture tue $3+4$, fri $5+6$; instructions tue $1+2$
- 2MMD10: same lecture rooms as in weeks 1-5
- 2DME20: all lectures in flux 1.06

