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Program for this week

Some convex programs (second-order cone; semi-definite)
Cones, dual cones, proper cones

Generalized inequalities

Convex functions (generalized)

Lagrangian duality (generalized)
Convex Lagrangian duality (generalized)
e Descent methods for unconstrained optimization
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Recall, recall, recall (1)

Non-linear (continuous) optimization problem

minimize  fo(x)

subject to  fi(x) <0 i=1,...,r
hi(x) =0 i=1,...,s
x = (X1, X2,...,%n) ER"

necessary optimality condition (KKT conditions)
no proper duality theorem (duality gap)
interior point algorithms that find locally optimal solution
. in an unknown amount of time
e Virtually any problem can be cast as a nonlinear optimization problem
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Recall, recall, recall (2)

Convex (continuous) optimization problem

fo, ..., f, are convex and hy, ..., hs are affine

minimize  fo(x)

subject to  fi(x) <0 i=1,...,r
hi(x) =0 i=1,...,s
X:(Xl,Xg,...,Xn) e R”

e necessary and sufficient optimality condition (KKT conditions)
e duality theorem (no duality gap)
e interior point algorithms that find globally optimal solution
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More convex problems (1)

Least-squares
For matrix A and vector b solve
minimize  ||Ax — b||?
subject to  x = (x1,%2,...,%y) € R”
e necessary and sufficient optimality condition
e closed-form solution x* = (ATA)"1ATh

e finding an optimal solution is no harder than solving linear equations

Applications:
regression analysis, optimal control, parameter estimation, data fitting

GJ Woeginger Non-linear Optimization (2DME20), lecture 6 5/41



More convex problems (2)

Linear programming
For matrix A and vectors b, ¢ solve

minimize ¢’ x

subject to Ax < b

x = (X1, X2, ...,%,) ER"

necessary and sufficient optimality condition

duality theorem

simplex algorithm finds optimal solution

interior point algorithm approximates a solution efficiently
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More convex problems (3)

Second-order cone optimization

For matrices Ay, ..., A,, vectors by,...,b,,c1,...,¢c., reals dy,...,d,,
for matrix F, and vectors f, g solve

minimize 7 x
subject to [|[Aix+ bi|| < cTx+di  i=1,...,r

Fx=g
x = (x1,X2,...,%,) €ER"

e generalizes least-squares
e generalizes linear programming

e solved efficiently by interior point method

Example

Second-order cone constraint: ||[x, y]T|| < 2x
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More convex problems (4)

Semi-definite optimization

For matrices Ao, ..., A, and vector c, solve

minimize ¢! x

subject to A+ x1A1 + - + x,A, =0

x = (x1,X2,...,%,) €ER"

e generalizes second-order cone optimization
(and hence least-squares and linear programming)
e solved efficiently by interior point method

Applications:

e stability of dynamical systems,

e fitting a maximum-volume ellipsoid inside a polyhedron,
e minimizing a univariate polynomial
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Recall from linear algebra (1)

The inner product of two matrices A, B € S" is

(A,B):= > Y A;B;.

i

As usual for the inner product
* (A, B)= (B A)
e (aA+8B.C) = alA,C)+B(B,C)

Definition

The trace of a square matrix A is tr(A) := ), Aji.

Note that (A, B) = tr(ABT). The latter is used throughout in the book.
Hence tr((aA + B)C) = atr(AC) + Btr(BC), etc.
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Recall from linear algebra (2)

As a linear space, S” is isomorphic to R™("+1)/2,

An affine subspace L in S” can be given by linear equations as
L = {XeS"|tr(AiX)=b1,...,tr(AnX) = b},
or alternatively as

L = {Fo+xiFi+ -4+ xkFi | x1,...,xx € R}.

Note that if A, B € S7, then tr(AB) > 0. Actually:

Lemma
Let A€ S". Then A € S} if and only if t(AB) > 0 for all B € SY.
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More about cones (1)

Aset K CR"is a cone, if ax+ By € K for all x,y € K and all o, 5 > 0.

Definition
The dual cone for K is
K* == {yeR"|xTy >0forall x € K}

Soye K*ifandonlyif {x | y"x<0}nNK =10

Note that

o Ki C K implies Ky C K

o K* is closed

e If K is closed then K** = K
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More about cones (2)

For a subspace L C R", the dual cone L*
is the orthogonal complement {y | xTy = 0 for all x € L}.

SEE

The following cones happen to be self-dual.
o (R7)" =R}
Y (Ln)* = Ll‘l
o (S1) =57
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More about cones (3)

A cone K C R" is proper if
@ K is closed

o K is solid (that is, K has non-empty interior)
@ K does not fully contain any line (x € K and —x € K imply x = 0)

Example

@ the nonnegative orthant R} is a proper cone
@ the Lorentz cone L™t is a proper cone
o the cone ST of PSD matrices is a proper cone

@ the cone P" of nonnegative polynomials of degree n is proper:

P"={(po,---,pn) | 0 < po+ p1x+ -+ ppx" for all x € R}
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Generalized inequalities (1)

Every proper cone K C R" determines
a generalized inequality <k and a generalized strict inequality <k:

For all x,y € R™ X3ky < y—x€eK
For all x,y € R™ X<ky < y—x€intK

The nonnegative orthant R’} yields componentwise inequality

SEE

The cone S of PSD matrices yields the usual matrix inequality
XY < Y-X>0
X<Y <= Y-X>0
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Generalized inequalities (

Some useful properties:

@ Since K is a cone, relation <k is transitive:
if x <k yandy =<k z then x 2 z

Since K does not fully contain a line, relation <k has antisymmetry:
if x <k yandy <k x then x=y

o < is reflexive: x <k x

@ Relation < is preserved under addition:
if x<kyand u=<kv then x+u=<ky+v

@ Relation < is preserved under positive scaling:
if x <k y and @ € Rt then ax =<k ay
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Generalized inequalities (3)

By definition of the dual cone K*, we have:
e ifx>k0andy k-0 then y"x>0
o x <k y ifandonly if z"x < zTy for all z =« 0
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Theorem of alternatives & generalized inequalities (1)

Theorem

Let A be an m x n matrix, let b € R™, and let K C R™ be a proper cone.
Then exactly one of the following two alternatives holds:

(1) There exists a vector x € R" such that Ax <k b
(2) There exists a non-zero y =y~ 0 such that yTA=0and y"b <0

e If (1) does not hold, then {b — Ax | x € R"} and int K disjoint
e Separating hyperplane:

yT(b— Ax) < pforall x, and yTz > p for all z € int K
e Then 1 <0 and y € K*, and hence (2)

e If (2) does hold, then (1) cannot hold:

e Otherwise b — Ax =k 0 and y =~ 0 imply yT(b— Ax) >0
But y’b<0and yTA=0imply y"(b— Ax) <0
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Theorem of alternatives & generalized inequalities (2)

Does there exist a number x € R so that
1 1 0 O
)= [0 4]

1 —
-1 1

Consider the matrix Y = [

.tr(y“ H):o

0 O
otr(Y[O _1]):—1
If x were a feasible solution, then
0 O 11
0 < tr(Y([O 1}—x{1 1})):—1—x-0
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Read the following sections in Boyd & Vandenberghe
1,24-26,4.1-4.4,46

Recommended exercises (Boyd & Vandenberghe):
4.8, 4.10, 4.11; 5.6; 2.30, 2.31, 2.32, 2.33, 2.35;

Attention!
Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):
o all lectures and instructions in flux 1.06

e tuesday: 142 instructions; 3+4 lecture
o friday: 5+6 lecture
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Convex functions & generalized inequalities (1)

Let K C R™ be a proper cone.

A function f : R” — R™ is K-convex if

flax+ By) 2k af(x)+ Bf(y)
forall x,y € R" and o, 8 > 0 with o + 8 = 1.

If K =RT, then f is K-convex
if and only if each component f; is a convex function

Theorem
Let f : R" — R™. Then f is K-convex if and only if

is convex (in the ordinary one-dimensional sense) for each z € K*.

GJ Woeginger Non-linear Optimization (2DME20), lecture 6 20/41



Convex functions & generalized inequalities (2)

For Ao, ..., A, € S™, the function f : R” — S™ such that

f:x— Ag+x1A1 + - + XA,

is affine, and hence is ST"-convex.

SEE
The function f : R"*™ — S" such that

X XXT

is S7-convex.
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Conic optimization (1)

Basic scenario:

o letfh:R" =R

o Let f;:R" - RN wherei=1,...,r

e Let h; :R" - R, wherei=1,...,s

o Let Ki,..., K, be proper cones, where K; C Rk

Basic optimization problem
minimize  fo(x)

subject to  fi(x) <k 0 i=1,...,r
hi(x) = 0 i=1,...,s

If every K; is the nonnegative orthant Ri"
then we are back to the scenario discussed in week 3.
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Conic optimization (2)

Besides the classical nonnegative orthant cone, the most important cones
in conic optimization are:

o the Lorentz cone L™ = {(x,t) | x e R", t e R, [|x| <t}

o the cone S of positive semi-definite matrices

SEE

The second-order cone optimization problem
min x subjectto [x —y, 1, x+y]" =30
is equivalent to

min x subjectto 4xy >1 and x+y >0

Compare the material on the following slides
to our discussion of Lagrangian duality in week 3
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Lagrangian duality (1)

minimize  fo(x)

subject to  fi(x)
hi(x)

The Lagrangian L(x, A1) = f(x) + 3 ATA() + 3 pii(x)
i=1 i=1

PN

K.O i:l,...,r
0 i=1...,s

Lemma
If \j € K" for each i, then

fo(x) = L(x, A, )

for any x such that all f;(x) <k, 0 and h;(x) = 0.
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Lagrangian duality (2)

Let p* :=
minimize  fp(x)
subject to  fi(x) =k, i=1,...,r
hi(x) = 0 i=1,...,

The Lagrange dual function of this problem is:

g(\, 1) :==min L(x, A\, u)

Lemma

If \j € K" for each i, then

p* > g\ p)
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Lagrangian duality (3)

Consider the (primal) problem
minimize  fo(x)
subject to  fi(x) <k, 0 i=1,...,r
hi(x)=0 i=1,...,s
with value p*.

Its Lagrange dual is the problem

maximize  g(\, u)
subjectto A\ e K i=1,...,r

with value d*.

Lemma

We have p* > d*.
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Lagrangian duality (4a)

Example

The second-order cone optimization problem
min y subject to [x, y, x]T =3 0
is equivalent to

min y subjectto y =0 and x>0

The Lagrangian is the function L : R3 — R given by
Mm%M=y+AQ—v%+ﬁ)
The Lagrange dual function is g(\) = —c0.

Hence p* =0 and d* = —
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Lagrangian duality (4b)

The semi-definite optimization problem

1+y 0 O
min y  subject to 0 x y | zs20
0 y O

is equivalent to

min y subjectto x>0 and y=0

The Lagrangian is the function L : R? x S — R given by

14y 0 O
Lix,y,Z)=y—t(Z| 0 x y|)
0 y 0
The dual function is g(Z) = —z11 if zp=0and z11 + 223 =1

—oo  otherwise
So the dual is max —z;; subject to zp, =0, z11 +2z3 =1, Z = 0.
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Conic convex Lagrangian duality (1)

Let p* :=
minimize  fo(x)
subject to  fi(x) <k, 0 i=1,...,
hI(X) =0 I = ].7 ,S
and d* :=

maximize  g(A, p)
subjectto N\, e KF i=1,...,r

Theorem (strong duality for convex optimization)

Suppose (convex program) and (Slater's condition is satisfied):
e fy convex; f; is Ki-convex; and hy, ..., hs are affine

o Jy: fi(y) <k, Ofori=1,...,r and
hi(y)=0fori=1,...,s

Then p* = d*.
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Conic convex Lagrangian duality (2)

Assume s = 0.

Sketch of proof (strong duality for convex optimization)

Consider A := {{ Ltl ] | 3x: fi(x) 2k, uiy, i=1,...,r, fo(x) < t}.
o A is a convex set

p* = min{t | { 2 } € A}

some hyperplane supports A at (0, p*); say

)]z [ en [E)T0]-

W >0, A€ K7
If u* =0, then 0 > >, (A7) "fi(y) > a = 0; contradiction.
If u* >0, then g(A\*/u*) = p*.
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Duality examples (1)

Semi-definite optimization

Consider the semi-definite optimization problem

min{ch | Ao + x1A1 + - -+ + xpAn < 0}
The Lagrangian is the function L : R" x Sk — R given by
L(x,Z) = c"x +tr(Z(Ao + x1A1 + - - - + xnA4))

The Lagrange dual function is

g(Z) =minlL(x,2Z) =

x —o00 otherwise

{ tr(ZAg) if tr(ZA;))+c¢i=0forall i >1
So the dual is

max{tr(ZAo) | Z = 0, tr(ZA;) + ¢; =0 for all i > 1}
We have strong duality.
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Duality examples (2)

Cone program in standard form

For a proper cone K C R”, consider the cone program

min{c"x | Ax = b, x = 0}

The Lagrangian is
LA ) = €Tx = ATx+ 7 (b — Ax)
The Lagrange dual function is

g\ ) = mxin Lo A 1) = { lig gtEeTr;s/;TA +)\T
So the dual is

max{ub|ATpu+ X\ =c, \>g- 0}
We have strong duality.
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Duality examples (3)

Second-order cone optimization

Consider the second-order cone optimization problem
min{f x| |Ax+bil| < ¢'x+di, i=1,...,r}
The Lagrangian is given by
Lo gy our) = FTx+ > ul (Aix+ bi) = Ni( x + df)
The dual is (see Exercise 5.43)
max{dT/\—FZ ul bj | ZA,TUH—)\;CH—f =0, ||ul < A;, fori>1}

We have strong duality.
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Unconstrained optimization (1)

Unconstrained convex minimization problem

Let f : R" — R be a convex and twice differentiable function,
and consider the problem  minimize f(x)

As f is convex and differentiable,

f(x*) = mXin f(x) < Vf(x")=0

Sometimes, the latter equation may be solved analytically:

SEE

The quadratic convex function f(x) = 3xTAx+ bTx + ¢
has the minimizer x* with Ax* + b = Vf(x*) = 0.

GJ Woeginger Non-linear Optimization (2DME20), lecture 6

34/41



Unconstrained optimization (2)

Iterative algorithms

An iterative algorithm for the optimization problem p* = min, f(x)
generates a sequence x(9), x() .. of points,
so that f(x(K)) — p* as k — co.

In the k-th step, a typical iterative algorithm
e chooses a search direction Ax(K) € R”
@ chooses a step size t(K) € R
o puts x(kt1) = x(k) 4 (k) A x(k)

Definition

The search direction Ax is a descent direction
if (VFf(x))TAx <O0.

Then there exists a t so that f(x + tAx) < f(x).
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Unconstrained optimization (3)

Example

Examples of descent directions are

0 Axgg = —VIf(x) (gradient descent)
0 Axgy = argmin{(VF(x))"v||v| <1} (steepest descent)
o Axy = —(V3f(x))"1VF(x) (Newton descent)

The Newton direction is affine-invariant:

If we set g(y) = f(Ay),
then for x = Ay we have Apx = AT Ay

where Ax, = —(V2f(x))"1Vf(x)
and Ayne = —(Vg(y)) "' Vel(y)
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Unconstrained optimization (4)

Line search

Given point x and a descent direction Ax,
line search is the problem of choosing the value t € R
for generating the next point x™ = x + tAx

Goal: choose t so that f(x™) is small.

Exact line search
Choose t = argmin{f(x + tAx) | t € R}

Backtracking line search (trades off thoroughness for speed)

Pick a and 8 with « <1/2 and 0 < 8 < 1; initialize t :=1

While f(x + tAx) > f(x)+ atVf(x)Ax
do t := St
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Recall, recall, recall (1): the logarithmic barrier

0 fu<oO
oo otherwise
—Llog(—u) fu<oO
0 otherwise

o Indicator function /I_(u) = {

e Approximate indicator function 1_(u) = {

e I_(u): convex; non-decreasing; differentiable; closed sublevel sets

e The problem min{fy(x) | fi(x) <0,i=1...,r, Ax= b} can be
approximated by min{fo(x) + 1¢(x) | Ax = b}

o Logarithmic barrier ¢(x) := >_7_, —log(—fi(x))

e Central path x*(t) := argmin{fy(x) + 1¢(x) | Ax = b}

e Ast — oo, the central path leads to the optimum
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Recall, recall, recall (2): the barrier method

In order to approximate p* = min{fo(x) | fi(x) <0,i=1...,r, Ax = b}
within error € > 0, it suffices to solve the unconstrained problem

y*(t) = argmin{fo(Wy + v) + %qS(Wy +v)}

with t = r/e.

The barrier method

Given a strictly feasible y = y(® and t = t© > 0, do
@ compute y*(t), starting the solution algorithm with y  (centering)
Q put y <+ y*(t) (update)
@ if r/t < e then quit; else put t < ut and repeat (increase)

The centering step uses the Newton method
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Recall, recall, recall (3): the barrier method

Example: Linear programming

min{c"x|a/x<b;, i=1,...,r}

The logarithmic barrier for this problem is

r

o(x) = Z — log(b; — a,-Tx)

Then

thh(x) + ¢(x) = tc'x+ Z — log(b; — a] x)
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Homework 6b

Read the following sections in Boyd & Vandenberghe
3.6.2,5.1-53,5.9

Recommended exercises (Boyd & Vandenberghe):
3.20, 3.22, 3.60; 5.12, 5.39, 5.42, 5.43

Attention!
Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):
o all lectures and instructions in flux 1.06

e tuesday: 142 instructions; 3+4 lecture
o friday: 5+6 lecture
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