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Program for this week

• Some convex programs (second-order cone; semi-definite)
• Cones, dual cones, proper cones
• Generalized inequalities
• Convex functions (generalized)

• Lagrangian duality (generalized)
• Convex Lagrangian duality (generalized)
• Descent methods for unconstrained optimization
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Recall, recall, recall (1)

Non-linear (continuous) optimization problem

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s
x = (x1, x2, . . . , xn) ∈ Rn

• necessary optimality condition (KKT conditions)
• no proper duality theorem (duality gap)
• interior point algorithms that find locally optimal solution
. . . in an unknown amount of time

• Virtually any problem can be cast as a nonlinear optimization problem
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Recall, recall, recall (2)

Convex (continuous) optimization problem

f0, . . . , fr are convex and h1, . . . , hs are affine

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s
x = (x1, x2, . . . , xn) ∈ Rn

• necessary and sufficient optimality condition (KKT conditions)
• duality theorem (no duality gap)
• interior point algorithms that find globally optimal solution
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More convex problems (1)

Least-squares

For matrix A and vector b solve

minimize ‖Ax − b‖2

subject to x = (x1, x2, . . . , xn) ∈ Rn

• necessary and sufficient optimality condition
• closed-form solution x∗ = (ATA)−1ATb
• finding an optimal solution is no harder than solving linear equations

Applications:
regression analysis, optimal control, parameter estimation, data fitting
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More convex problems (2)

Linear programming

For matrix A and vectors b, c solve

minimize cT x

subject to Ax ≤ b

x = (x1, x2, . . . , xn) ∈ Rn

• necessary and sufficient optimality condition
• duality theorem
• simplex algorithm finds optimal solution
• interior point algorithm approximates a solution efficiently
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More convex problems (3)

Second-order cone optimization

For matrices A1, . . . ,Ar , vectors b1, . . . , br , c1, . . . , cr , reals d1, . . . , dr ,
for matrix F , and vectors f , g solve

minimize f T x

subject to ‖Aix + bi‖ ≤ cT
i x + di i = 1, . . . , r

Fx = g
x = (x1, x2, . . . , xn) ∈ Rn

• generalizes least-squares
• generalizes linear programming
• solved efficiently by interior point method

Example

Second-order cone constraint: ‖[x , y ]T‖ ≤ 2x
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More convex problems (4)

Semi-definite optimization

For matrices A0, . . . ,An and vector c , solve

minimize cT x

subject to A0 + x1A1 + · · ·+ xnAn � 0

x = (x1, x2, . . . , xn) ∈ Rn

• generalizes second-order cone optimization
(and hence least-squares and linear programming)

• solved efficiently by interior point method

Applications:
• stability of dynamical systems,
• fitting a maximum-volume ellipsoid inside a polyhedron,
• minimizing a univariate polynomial
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Recall from linear algebra (1)

Definition
The inner product of two matrices A,B ∈ Sn is

〈A,B〉 :=
∑

i

∑
j

AijBij .

As usual for the inner product
• 〈A,B〉 = 〈B,A〉
• 〈αA + βB,C 〉 = α〈A,C 〉+ β〈B,C 〉

Definition

The trace of a square matrix A is tr(A) :=
∑

i Aii .

Note that 〈A,B〉 = tr(ABT ). The latter is used throughout in the book.
Hence tr((αA + βB)C ) = α tr(AC ) + β tr(BC ), etc.
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Recall from linear algebra (2)

As a linear space, Sn is isomorphic to Rn(n+1)/2.

An affine subspace L in Sn can be given by linear equations as

L = {X ∈ Sn | tr(A1X ) = b1, . . . , tr(AmX ) = bm},

or alternatively as

L = {F0 + x1F1 + · · ·+ xkFk | x1, . . . , xk ∈ R}.

Note that if A,B ∈ Sn
+, then tr(AB) ≥ 0. Actually:

Lemma

Let A ∈ Sn. Then A ∈ Sn
+ if and only if tr(AB) ≥ 0 for all B ∈ Sn

+.
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More about cones (1)

A set K ⊆ Rn is a cone, if αx + βy ∈ K for all x , y ∈ K and all α, β ≥ 0.

Definition
The dual cone for K is

K∗ := {y ∈ Rn | xT y ≥ 0 for all x ∈ K}

So y ∈ K∗ if and only if {x | yT x < 0} ∩ K = ∅

Note that
• K1 ⊆ K2 implies K∗

2 ⊆ K∗
1

• K∗ is closed
• If K is closed then K∗∗ = K
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More about cones (2)

Example

For a subspace L ⊆ Rn, the dual cone L∗

is the orthogonal complement {y | xT y = 0 for all x ∈ L}.

Example

The following cones happen to be self-dual.
(Rn

+)∗ = Rn
+

(Ln)∗ = Ln

(Sn
+)∗ = Sn

+
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More about cones (3)

Definition
A cone K ⊆ Rn is proper if

K is closed
K is solid (that is, K has non-empty interior)
K does not fully contain any line (x ∈ K and −x ∈ K imply x = 0)

Example

the nonnegative orthant Rn
+ is a proper cone

the Lorentz cone Ln+1 is a proper cone
the cone Sn

+ of PSD matrices is a proper cone
the cone Pn of nonnegative polynomials of degree n is proper:

Pn = {(p0, . . . , pn) | 0 ≤ p0 + p1x + · · ·+ pnxn for all x ∈ R}
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Generalized inequalities (1)

Definition
Every proper cone K ⊆ Rn determines
a generalized inequality �K and a generalized strict inequality ≺K :

For all x , y ∈ Rn: x �K y ⇐⇒ y − x ∈ K
For all x , y ∈ Rn: x ≺K y ⇐⇒ y − x ∈ intK

Example

The nonnegative orthant Rn
+ yields componentwise inequality

Example

The cone Sn
+ of PSD matrices yields the usual matrix inequality

X � Y ⇐⇒ Y − X � 0
X ≺ Y ⇐⇒ Y − X � 0
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Generalized inequalities (2)

Some useful properties:

Since K is a cone, relation �K is transitive:
if x �K y and y �K z then x �K z

Since K does not fully contain a line, relation �K has antisymmetry:
if x �K y and y �K x then x = y

�K is reflexive: x �K x

Relation �K is preserved under addition:
if x �K y and u �K v then x + u �K y + v

Relation �K is preserved under positive scaling:
if x �K y and α ∈ R+ then αx �K αy
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Generalized inequalities (3)

Observation
By definition of the dual cone K∗, we have:

if x �K 0 and y �K∗ 0 then yT x ≥ 0
x �K y if and only if zT x < zT y for all z �K∗ 0
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Theorem of alternatives & generalized inequalities (1)

Theorem
Let A be an m× n matrix, let b ∈ Rm, and let K ⊆ Rm be a proper cone.
Then exactly one of the following two alternatives holds:
(1) There exists a vector x ∈ Rn such that Ax ≺K b
(2) There exists a non-zero y �K∗ 0 such that yTA = 0 and yTb ≤ 0

• If (1) does not hold, then {b − Ax | x ∈ Rn} and intK disjoint
• Separating hyperplane:

yT (b − Ax) ≤ µ for all x , and yT z ≥ µ for all z ∈ intK
• Then µ ≤ 0 and y ∈ K∗, and hence (2)

• If (2) does hold, then (1) cannot hold:
• Otherwise b − Ax �K 0 and y �K∗ 0 imply yT (b − Ax) > 0

But yTb ≤ 0 and yTA = 0 imply yT (b − Ax) ≤ 0
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Theorem of alternatives & generalized inequalities (2)

Example

Does there exist a number x ∈ R so that

x
[

1 1
1 1

]
�
[

0 0
0 −1

]

Consider the matrix Y =

[
1 −1
−1 1

]
� 0 with

tr(Y
[

1 1
1 1

]
) = 0

tr(Y
[

0 0
0 −1

]
) = −1

If x were a feasible solution, then

0 ≤ tr(Y (

[
0 0
0 −1

]
− x

[
1 1
1 1

]
)) = −1− x · 0
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Homework 6a

Read the following sections in Boyd & Vandenberghe
1, 2.4–2.6, 4.1–4.4, 4.6

Recommended exercises (Boyd & Vandenberghe):
4.8, 4.10, 4.11; 5.6; 2.30, 2.31, 2.32, 2.33, 2.35;

Attention!
Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):
• all lectures and instructions in flux 1.06

• tuesday: 1+2 instructions; 3+4 lecture
• friday: 5+6 lecture
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Convex functions & generalized inequalities (1)

Let K ⊆ Rm be a proper cone.

Definition
A function f : Rn → Rm is K -convex if

f (αx + βy) �K αf (x) + βf (y)

for all x , y ∈ Rn and α, β ≥ 0 with α + β = 1.

If K = Rm
+ , then f is K -convex

if and only if each component fi is a convex function

Theorem
Let f : Rn → Rm. Then f is K-convex if and only if

g(x) := zT f (x)

is convex (in the ordinary one-dimensional sense) for each z ∈ K∗.
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Convex functions & generalized inequalities (2)

Example

For A0, . . . ,An ∈ Sm, the function f : Rn → Sm such that

f : x 7→ A0 + x1A1 + · · ·+ xnAn

is affine, and hence is Sm
+ -convex.

Example

The function f : Rn×m → Sn such that

f : X 7→ XXT

is Sn
+-convex.
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Conic optimization (1)

Basic scenario:
• Let f0 : Rn → R
• Let fi : Rn → Rki , where i = 1, . . . , r
• Let hi : Rn → R, where i = 1, . . . , s
• Let K1, . . . ,Kr be proper cones, where Ki ⊆ Rki

Basic optimization problem

minimize f0(x)

subject to fi (x) �Ki 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s

If every Ki is the nonnegative orthant Rki
+

then we are back to the scenario discussed in week 3.
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Conic optimization (2)

Besides the classical nonnegative orthant cone, the most important cones
in conic optimization are:

the Lorentz cone Ln+1 = {(x , t) | x ∈ Rn, t ∈ R, ‖x‖ ≤ t}
the cone Sn

+ of positive semi-definite matrices

Example

The second-order cone optimization problem

min x subject to [x − y , 1, x + y ]T �L3 0

is equivalent to

min x subject to 4xy ≥ 1 and x + y ≥ 0

Compare the material on the following slides
to our discussion of Lagrangian duality in week 3
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Lagrangian duality (1)

minimize f0(x)

subject to fi (x) �Ki 0 i = 1, . . . , r
hi (x) = 0 i = 1, . . . , s

Definition

The Lagrangian L(x , λ, µ) = f0(x) +
r∑

i=1

λT
i fi (x) +

s∑
i=1

µihi (x)

Lemma
If λi ∈ K∗

i for each i , then

f0(x) ≥ L(x , λ, µ)

for any x such that all fi (x) �Ki 0 and hi (x) = 0.
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Lagrangian duality (2)

Let p∗ :=

minimize f0(x)
subject to fi (x) �Ki 0 i = 1, . . . , r

hi (x) = 0 i = 1, . . . , s

The Lagrange dual function of this problem is:

g(λ, µ) := min
x

L(x , λ, µ)

Lemma
If λi ∈ K∗

i for each i , then

p∗ ≥ g(λ, µ)
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Lagrangian duality (3)

Consider the (primal) problem

minimize f0(x)
subject to fi (x) �Ki 0 i = 1, . . . , r

hi (x) = 0 i = 1, . . . , s

with value p∗.

Its Lagrange dual is the problem

maximize g(λ, µ)
subject to λi ∈ K∗

i i = 1, . . . , r

with value d∗.

Lemma
We have p∗ ≥ d∗.
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Lagrangian duality (4a)

Example

The second-order cone optimization problem

min y subject to [x , y , x ]T �L3 0

is equivalent to

min y subject to y = 0 and x ≥ 0

The Lagrangian is the function L : R3 → R given by

L(x , y , λ) = y + λ
(
x −

√
x2 + y2

)
The Lagrange dual function is g(λ) = −∞.

Hence p∗ = 0 and d∗ = −∞
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Lagrangian duality (4b)

Example

The semi-definite optimization problem

min y subject to

 1 + y 0 0
0 x y
0 y 0

 �S3
+
0

is equivalent to

min y subject to x ≥ 0 and y = 0

The Lagrangian is the function L : R2 × S3 → R given by

L(x , y ,Z ) = y − tr(Z

 1 + y 0 0
0 x y
0 y 0

)

The dual function is g(Z ) =

{
−z11 if z22 = 0 and z11 + 2z23 = 1
−∞ otherwise

So the dual is max−z11 subject to z22 = 0, z11 + 2z23 = 1, Z � 0.
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Conic convex Lagrangian duality (1)

Let p∗ :=

minimize f0(x)
subject to fi (x) �Ki 0 i = 1, . . . , r

hi (x) = 0 i = 1, . . . , s

and d∗ :=

maximize g(λ, µ)
subject to λi ∈ K∗

i i = 1, . . . , r

Theorem (strong duality for convex optimization)

Suppose (convex program) and (Slater’s condition is satisfied):
f0 convex; fi is Ki -convex; and h1, . . . , hs are affine
∃y : fi (y) ≺Ki 0 for i = 1, . . . , r , and

hi (y) = 0 for i = 1, . . . , s
Then p∗ = d∗.
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Conic convex Lagrangian duality (2)

Assume s = 0.

Sketch of proof (strong duality for convex optimization)

Consider A := {
[

u
t

]
| ∃x : fi (x) �Ki ui , i = 1, . . . , r , f0(x) ≤ t}.

A is a convex set

p∗ = min{t |
[

0
t

]
∈ A}

some hyperplane supports A at (0, p∗); say[
λ∗

µ∗

]T[ u
t

]
≥ α for

[
u
t

]
∈ A;

[
λ∗

µ∗

]T[ 0
p∗

]
= α

µ∗ ≥ 0, λi ∈ K∗
i

If µ∗ = 0, then 0 >
∑

i (λ∗i )T fi (y) ≥ α = 0; contradiction.
If µ∗ > 0, then g(λ∗/µ∗) = p∗.
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Duality examples (1)

Semi-definite optimization

Consider the semi-definite optimization problem

min{cT x | A0 + x1A1 + · · ·+ xnAn � 0}

The Lagrangian is the function L : Rn × Sk → R given by

L(x ,Z ) = cT x + tr(Z (A0 + x1A1 + · · ·+ xnAn))

The Lagrange dual function is

g(Z ) = min
x

L(x ,Z ) =

{
tr(ZA0) if tr(ZAi ) + ci = 0 for all i ≥ 1
−∞ otherwise

So the dual is

max{tr(ZA0) | Z � 0, tr(ZAi ) + ci = 0 for all i ≥ 1}

We have strong duality.
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Duality examples (2)

Cone program in standard form

For a proper cone K ⊆ Rn, consider the cone program

min{cT x | Ax = b, x �K 0}

The Lagrangian is

L(x , λ, µ) = cT x − λT x + µT (b − Ax)

The Lagrange dual function is

g(λ, µ) = min
x

L(x , λ, µ) =

{
µTb if cT = µTA + λT

−∞ otherwise

So the dual is

max{µTb | ATµ+ λ = c , λ �K∗ 0}

We have strong duality.
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Duality examples (3)

Second-order cone optimization

Consider the second-order cone optimization problem

min{f T x | ‖Aix + bi‖ ≤ cT
i x + di , i = 1, . . . , r}

The Lagrangian is given by

L(x , λ, u1, . . . , ur ) = f T x +
∑

uT
i (Aix + bi )− λi (cT

i x + di )

The dual is (see Exercise 5.43)

max{dTλ+
∑

uT
i bi |

∑
AT

i ui +λici +f = 0, ‖ui‖ ≤ λi , for i ≥ 1}

We have strong duality.
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Unconstrained optimization (1)

Unconstrained convex minimization problem

Let f : Rn → R be a convex and twice differentiable function,
and consider the problem minimize f (x)

As f is convex and differentiable,

f (x∗) = min
x

f (x) ⇐⇒ ∇f (x∗) = 0

Sometimes, the latter equation may be solved analytically:

Example

The quadratic convex function f (x) = 1
2xTAx + bT x + c

has the minimizer x∗ with Ax∗ + b = ∇f (x∗) = 0.
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Unconstrained optimization (2)

Iterative algorithms

An iterative algorithm for the optimization problem p∗ = minx f (x)
generates a sequence x (0), x (1), . . . of points,

so that f (x (k))→ p∗ as k →∞.

In the k-th step, a typical iterative algorithm
chooses a search direction ∆x (k) ∈ Rn

chooses a step size t(k) ∈ R
puts x (k+1) = x (k) + t(k)∆x (k)

Definition
The search direction ∆x is a descent direction

if (∇f (x))T ∆x < 0.

Then there exists a t so that f (x + t∆x) < f (x).
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Unconstrained optimization (3)

Example

Examples of descent directions are
∆xgd = −∇f (x) (gradient descent)
∆xsd = argmin{(∇f (x))T v | ‖v‖ ≤ 1} (steepest descent)
∆xnt = −(∇2f (x))−1∇f (x) (Newton descent)

The Newton direction is affine-invariant:
If we set g(y) = f (Ay),

then for x = Ay we have ∆ntx = AT ∆nty
where ∆xnt = −(∇2f (x))−1∇f (x)
and ∆ynt = −(∇2g(y))−1∇g(y)
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Unconstrained optimization (4)

Line search
Given point x and a descent direction ∆x ,

line search is the problem of choosing the value t ∈ R
for generating the next point x+ = x + t∆x

Goal: choose t so that f (x+) is small.

Exact line search

Choose t = argmin{f (x + t∆x) | t ∈ R}

Backtracking line search (trades off thoroughness for speed)

Pick α and β with α < 1/2 and 0 < β < 1; initialize t := 1

While f (x + t∆x) > f (x) + αt∇f (x)∆x
do t := βt
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Recall, recall, recall (1): the logarithmic barrier

• Indicator function I−(u) =

{
0 if u ≤ 0
∞ otherwise

• Approximate indicator function Î−(u) =

{
− 1

t log(−u) if u < 0
∞ otherwise

• Î−(u): convex; non-decreasing; differentiable; closed sublevel sets

• The problem min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b} can be
approximated by min{f0(x) + 1

t φ(x) | Ax = b}

• Logarithmic barrier φ(x) :=
∑r

i=1− log(−fi (x))

• Central path x∗(t) := argmin{f0(x) + 1
t φ(x) | Ax = b}

• As t →∞, the central path leads to the optimum

GJ Woeginger Non-linear Optimization (2DME20), lecture 6 38/41



Recall, recall, recall (2): the barrier method

In order to approximate p∗ = min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b}
within error ε > 0, it suffices to solve the unconstrained problem

y∗(t) = argmin{f0(Wy + v) +
1
t
φ(Wy + v)}

with t = r/ε.

The barrier method

Given a strictly feasible y = y (0) and t = t(0) > 0, do
1 compute y∗(t), starting the solution algorithm with y (centering)
2 put y ← y∗(t) (update)
3 if r/t < ε then quit; else put t ← µt and repeat (increase)

The centering step uses the Newton method
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Recall, recall, recall (3): the barrier method

Example: Linear programming

min{cT x | aT
i x ≤ bi , i = 1, . . . , r}

The logarithmic barrier for this problem is

φ(x) =
r∑

i=1

− log(bi − aT
i x)

Then

tf0(x) + φ(x) = tcT x +
∑

i

− log(bi − aT
i x)
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Homework 6b

Read the following sections in Boyd & Vandenberghe
3.6.2, 5.1–5.3, 5.9

Recommended exercises (Boyd & Vandenberghe):
3.20, 3.22, 3.60; 5.12, 5.39, 5.42, 5.43

Attention!
Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):
• all lectures and instructions in flux 1.06

• tuesday: 1+2 instructions; 3+4 lecture
• friday: 5+6 lecture
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