Non-linear Optimization (2DME20), lecture 6

Gerhard Woeginger

Technische Universiteit Eindhoven

Fall 2015, Q1

Program for this week

- Some convex programs (second-order cone; semi-definite)
- Cones, dual cones, proper cones
- Generalized inequalities
- Convex functions (generalized)
- Lagrangian duality (generalized)
- Convex Lagrangian duality (generalized)
- Descent methods for unconstrained optimization

Recall, recall, recall (1)

Non-linear (continuous) optimization problem

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0 & i=1, \ldots, r \\
& h_{i}(x)=0 & i=1, \ldots, s \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} &
\end{array}
$$

- necessary optimality condition (KKT conditions)
- no proper duality theorem (duality gap)
- interior point algorithms that find locally optimal solution
... in an unknown amount of time
- Virtually any problem can be cast as a nonlinear optimization problem

Recall, recall, recall (2)

Convex (continuous) optimization problem

f_{0}, \ldots, f_{r} are convex and h_{1}, \ldots, h_{s} are affine

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \leq 0 & i=1, \ldots, r \\
& h_{i}(x)=0 & i=1, \ldots, s \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} &
\end{array}
$$

- necessary and sufficient optimality condition (KKT conditions)
- duality theorem (no duality gap)
- interior point algorithms that find globally optimal solution

More convex problems (1)

Least-squares

For matrix A and vector b solve

$$
\begin{array}{ll}
\operatorname{minimize} & \|A x-b\|^{2} \\
\text { subject to } & x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
\end{array}
$$

- necessary and sufficient optimality condition
- closed-form solution $x^{*}=\left(A^{T} A\right)^{-1} A^{T} b$
- finding an optimal solution is no harder than solving linear equations

Applications:
regression analysis, optimal control, parameter estimation, data fitting

More convex problems (2)

Linear programming

For matrix A and vectors b, c solve

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
\end{array}
$$

- necessary and sufficient optimality condition
- duality theorem
- simplex algorithm finds optimal solution
- interior point algorithm approximates a solution efficiently

More convex problems (3)

Second-order cone optimization

For matrices A_{1}, \ldots, A_{r}, vectors $b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{r}$, reals d_{1}, \ldots, d_{r}, for matrix F, and vectors f, g solve

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i} \quad i=1, \ldots, r \\
& F x=g \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
\end{array}
$$

- generalizes least-squares
- generalizes linear programming
- solved efficiently by interior point method

Example

Second-order cone constraint: $\left\|[x, y]^{T}\right\| \leq 2 x$

More convex problems (4)

Semi-definite optimization

For matrices A_{0}, \ldots, A_{n} and vector c, solve

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0 \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
\end{array}
$$

- generalizes second-order cone optimization (and hence least-squares and linear programming)
- solved efficiently by interior point method

Applications:

- stability of dynamical systems,
- fitting a maximum-volume ellipsoid inside a polyhedron,
- minimizing a univariate polynomial

Recall from linear algebra (1)

Definition

The inner product of two matrices $A, B \in S^{n}$ is

$$
\langle A, B\rangle:=\sum_{i} \sum_{j} A_{i j} B_{i j} .
$$

As usual for the inner product

- $\langle A, B\rangle=\langle B, A\rangle$
- $\langle\alpha A+\beta B, C\rangle=\alpha\langle A, C\rangle+\beta\langle B, C\rangle$

Definition

The trace of a square matrix A is $\operatorname{tr}(A):=\sum_{i} A_{i i}$.
Note that $\langle A, B\rangle=\operatorname{tr}\left(A B^{T}\right)$. The latter is used throughout in the book. Hence $\operatorname{tr}((\alpha A+\beta B) C)=\alpha \operatorname{tr}(A C)+\beta \operatorname{tr}(B C)$, etc.

Recall from linear algebra (2)

As a linear space, S^{n} is isomorphic to $\mathbb{R}^{n(n+1) / 2}$.

An affine subspace L in S^{n} can be given by linear equations as

$$
L=\left\{X \in S^{n} \mid \operatorname{tr}\left(A_{1} X\right)=b_{1}, \ldots, \operatorname{tr}\left(A_{m} X\right)=b_{m}\right\}
$$

or alternatively as

$$
L=\left\{F_{0}+x_{1} F_{1}+\cdots+x_{k} F_{k} \mid x_{1}, \ldots, x_{k} \in \mathbb{R}\right\} .
$$

Note that if $A, B \in S_{+}^{n}$, then $\operatorname{tr}(A B) \geq 0$. Actually:

Lemma

Let $A \in S^{n}$. Then $A \in S_{+}^{n}$ if and only if $\operatorname{tr}(A B) \geq 0$ for all $B \in S_{+}^{n}$.

More about cones (1)

A set $K \subseteq \mathbb{R}^{n}$ is a cone, if $\alpha x+\beta y \in K$ for all $x, y \in K$ and all $\alpha, \beta \geq 0$.

Definition

The dual cone for K is

$$
K^{*}:=\left\{y \in \mathbb{R}^{n} \mid x^{\top} y \geq 0 \text { for all } x \in K\right\}
$$

So $y \in K^{*}$ if and only if $\left\{x \mid y^{\top} x<0\right\} \cap K=\emptyset$
Note that

- $K_{1} \subseteq K_{2}$ implies $K_{2}^{*} \subseteq K_{1}^{*}$
- K^{*} is closed
- If K is closed then $K^{* *}=K$

More about cones (2)

Example

For a subspace $L \subseteq \mathbb{R}^{n}$, the dual cone L^{*} is the orthogonal complement $\left\{y \mid x^{\top} y=0\right.$ for all $\left.x \in L\right\}$.

Example

The following cones happen to be self-dual.

- $\left(\mathbb{R}_{+}^{n}\right)^{*}=\mathbb{R}_{+}^{n}$
- $\left(L^{n}\right)^{*}=L^{n}$
- $\left(S_{+}^{n}\right)^{*}=S_{+}^{n}$

More about cones (3)

Definition

A cone $K \subseteq \mathbb{R}^{n}$ is proper if

- K is closed
- K is solid (that is, K has non-empty interior)
- K does not fully contain any line ($x \in K$ and $-x \in K$ imply $x=0$)

Example

- the nonnegative orthant \mathbb{R}_{+}^{n} is a proper cone
- the Lorentz cone L^{n+1} is a proper cone
- the cone S_{+}^{n} of PSD matrices is a proper cone
- the cone P^{n} of nonnegative polynomials of degree n is proper:

$$
P^{n}=\left\{\left(p_{0}, \ldots, p_{n}\right) \mid 0 \leq p_{0}+p_{1} x+\cdots+p_{n} x^{n} \text { for all } x \in \mathbb{R}\right\}
$$

Generalized inequalities (1)

Definition

Every proper cone $K \subseteq \mathbb{R}^{n}$ determines a generalized inequality \preceq_{K} and a generalized strict inequality \prec_{K} :

For all $x, y \in \mathbb{R}^{n}: \quad x \preceq \kappa y \Longleftrightarrow y-x \in K$
For all $x, y \in \mathbb{R}^{n}: \quad x \prec_{k} y \Longleftrightarrow y-x \in \operatorname{int} K$

Example

The nonnegative orthant \mathbb{R}_{+}^{n} yields componentwise inequality

Example

The cone S_{+}^{n} of PSD matrices yields the usual matrix inequality

$$
X \preceq Y \Longleftrightarrow Y-X \succeq 0
$$

$$
X \prec Y \Longleftrightarrow Y-X \succ 0
$$

Generalized inequalities (2)

Some useful properties:

- Since K is a cone, relation \preceq_{K} is transitive: if $x \preceq_{K} y$ and $y \preceq_{K} z$ then $x \preceq_{K} z$
- Since K does not fully contain a line, relation \preceq_{K} has antisymmetry: if $x \preceq_{k} y$ and $y \preceq_{k} x$ then $x=y$
- \preceq_{K} is reflexive: $x \preceq_{K} x$
- Relation \preceq_{K} is preserved under addition: if $x \preceq_{K} y$ and $u \preceq_{K} v$ then $x+u \preceq_{K} y+v$
- Relation \preceq_{K} is preserved under positive scaling: if $x \preceq_{k} y$ and $\alpha \in \mathbb{R}^{+}$then $\alpha x \preceq_{k} \alpha y$

Generalized inequalities (3)

Observation

By definition of the dual cone K^{*}, we have:

- if $x \succeq_{K} 0$ and $y \succeq_{K^{*}} 0$ then $y^{\top} x \geq 0$
- $x \preceq \kappa y$ if and only if $z^{T} x<z^{T} y$ for all $z \succeq K^{*} 0$

Theorem of alternatives \& generalized inequalities (1)

Theorem

Let A be an $m \times n$ matrix, let $b \in \mathbb{R}^{m}$, and let $K \subseteq \mathbb{R}^{m}$ be a proper cone. Then exactly one of the following two alternatives holds:
(1) There exists a vector $x \in \mathbb{R}^{n}$ such that $A x \prec_{k} b$
(2) There exists a non-zero $y \succeq_{K^{*}} 0$ such that $y^{\top} A=0$ and $y^{\top} b \leq 0$

- If (1) does not hold, then $\left\{b-A x \mid x \in \mathbb{R}^{n}\right\}$ and int K disjoint
- Separating hyperplane:

$$
y^{\top}(b-A x) \leq \mu \text { for all } x, \text { and } y^{\top} z \geq \mu \text { for all } z \in \operatorname{int} K
$$

- Then $\mu \leq 0$ and $y \in K^{*}$, and hence (2)
- If (2) does hold, then (1) cannot hold:
- Otherwise $b-A x \succ_{K} 0$ and $y \succeq_{K^{*}} 0$ imply $y^{\top}(b-A x)>0$ But $y^{\top} b \leq 0$ and $y^{\top} A=0$ imply $y^{\top}(b-A x) \leq 0$

Theorem of alternatives \& generalized inequalities (2)

Example

Does there exist a number $x \in \mathbb{R}$ so that

$$
x\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \preceq\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]
$$

Consider the matrix $Y=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \succeq 0$ with

- $\operatorname{tr}\left(Y\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)=0$
- $\operatorname{tr}\left(Y\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]\right)=-1$

If x were a feasible solution, then

$$
0 \leq \operatorname{tr}\left(Y\left(\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]-x\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)\right)=-1-x \cdot 0
$$

Homework 6a

Read the following sections in Boyd \& Vandenberghe 1, 2.4-2.6, 4.1-4.4, 4.6

Recommended exercises (Boyd \& Vandenberghe):
4.8, 4.10, 4.11; 5.6; 2.30, 2.31, 2.32, 2.33, 2.35;

Attention!

Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):

- all lectures and instructions in flux 1.06
- tuesday: $1+2$ instructions; $3+4$ lecture
- friday: $5+6$ lecture

Convex functions \& generalized inequalities (1)

Let $K \subseteq \mathbb{R}^{m}$ be a proper cone.

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is K-convex if

$$
f(\alpha x+\beta y) \preceq k \quad \alpha f(x)+\beta f(y)
$$

for all $x, y \in \mathbb{R}^{n}$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.
If $K=\mathbb{R}_{+}^{m}$, then f is K-convex
if and only if each component f_{i} is a convex function

Theorem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then f is K-convex if and only if

$$
g(x):=z^{T} f(x)
$$

is convex (in the ordinary one-dimensional sense) for each $z \in K^{*}$.

Convex functions \& generalized inequalities (2)

Example

For $A_{0}, \ldots, A_{n} \in S^{m}$, the function $f: \mathbb{R}^{n} \rightarrow S^{m}$ such that

$$
f: x \mapsto A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}
$$

is affine, and hence is S_{+}^{m}-convex.

Example

The function $f: \mathbb{R}^{n \times m} \rightarrow S^{n}$ such that

$$
f: X \mapsto X X^{T}
$$

is S_{+}^{n}-convex.

Conic optimization (1)

Basic scenario:

- Let $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k_{i}}$, where $i=1, \ldots, r$
- Let $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $i=1, \ldots, s$
- Let K_{1}, \ldots, K_{r} be proper cones, where $K_{i} \subseteq \mathbb{R}^{k_{i}}$

Basic optimization problem

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \preceq k_{i} 0 & i=1, \ldots, r \\
& h_{i}(x)=0 & i=1, \ldots, s
\end{array}
$$

If every K_{i} is the nonnegative orthant $\mathbb{R}_{+}^{k_{i}}$ then we are back to the scenario discussed in week 3.

Conic optimization (2)

Besides the classical nonnegative orthant cone, the most important cones in conic optimization are:

- the Lorentz cone $L^{n+1}=\left\{(x, t) \mid x \in \mathbb{R}^{n}, t \in \mathbb{R},\|x\| \leq t\right\}$
- the cone S_{+}^{n} of positive semi-definite matrices

Example

The second-order cone optimization problem

$$
\min x \quad \text { subject to }[x-y, 1, x+y]^{T} \succeq L^{3} 0
$$

is equivalent to
$\min x$ subject to $4 x y \geq 1$ and $x+y \geq 0$

Compare the material on the following slides to our discussion of Lagrangian duality in week 3

Lagrangian duality (1)

minimize $f_{0}(x)$
subject to $\quad f_{i}(x) \preceq k_{i} 0 \quad i=1, \ldots, r$

$$
h_{i}(x)=0 \quad i=1, \ldots, s
$$

Definition

The Lagrangian $L(x, \lambda, \mu)=f_{0}(x)+\sum_{i=1}^{r} \lambda_{i}^{T} f_{i}(x)+\sum_{i=1}^{s} \mu_{i} h_{i}(x)$

Lemma

If $\lambda_{i} \in K_{i}^{*}$ for each i, then

$$
f_{0}(x) \geq L(x, \lambda, \mu)
$$

for any x such that all $f_{i}(x) \preceq \kappa_{i} 0$ and $h_{i}(x)=0$.

Lagrangian duality (2)

Let $p^{*}:=$

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \preceq k_{i} 0 & i=1, \ldots, r \\
& h_{i}(x)=0 & i=1, \ldots, s
\end{array}
$$

The Lagrange dual function of this problem is:

$$
g(\lambda, \mu):=\min _{x} L(x, \lambda, \mu)
$$

Lemma

If $\lambda_{i} \in K_{i}^{*}$ for each i, then

$$
p^{*} \geq g(\lambda, \mu)
$$

Lagrangian duality (3)

Consider the (primal) problem

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \preceq \kappa_{i} 0 & i=1, \ldots, r \\
& h_{i}(x)=0 & i=1, \ldots, s
\end{array}
$$

with value p^{*}.
Its Lagrange dual is the problem

$$
\begin{array}{ll}
\operatorname{maximize} & g(\lambda, \mu) \\
\text { subject to } & \lambda_{i} \in K_{i}^{*} \quad i=1, \ldots, r
\end{array}
$$

with value d^{*}.

Lemma

We have $p^{*} \geq d^{*}$.

Lagrangian duality (4a)

Example

The second-order cone optimization problem $\min y$ subject to $[x, y, x]^{T} \succeq L^{3} 0$
is equivalent to

$$
\min y \text { subject to } y=0 \text { and } x \geq 0
$$

The Lagrangian is the function $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
L(x, y, \lambda)=y+\lambda\left(x-\sqrt{x^{2}+y^{2}}\right)
$$

The Lagrange dual function is $g(\lambda)=-\infty$.
Hence $p^{*}=0$ and $d^{*}=-\infty$

Lagrangian duality (4b)

Example

The semi-definite optimization problem

$$
\min y \text { subject to }\left[\begin{array}{ccc}
1+y & 0 & 0 \\
0 & x & y \\
0 & y & 0
\end{array}\right] \succeq_{s_{+}^{3}} 0
$$

is equivalent to

$$
\min y \text { subject to } x \geq 0 \text { and } y=0
$$

The Lagrangian is the function $L: \mathbb{R}^{2} \times S^{3} \rightarrow \mathbb{R}$ given by

$$
L(x, y, Z)=y-\operatorname{tr}\left(Z\left[\begin{array}{ccc}
1+y & 0 & 0 \\
0 & x & y \\
0 & y & 0
\end{array}\right]\right)
$$

The dual function is $g(Z)=\left\{\begin{array}{cl}-z_{11} & \text { if } z_{22}=0 \text { and } z_{11}+2 z_{23}=1 \\ -\infty & \text { otherwise }\end{array}\right.$
So the dual is max $-z_{11}$ subject to $z_{22}=0, \quad z_{11}+2 z_{23}=1, Z \succeq 0$.

Conic convex Lagrangian duality (1)

Let $p^{*}:=$

$$
\begin{array}{lll}
\operatorname{minimize} & f_{0}(x) & \\
\text { subject to } & f_{i}(x) \preceq K_{i} 0 & i=1, \ldots, r \\
& h_{i}(x)=0 & i=1, \ldots, s
\end{array}
$$

and $d^{*}:=$

$$
\begin{array}{ll}
\operatorname{maximize} & g(\lambda, \mu) \\
\text { subject to } & \lambda_{i} \in K_{i}^{*} \quad i=1, \ldots, r
\end{array}
$$

Theorem (strong duality for convex optimization)

Suppose (convex program) and (Slater's condition is satisfied):

- f_{0} convex; f_{i} is K_{i}-convex; and h_{1}, \ldots, h_{s} are affine
- $\exists y$: $f_{i}(y) \prec_{k_{i}} 0$ for $i=1, \ldots, r$, and

$$
h_{i}(y)=0 \text { for } i=1, \ldots, s
$$

Then $p^{*}=d^{*}$.

Conic convex Lagrangian duality (2)

Assume $s=0$.
Sketch of proof (strong duality for convex optimization)
Consider $\mathcal{A}:=\left\{\left.\left[\begin{array}{l}u \\ t\end{array}\right] \right\rvert\, \exists x: f_{i}(x) \preceq \kappa_{i} u_{i}, i=1, \ldots, r, f_{0}(x) \leq t\right\}$.

- \mathcal{A} is a convex set
- $p^{*}=\min \left\{t \left\lvert\,\left[\begin{array}{l}0 \\ t\end{array}\right] \in \mathcal{A}\right.\right\}$
- some hyperplane supports \mathcal{A} at $\left(0, p^{*}\right)$; say

$$
\left[\begin{array}{l}
\lambda^{*} \\
\mu^{*}
\end{array}\right]^{T}\left[\begin{array}{c}
u \\
t
\end{array}\right] \geq \alpha \text { for }\left[\begin{array}{c}
u \\
t
\end{array}\right] \in \mathcal{A} ; \quad\left[\begin{array}{l}
\lambda^{*} \\
\mu^{*}
\end{array}\right]^{T}\left[\begin{array}{c}
0 \\
p^{*}
\end{array}\right]=\alpha
$$

- $\mu^{*} \geq 0, \lambda_{i} \in K_{i}^{*}$
- If $\mu^{*}=0$, then $0>\sum_{i}\left(\lambda_{i}^{*}\right)^{T} f_{i}(y) \geq \alpha=0$; contradiction.
- If $\mu^{*}>0$, then $g\left(\lambda^{*} / \mu^{*}\right)=p^{*}$.

Duality examples (1)

Semi-definite optimization

Consider the semi-definite optimization problem

$$
\min \left\{c^{T} x \mid A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \preceq 0\right\}
$$

The Lagrangian is the function $L: \mathbb{R}^{n} \times S^{k} \rightarrow \mathbb{R}$ given by

$$
L(x, Z)=c^{T} x+\operatorname{tr}\left(Z\left(A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)\right)
$$

The Lagrange dual function is

$$
g(Z)=\min _{x} L(x, Z)=\left\{\begin{aligned}
\operatorname{tr}\left(Z A_{0}\right) & \text { if } \operatorname{tr}\left(Z A_{i}\right)+c_{i}=0 \text { for all } i \geq 1 \\
-\infty & \text { otherwise }
\end{aligned}\right.
$$

So the dual is

$$
\max \left\{\operatorname{tr}\left(Z A_{0}\right) \mid Z \succeq 0, \operatorname{tr}\left(Z A_{i}\right)+c_{i}=0 \text { for all } i \geq 1\right\}
$$

We have strong duality.

Duality examples (2)

Cone program in standard form

For a proper cone $K \subseteq \mathbb{R}^{n}$, consider the cone program

$$
\min \left\{c^{\top} x \mid A x=b, x \succeq_{K} 0\right\}
$$

The Lagrangian is

$$
L(x, \lambda, \mu)=c^{T} x-\lambda^{T} x+\mu^{T}(b-A x)
$$

The Lagrange dual function is

$$
g(\lambda, \mu)=\min _{x} L(x, \lambda, \mu)= \begin{cases}\mu^{T} b & \text { if } c^{T}=\mu^{T} A+\lambda^{T} \\ -\infty & \text { otherwise }\end{cases}
$$

So the dual is

$$
\max \left\{\mu^{T} b \mid A^{T} \mu+\lambda=c, \lambda \succeq{K^{*}}^{0} 0\right\}
$$

We have strong duality.

Duality examples (3)

Second-order cone optimization

Consider the second-order cone optimization problem

$$
\min \left\{f^{T} x \mid\left\|A_{i} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, r\right\}
$$

The Lagrangian is given by

$$
L\left(x, \lambda, u_{1}, \ldots, u_{r}\right)=f^{T} x+\sum u_{i}^{T}\left(A_{i} x+b_{i}\right)-\lambda_{i}\left(c_{i}^{T} x+d_{i}\right)
$$

The dual is (see Exercise 5.43)

$$
\max \left\{d^{T} \lambda+\sum u_{i}^{T} b_{i} \mid \sum A_{i}^{T} u_{i}+\lambda_{i} c_{i}+f=0,\left\|u_{i}\right\| \leq \lambda_{i}, \text { for } i \geq 1\right\}
$$

We have strong duality.

Unconstrained optimization (1)

Unconstrained convex minimization problem

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex and twice differentiable function, and consider the problem minimize $f(x)$

As f is convex and differentiable,

$$
f\left(x^{*}\right)=\min _{x} f(x) \Longleftrightarrow \nabla f\left(x^{*}\right)=0
$$

Sometimes, the latter equation may be solved analytically:

Example

The quadratic convex function $f(x)=\frac{1}{2} x^{\top} A x+b^{T} x+c$ has the minimizer x^{*} with $A x^{*}+b=\nabla f\left(x^{*}\right)=0$.

Unconstrained optimization (2)

Iterative algorithms

An iterative algorithm for the optimization problem $p^{*}=\min _{x} f(x)$ generates a sequence $x^{(0)}, x^{(1)}, \ldots$ of points, so that $f\left(x^{(k)}\right) \rightarrow p^{*}$ as $k \rightarrow \infty$.

In the k-th step, a typical iterative algorithm

- chooses a search direction $\Delta x^{(k)} \in \mathbb{R}^{n}$
- chooses a step size $t^{(k)} \in \mathbb{R}$
- puts $x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)}$

Definition

The search direction Δx is a descent direction if $(\nabla f(x))^{T} \Delta x<0$.

Then there exists a t so that $f(x+t \Delta x)<f(x)$.

Unconstrained optimization (3)

Example

Examples of descent directions are

- $\Delta x_{g d}=-\nabla f(x)$
- $\Delta x_{s d}=\arg \min \left\{(\nabla f(x))^{T} v \mid\|v\| \leq 1\right\}$
- $\Delta x_{n t}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$
(gradient descent)
(steepest descent)
(Newton descent)

The Newton direction is affine-invariant:
If we set $g(y)=f(A y)$, then for $x=A y$ we have $\Delta_{n t} x=A^{T} \Delta_{n t} y$ where $\Delta x_{n t}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$ and $\Delta y_{n t}=-\left(\nabla^{2} g(y)\right)^{-1} \nabla g(y)$

Unconstrained optimization (4)

Line search

Given point x and a descent direction Δx, line search is the problem of choosing the value $t \in \mathbb{R}$ for generating the next point $x^{+}=x+t \Delta x$

Goal: choose t so that $f\left(x^{+}\right)$is small.

Exact line search

Choose $t=\arg \min \{f(x+t \Delta x) \mid t \in \mathbb{R}\}$
Backtracking line search (trades off thoroughness for speed)
Pick α and β with $\alpha<1 / 2$ and $0<\beta<1$; initialize $t:=1$
While $f(x+t \Delta x)>f(x)+\alpha t \nabla f(x) \Delta x$
do $t:=\beta t$

Recall, recall, recall (1): the logarithmic barrier

- Indicator function $I_{-}(u)= \begin{cases}0 & \text { if } u \leq 0 \\ \infty & \text { otherwise }\end{cases}$
- Approximate indicator function $\widehat{I}_{-}(u)=\left\{\begin{array}{cl}-\frac{1}{t} \log (-u) & \text { if } u<0 \\ \infty & \text { otherwise }\end{array}\right.$
- $\hat{I}_{-}(u)$: convex; non-decreasing; differentiable; closed sublevel sets
- The problem $\min \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1 \ldots, r, A x=b\right\}$ can be approximated by $\min \left\{\left.f_{0}(x)+\frac{1}{t} \phi(x) \right\rvert\, A x=b\right\}$
- Logarithmic barrier $\phi(x):=\sum_{i=1}^{r}-\log \left(-f_{i}(x)\right)$
- Central path $x^{*}(t):=\arg \min \left\{\left.f_{0}(x)+\frac{1}{t} \phi(x) \right\rvert\, A x=b\right\}$
- As $t \rightarrow \infty$, the central path leads to the optimum

Recall, recall, recall (2): the barrier method

In order to approximate $p^{*}=\min \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1 \ldots, r, A x=b\right\}$ within error $\varepsilon>0$, it suffices to solve the unconstrained problem

$$
y^{*}(t)=\arg \min \left\{f_{0}\left(W_{y}+v\right)+\frac{1}{t} \phi\left(W_{y}+v\right)\right\}
$$

with $t=r / \varepsilon$.

The barrier method

Given a strictly feasible $y=y^{(0)}$ and $t=t^{(0)}>0$, do
(3) compute $y^{*}(t)$, starting the solution algorithm with y (centering)
(c) put $y \leftarrow y^{*}(t)$ (update)
(3) if $r / t<\varepsilon$ then quit; else put $t \leftarrow \mu t$ and repeat

The centering step uses the Newton method

Recall, recall, recall (3): the barrier method

Example: Linear programming

$$
\min \left\{c^{T} x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, r\right\}
$$

The logarithmic barrier for this problem is

$$
\phi(x)=\sum_{i=1}^{r}-\log \left(b_{i}-a_{i}^{T} x\right)
$$

Then

$$
t f_{0}(x)+\phi(x)=t c^{T} x+\sum_{i}-\log \left(b_{i}-a_{i}^{T} x\right)
$$

Homework 6b

Read the following sections in Boyd \& Vandenberghe 3.6.2, 5.1-5.3, 5.9

Recommended exercises (Boyd \& Vandenberghe):
3.20, 3.22, 3.60; 5.12, 5.39, 5.42, 5.43

Attention!

Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):

- all lectures and instructions in flux 1.06
- tuesday: $1+2$ instructions; $3+4$ lecture
- friday: 5+6 lecture

