Non-linear Optimization (2DME20), lecture 7

Gerhard Woeginger

Technische Universiteit Eindhoven

Fall 2015, Q1

Program for this week

- Self-concordant functions
- Generalized logarithms
- The Newton method for self-concordant functions
- The barrier method for self-concordant functions
- Second-order cone optimization
- Semi-definite programming

Recall, recall (1): the logarithmic barrier

- Indicator function $I_{-}(u)= \begin{cases}0 & \text { if } u \leq 0 \\ \infty & \text { otherwise }\end{cases}$
- Approximate indicator function $\widehat{I}_{-}(u)=\left\{\begin{array}{cl}-\frac{1}{t} \log (-u) & \text { if } u<0 \\ \infty & \text { otherwise }\end{array}\right.$
- $\hat{I}_{-}(u)$: convex; non-decreasing; differentiable; closed sublevel sets
- The problem $\min \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1 \ldots, r, A x=b\right\}$ can be approximated by $\min \left\{\left.f_{0}(x)+\frac{1}{t} \phi(x) \right\rvert\, A x=b\right\}$
- Logarithmic barrier $\phi(x):=\sum_{i=1}^{r}-\log \left(-f_{i}(x)\right)$
- Central path $x^{*}(t):=\arg \min \left\{\left.f_{0}(x)+\frac{1}{t} \phi(x) \right\rvert\, A x=b\right\}$
- As $t \rightarrow \infty$, the central path leads to the optimum

Recall, recall (2): the barrier method

In order to approximate $p^{*}=\min \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1 \ldots, r, A x=b\right\}$ within error $\varepsilon>0$, it suffices to solve the unconstrained problem

$$
y^{*}(t)=\arg \min \left\{f_{0}(W y+v)+\frac{1}{t} \phi(W y+v)\right\}
$$

with $t=r / \varepsilon$.

The barrier method

Given a strictly feasible $y=y^{(0)}$ and $t=t^{(0)}>0$, do
(1) compute $y^{*}(t)$, starting the solution algorithm with y (centering)
(2) put $y \leftarrow y^{*}(t)$ (update)
(0) if $r / t<\varepsilon$ then quit; else put $t \leftarrow \mu t$ and repeat

The centering step uses the Newton method

Recall, recall (3): the barrier method

Example: Linear programming

$$
\min \left\{c^{\top} x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, r\right\}
$$

The logarithmic barrier for this problem is

$$
\phi(x)=\sum_{i=1}^{r}-\log \left(b_{i}-a_{i}^{T} x\right)
$$

Then

$$
t f_{0}(x)+\phi(x)=t c^{T} x+\sum_{i}-\log \left(b_{i}-a_{i}^{T} x\right)
$$

Self-concordant functions (1)

Definition

A convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}
$$

for all $x \in \operatorname{Dom}(f)$.
Note: This self-concordance condition is equivalent to (and motivated by)

$$
\left|\frac{d}{d t}\left(f^{\prime \prime}(t)^{-1 / 2}\right)\right| \leq 1
$$

Example

- $f(x)=-\log x$
- $f(x)=x \log x-\log x$

Self-concordant functions (2)

Self-concordance is affine-invariant:

Lemma

If f is self-concordant, then so is $g(y):=f(a y+b)$ for fixed $a, b \in \mathbb{R}$.

Definition

A convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is self-concordant if $g(t):=f(x+t v)$ is self-concordant for all $x, v \in \mathbb{R}^{n}$.

Self-concordant functions (3)

Lemma

- If f is self-concordant and $a \geq 1$, then of is self-concordant.
- If f_{1}, f_{2} are self-concordant, then $f_{1}+f_{2}$ is self-concordant.
- If f is self-concordant, then $f(A x+b)$ is self-concordant.

Example

- $f(x):=\sum_{i}-\log \left(b_{i}-a_{i}^{T} x\right)$ is self-concordant
- $f(X):=-\log \operatorname{det} X$ is self-concordant on S_{++}^{n}
- $f(x):=-\log \left(x^{T} P x+q^{T} x+r\right)$ is self-concordant if $P \preceq 0$

Generalized logarithms (1)

Let $K \subseteq \mathbb{R}^{9}$ be a proper cone.

Definition

A function $\psi: \mathbb{R}^{q} \rightarrow \mathbb{R}$ is a generalized logarithm for the cone K, if

- ψ is concave and twice continuously differentiable
- ψ has closed sublevel sets
- $\operatorname{Dom}(\psi)=\operatorname{int} K$, and $\nabla^{2} \psi(y) \prec 0$ for $y \in \operatorname{int} K$
- There exists a constant $\theta>0$, so that for all $y \succ_{K} 0$ and all $s>0$ $\psi(s y)=\psi(y)+\theta \log s$

The constant θ is called the degree of ψ.

Example

The function $\psi: x \mapsto \sum_{i=1}^{r} \log \left(x_{i}\right)$ is a generalized logarithm of degree r for the non-negative orthant cone \mathbb{R}_{+}^{r}.

Generalized logarithms (2)

Example

For the semi-definite cone S_{+}^{q} we have the generalized logarithm

$$
\psi(X):=\log \operatorname{det} X
$$

- The degree of ψ is q, since for all $s>0$

$$
\log \operatorname{det}(s X)=\log \operatorname{det} X+q \log s
$$

- (Boyd \& Vandenberghe, pp 641-642) The gradient of ψ at $X \in S_{++}^{n}$ is

$$
\nabla \psi(X)=X^{-1}
$$

- Moreover, $-\psi$ is self-concordant.

Generalized logarithms (3)

Lorentz cone $L^{q+1}=\left\{(x, t) \in \mathbb{R}^{q+1} \mid\|x\| \leq t, x \in \mathbb{R}^{q}, t \in \mathbb{R}\right\}$

Example

For the second-order cone L^{q+1} we have the generalized logarithm

$$
\psi(x, t)=\log \left(t^{2}-\|x\|^{2}\right)
$$

- The degree of ψ is 2 , since for all $s>0$

$$
\psi(s x, s t)=\log \left(s^{2}\left(t^{2}-\|x\|^{2}\right)\right)=\psi(x, t)+2 \log s
$$

- The gradient of ψ at (x, t) is

$$
\nabla_{x, t} \psi(x, t)=\frac{2}{t^{2}-\|x\|^{2}}\left(-x_{1}, \ldots,-x_{n}, t\right)
$$

- Moreover, $-\psi$ is self-concordant.

The Newton method on self-concordant functions (1)

Unconstrained scenario:
Given a convex, self-concordant $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we want to determine the value $p^{*}=\min _{x} f(x)$

Definition

The Newton decrement at x is $\lambda(x):=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}$

Lemma (Boyd \& Vandenberghe, pp 501-502)

If f is self-concordant and $\lambda(x)<0.68$, then $p^{*} \geq f(x)-\lambda(x)^{2}$.

The Newton method on self-concordant functions (2)

The Newton Algorithm

Given: a precision bound $\varepsilon>0$, and a starting point $x^{(0)}$
Initialize $k=0$
Repeat
(1) Determine $\Delta x^{(k)}=-\left(\nabla^{2} f\left(x^{(k)}\right)\right)^{-1} \nabla f\left(x^{(k)}\right)$
(2) Determine $t^{(k)}$ by backtracking line search
(0) Put $x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)}$ and $k \leftarrow k+1$.
until $\lambda(x)^{2} \leq \varepsilon$
So the Newton algorithm terminates with an ε-approximation of p^{*}.

The Newton method on self-concordant functions (3)

Theorem (Boyd \& Vandenberghe, pp 503-505)

There exist real numbers η, γ with $0<\eta \leq 1 / 4$ and $0<\gamma$,
so that the Newton search direction Δx, the value t found by backtracking line search, and the new point $x^{+}=x+t \Delta x$
satisfy the following statements:

- If $\lambda(x)>\eta$, then $f\left(x^{+}\right)<f(x)-\gamma$
- If $\lambda(x)<\eta$, then $2 \lambda\left(x^{+}\right) \leq(2 \lambda(x))^{2}$

Consequently, the Newton algorithm terminates after at most

$$
\frac{1}{\gamma}\left(f\left(x^{(0)}\right)-p^{*}\right)+\log _{2} \log _{2}(1 / \epsilon) \quad \text { iterations }
$$

Barrier method for self-concordant functions (1)

Minimization scenario under constraints:
$\min \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1 \ldots, r, A x=b\right\}$
Our next goal is to analyze the performance of the Newton method in the centering step of the barrier method

Assumptions

(1) the function $t f_{0}+\phi$ is self-concordant for every $t \geq t^{(0)}$
(2) the sublevel sets $\left\{x \in \mathbb{R}^{n} \mid f_{0}(x) \leq u, f_{i}(x) \leq 0, A x=b\right\}$ are bounded for any u

Barrier method for self-concordant functions (2)

In the centering step,
we move from point x (for value t) to point x^{+}(for value μt), and apply Newton to solve $x^{+}=\arg \min \{\mu t f(x)+\phi(x) \mid A x=b\}$

The number of iterations in the centering step is bounded by

$$
\frac{1}{\gamma}\left(t f_{0}(x)+\phi(x)-\mu t f_{0}\left(x^{+}\right)-\phi\left(x^{+}\right)\right)+\log _{2} \log _{2}(1 / \epsilon)
$$

Lemma (Boyd \& Vandenberghe, pp 590-592)

$$
t f_{0}(x)+\phi(x)-\mu t f_{0}\left(x^{+}\right)-\phi\left(x^{+}\right) \leq r(\mu-1-\log (\mu))
$$

By choosing $\mu=1+1 / \sqrt{r}$, the number of Newton iterations can be bounded by $O(\sqrt{r})$

Barrier method for self-concordant functions (3)

The barrier method also applies to problems

$$
\min \left\{f_{0}(x) \mid f_{i}(x) \preceq k_{i} 0, A x=b\right\}
$$

with generalized inequalities, by using

$$
\phi(x):=-\sum \psi_{i}\left(-f_{i}(x)\right)
$$

as barrier, where ψ_{i} is a generalized logarithm for K_{i} of degree θ_{i}.

- As before, we put $x^{*}(t)=\arg \min \left\{t f_{0}(x)+\phi(x) \mid A x=b\right\}$
- For $\nu^{*}(t)$ with $\nabla f_{0}\left(x^{*}(t)\right)+\nabla \phi\left(x^{*}(t)\right)+A^{T} \nu^{*}(t)=0$ and for $\lambda_{i}^{*}(t):=\frac{1}{t} \nabla \psi_{i}\left(-f_{i}\left(x^{*}(t)\right)\right)$ we then get

$$
g\left(\lambda^{*}(t), \nu^{*}(t)\right)=f_{0}\left(x^{*}(t)\right)-\frac{1}{t} \sum_{i} \theta_{i}
$$

- As before, the central path leads to the optimum

Homework 8

Read the following sections in Boyd \& Vandenberghe 9.1, 9.2, 9.5, 9.6; 11.1-11.6

Recommended exercises (Boyd \& Vandenberghe):
4.40, 4.43; 9.2, 9.13, 9.15; 11.3, 11.4, 11.5. 11.6, 11.15, 11.16

Attention!

Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):

- all lectures and instructions in flux 1.06
- tuesday: $1+2$ instructions; $3+4$ lecture
- friday: 5+6 lecture

Second-order cone optimization (SOCO)

- Lorentz cone $L^{n+1}=\left\{(x, t) \in \mathbb{R}^{n+1} \mid\|x\| \leq t, x \in \mathbb{R}^{n}, t \in \mathbb{R}\right\}$

Second-order cone optimization

For matrices A_{1}, \ldots, A_{r}, vectors $b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{r}$, reals d_{1}, \ldots, d_{r}, for matrix F, and vectors f, g solve

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i} \quad i=1, \ldots, r \\
& F x=g \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
\end{array}
$$

SOCO (1): Rotated second-order cone

Definition

The rotated second-order cone in \mathbb{R}^{n+2} is the set

$$
L_{r}^{n+2}:=\left\{(x, y, z) \mid x \in \mathbb{R}^{n}, y, z \in \mathbb{R}, x^{\top} x \leq 2 y z, y, z \geq 0\right\}
$$

- Note that $\|x\|^{2} \leq 2 y z$ and $y, z \geq 0$ is equivalent to

$$
\left\|\left[\begin{array}{c}
x \\
\frac{1}{\sqrt{2}}(y-z)
\end{array}\right]\right\| \leq \frac{1}{\sqrt{2}}(y+z)
$$

- In other words,
$(x, y, z) \in L_{r}^{n+2} \quad$ if and only if $\quad(x,(y-z) / \sqrt{2},(y+z) / \sqrt{2}) \in L^{n+2}$
- These two sets are related by a rotation matrix R :

$$
\left[\begin{array}{c}
x \\
\frac{1}{\sqrt{2}}(y-z) \\
\frac{1}{\sqrt{2}}(y+z)
\end{array}\right]=R \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { with } \quad R=\left[\begin{array}{ccc}
I_{n} & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

SOCO (2): Linear and convex quadratic constraints

For $s \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$, consider the linear constraint $s^{T} x \leq t$

For $A=0$ and $b=0$, this constraint is equivalent to $\|A x+b\| \leq t-s^{\top} x$

For $Q \in S_{+}^{n}, c \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$, consider the convex quadratic constraint $x^{\top} Q x+c^{\top} x \leq t$

For $Q=P^{T} P$, this constraint is equivalent to

$$
w=P x, \quad y=t-c^{T} x, \quad z=1 / 2, \quad \text { and } w^{T} w \leq 2 y z
$$

Observation

Linear programs \& convex quadratic programs are special cases of SOCO.

SOCO (3): Quadratic-over-linear

Example: Quadratic-over-linear problem

For matrices A_{1}, \ldots, A_{r}, for vectors $b_{1}, \ldots, b_{r}, c_{1}, \ldots, c_{r}$ and for numbers $d_{1}, \ldots, d_{r} \in \mathbb{R}$, consider the problem

$$
\min \left\{\left.\sum_{i=1}^{r} \frac{\left\|A_{i} x-b_{i}\right\|^{2}}{c_{i}^{T} x+d_{i}} \right\rvert\, c_{i}^{T} x+d_{i}>0 \text { for } i=1, \ldots, r\right\}
$$

$\operatorname{minimize} \quad \sum_{i=1}^{r} t_{i}$
subject to $\quad\left\|A_{i} x-b_{i}\right\|^{2} \leq\left(c_{i}^{\top} x+d_{i}\right) t_{i} \quad i=1, \ldots, r$

$$
c_{i}^{T} x+d_{i}>0 \quad i=1, \ldots, r
$$

minimize $\quad \sum_{i=1}^{r} t_{i}$

SOCO (4)

Example

For $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, determine $\min \left\{a^{T} x+b t \mid\|x\| \leq t, x \in \mathbb{R}^{n}, t \in \mathbb{R}\right\}$.

- If $\|a\| \leq b$, then $a^{T} x+b t \geq a^{T} x+\|a\|\|x\| \geq 0$ Hence opt $=0$, by choosing $x=0$ and $t=0$
- If $\|a\|>b$, then choose $x=-\gamma a$ and $t=\|x\|$ for $\gamma \in \mathbb{R}_{+}$.

Then $a^{T} x+b t=-\gamma a^{T} a+b \gamma\|a\|=\gamma\|a\|(-\|a\|+b)$. As $\gamma \rightarrow \infty$, the objective value goes to $-\infty$. Hence opt $=-\infty$.

Exercise

For $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, determine $\min \left\{a^{T} x+b\|x\| \mid x \in \mathbb{R}^{n}\right\}$.

Facility location

Example

A group of n remote communities wants to build a central warehouse. The location of the i th community is given by coordinates $\left(a_{i}, b_{i}\right)$. Goods will be delivered by plane from the warehouse to the communities, and the i th community needs d_{i} deliveries per month.
The goal is to locate the warehouse so that the total travel distance of all deliveries is minimized.

In other words: find a point $x=\left(a_{x}, b_{x}\right)$ that minimizes the objective value $\sum_{i} d_{i}\left\|\left(a_{x}, b_{x}\right)-\left(a_{i}, b_{i}\right)\right\|$

With real variables a_{x}, b_{x} and z_{i} for $i=1, \ldots, n$, this becomes minimize $\quad \sum_{i=1}^{n} d_{i} z_{i}$
subject to $\quad\left\|\left(a_{x}, b_{x}\right)-\left(a_{i}, b_{i}\right)\right\| \leq z_{i} \quad i=1, \ldots, n$

Semi-definite programming (SDP)

Semi-definite programming

For matrices A_{0}, \ldots, A_{n} and vector c, solve

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0 \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
\end{array}
$$

Recall, recall, recall (1)

Recall that $A \in S^{n}$ is positive semi-definite
if and only if each eigenvalue of A is ≥ 0
if and only if there is some real matrix Z such that $A=Z^{\top} Z$
if and only if $x^{\top} A x \geq 0$ for all $x \in \mathbb{R}^{n}$
Recall that $A \in S^{n}$ is positive semi-definite, if and only if $U^{T} A U$ with non-singular U is positive semi-definite

Recall that $A, B \in S^{n}$ are both positive semi-definite, if and only if $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ is positive semi-definite

Recall, recall, recall (2)

For a matrix $A \in S^{n}$ and an integer k with $1 \leq k \leq n$, a principal minor of order k is the determinant of a submatrix of A obtained by considering a k-element subset $J \subseteq\{1, \ldots, n\}$ of its rows and columns.

Lemma

$A \succeq 0$ if and only if for every k, the sum $S_{k}(A)$ of the principal minors of order k is non-negative.

Example

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1+x & x-y & x \\
x-y & 1-y & 0 \\
x & 0 & 1+y
\end{array}\right] \text { is positive semi-definite, if and only if }} \\
& S_{1}(A)=\operatorname{tr}(A)=x+3 \geq 0 \\
& S_{2}(A)=3+2 x+2 x y-2 x^{2}-2 y^{2} \geq 0 \\
& S_{3}(A)=\operatorname{det}(A)=1+x-2 x^{2}-2 y^{2}+2 x y+x y^{2}-y^{3} \geq 0
\end{aligned}
$$

SDP (1a): Linear programs

For matrix P and vectors q, r consider the linear program $\min \left\{q^{T} x \mid P x \leq r\right\}$

The ordinary affine inequalities $p_{i}^{T} x \leq r_{i}$ for $i=1, \ldots, m$ can be cast as a single semi-definite constraint $A(x) \succeq 0$

$$
\begin{aligned}
A(x) & =\operatorname{diag}\left(r_{1}-p_{1}^{T} x, \ldots, r_{m}-p_{m}^{T} x\right) \\
& =\left[\begin{array}{ccc}
r_{1}-p_{1}^{T} x & & \\
& \ddots & \\
& & r_{m}-p_{m}^{T} x
\end{array}\right] \succeq 0
\end{aligned}
$$

SDP (1b): Second-order cone constraints

Lemma

For a real number t, the second-order cone constraint $\|x\| \leq t$ is equivalent to

$$
\left[\begin{array}{cc}
t l & x \\
x^{T} & t
\end{array}\right] \succeq 0
$$

$t \cdot\left[\begin{array}{l}y \\ s\end{array}\right]^{T}\left[\begin{array}{cc}t l & x \\ x^{T} & t\end{array}\right]\left[\begin{array}{l}y \\ s\end{array}\right]=\|s x+t y\|^{2}+s^{2}\left(t^{2}-x^{T} x\right)$

- If $\|x\| \leq t$, then right hand side ≥ 0
- If $\|x\|>t$, then pick $y=x$ and $s=-t$

SDP (2): Eigenvalues

Example

For $A \in S^{n}$, show that $\min \left\{t \mid t I_{n}-A \succeq 0\right\}=\lambda_{\max }(A)$.

$$
\begin{aligned}
L(t, Z) & =t-\operatorname{tr}\left(Z\left(t I_{n}-A\right)\right)=t(1-\operatorname{tr} Z)+\operatorname{tr}(Z A) \\
g(Z) & =\left\{\begin{aligned}
\operatorname{tr}(Z A) & \text { if } \operatorname{tr} Z=1 \\
-\infty & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

Lagrange dual problem: $\max \{\operatorname{tr}(Z A) \mid \operatorname{tr} Z=1, Z \succeq 0\}$

Eigenvalue shift rule

For $A \in S^{n}$ and $t \in \mathbb{R}, \quad \lambda_{i}\left(A+t l_{n}\right)=\lambda_{i}(A)+t$ for $i=1, \ldots, n$

- $\lambda_{\max }(A)=\min \left\{t: \quad t I_{n} \succeq A\right\}$
- $\lambda_{\text {min }}(A)=\max \left\{t: A \succeq t I_{n}\right\}$

SDP (3a): Schur complement

Lemma (Schur complement)

For $A \in S_{++}^{n}, X \in \mathbb{R}^{n \times k}$ and $Y \in S^{k}$,

$$
Y-X^{T} A^{-1} X \succeq 0 \quad \text { if and only if }\left[\begin{array}{cc}
A & X \\
X^{T} & Y
\end{array}\right] \succeq 0
$$

(Note: left hand side quadratic in X; right hand side linear in X)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & 0 \\
0 & Y-X^{T} A^{-1} X
\end{array}\right]=} \\
& =\left[\begin{array}{cc}
I & 0 \\
-X^{T} A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & X \\
X^{\top} & Y
\end{array}\right]\left[\begin{array}{cc}
1 & -A^{-1} X \\
0 & I
\end{array}\right]
\end{aligned}
$$

- $Y-X^{T} A^{-1} X$ is the Schur complement of A in $\left[\begin{array}{cc}A & X \\ X^{T} & Y\end{array}\right]$

SDP (3b): Schur complement

For matrices $X, Y \in S^{n}$,
the constraint $X^{T} X \preceq Y$ is equivalent to $\left[\begin{array}{cc}I_{n} & X \\ X^{T} & Y\end{array}\right] \succeq 0$

For $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$, the constraint $x^{T} x \leq y$ is equivalent to $\left[\begin{array}{cc}I_{n} & x \\ x^{T} & y\end{array}\right] \succeq 0$

For $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$,
the constraint $x^{T} x \leq y^{2}$ is equivalent to $\left[\begin{array}{ll}y I_{n} & x \\ x^{T} & y\end{array}\right] \succeq 0$

SDP (4): Spectral norm

Definition

For a matrix A, the spectral norm is $\|A\|:=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$.

Lemma

Let $A \in \mathbb{R}^{n \times m}$ be a matrix and let $t>0$.
Then $\|A\| \leq t \quad$ if and only if $\left[\begin{array}{cc}t l & A \\ A^{T} & t l\end{array}\right] \succeq 0$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
t / & A \\
A^{T} & t l
\end{array}\right] \succeq 0 } \text { if and only if } \\
& \quad t I-A^{T}\left(\frac{1}{t} I\right) A \succeq 0 \\
& \text { if and only if } \\
& t^{2} I \succeq A^{T} A
\end{aligned}
$$

SDP (5): Finsler's lemma

Finsler's lemma

For $A \in S^{n}$ and $B \in \mathbb{R}^{m \times n}$, the following statements are equivalent:
(1) $x^{T} A x>0$ for all x with $B x=0$ and $x \neq 0$
(2) $B_{\perp}^{T} A B_{\perp} \succ 0$, where B_{\perp} is a matrix of maximum rank with $B B_{\perp}=0$ (that is, B_{\perp} contains by columns a basis for the null space of B)
(0) There exists $Y \in \mathbb{R}^{m \times n}$, such that $A+Y^{T} B+B^{T} Y \succ 0$

Minimizing a uni-variate polynomial (1)

We will see how to find the global minimum of a polynomial $p \in \mathbb{R}[x]$ by means of semi-definite optimization

Example

A quadratic polynomial $p(x)=a x^{2}+b x+c$
satisfies $p(x) \geq 0$ for all $x \in \mathbb{R}$ (in other words: p is PSD) if and only if $a \geq 0$ and $b^{2}-4 a c \leq 0$.
These conditions hold, if and only if $\left[\begin{array}{cc}c & b / 2 \\ b / 2 & a\end{array}\right] \succeq 0$
Similarly, one sees that $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \succeq 0$ implies that the polynomial
$p(x)=a+(b+d) x+(c+e+g) x^{2}+(f+h) x^{3}+i x^{4}$ is PSD.

Minimizing a uni-variate polynomial (2)

Theorem \#1

Let $p \in \mathbb{R}[x]$. Then p is positive semi-definite, if and only if there exist two polynomials $q, r \in \mathbb{R}[x]$ with $p=q^{2}+r^{2}$.

Theorem \#2

Let $d \geq 1$ be an integer, and let $c_{0}, \ldots, c_{2 d} \in \mathbb{R}$.
Then the polynomial $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{2 d} x^{2 d}$
is the sum of squares of several polynomials, if and only if there exists $A \in S_{+}^{d+1}$ such that $c_{k}=\sum_{i+j=k+2} a_{i j}$ for $k=0, \ldots, 2 d$.

For $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{2 d} x^{2 d}$, these theorems imply that

$$
\begin{aligned}
\min & \{p(x) \mid x \in \mathbb{R}\}= \\
& =\max \{t \mid p(x)-t \text { is positive semi-definite }\} \\
& =\max \{t \mid p(x)-t \text { is a sum of squares of polynomials }\} \\
& =\max \left\{c_{0}-a_{11} \mid \sum_{i+j=k+2} a_{i j}=c_{k} \text { for all } k \text { and }\left(a_{i j}\right) \in S_{+}^{d+1}\right\}
\end{aligned}
$$

Minimizing a uni-variate polynomial (3)

Proof of Theorem \#2

The polynomial $p(x)=c_{0}+c_{1} x+\cdots+c_{2 d} x^{2 d}$ is a sum of squares, if and only if $c_{k}=\sum_{i+j=k+2} a_{i j}$ holds for all k, with $\left(a_{i j}\right) \in S_{+}^{d+1}$.

- Assume that p is a sum of squares: $p(x)=\sum_{i=1}^{m} q_{i}(x)^{2}$ where $q_{i}(x)=z_{1, i}+z_{2, i} x+z_{3, i} x^{2}+\cdots+z_{d+1, i} x^{d}$ for $i=1, \ldots, m$
- Consider the $m \times(d+1)$ matrix $Z=\left(z_{i j}\right)$.

Then $A:=Z^{\top} Z$ is PSD with $c_{k}=\sum_{i+j=k+2} a_{i j}$

- Assume that there is a $(d+1) \times(d+1)$ matrix $A \succeq 0$ that satisfies $c_{k}=\sum_{i+j=k+2} a_{i j}$ for $k=0, \ldots, 2 d$.
- Then $A=Z^{T} Z$ for some matrix $Z=\left(z_{i j}\right)$.
- Define $q_{i}(x)=z_{1, i}+z_{2, i} x+z_{3, i} x^{2}+\cdots+z_{d+1, i} x^{d}$ for all i.
- Then $p(x)=\sum_{i=1}^{m} q_{i}(x)^{2}$

Minimizing a uni-variate polynomial (4)

Example

Consider the polynomial $p(x)=x^{4}-10 x^{3}+6 x^{2}+14 x+3$.

- Then $\min \{p(x) \mid x \in \mathbb{R}\}$ equals the maximum value of $3-a_{11}$ subject to the constraints

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \succeq 0 \text { and } \begin{aligned}
a_{12}+a_{21} & =14 \\
&
\end{aligned} \begin{aligned}
a_{13}+a_{22}+a_{31} & =6 \\
a_{23}+a_{32} & =-10 \\
a_{33} & =1
\end{aligned}
$$

- An optimal solution with objective value $3-a_{11}=-634$ is given by

$$
\left[\begin{array}{ccc}
637 & 7 & -14 \\
7 & 34 & -5 \\
-14 & -5 & 1
\end{array}\right] \succeq 0
$$

Minimizing a uni-variate polynomial (5)

Attention!

This approach for minimizing uni-variate polynomials does NOT generalize to polynomials in $k \geq 2$ variables.

Example

Consider the polynomial $p(x, y)=x^{2} y^{2}\left(x^{2}+y^{2}-3\right)+1$.

- Arithmetic-geometric mean inequality for three variables yields

$$
\frac{1}{3}\left(x^{2}+y^{2}+\frac{1}{x^{2} y^{2}}\right) \geq \sqrt[3]{x^{2} y^{2} \frac{1}{x^{2} y^{2}}}=1
$$

- If $p(x, y)=q_{1}(x, y)^{2}+q_{2}(x, y)^{2}+\cdots+q_{m}(x, y)^{2}$, then every $q_{i}(x, y)$ must be of the form $a+b x y+c x^{2} y+d x y^{2}$.
- Then the coefficient of $x^{2} y^{2}$ in $p(x, y)$ must be non-negative.

Question hour / Vraagenuur:
Tuesday, October 20, 9:45, laplace-gebouw -1.19

