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Program for this week

• Self-concordant functions
• Generalized logarithms
• The Newton method for self-concordant functions
• The barrier method for self-concordant functions

• Second-order cone optimization
• Semi-definite programming
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Recall, recall (1): the logarithmic barrier

• Indicator function I−(u) =

{
0 if u ≤ 0
∞ otherwise

• Approximate indicator function Î−(u) =

{
− 1

t log(−u) if u < 0
∞ otherwise

• Î−(u): convex; non-decreasing; differentiable; closed sublevel sets

• The problem min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b} can be
approximated by min{f0(x) + 1

t φ(x) | Ax = b}

• Logarithmic barrier φ(x) :=
∑r

i=1− log(−fi (x))

• Central path x∗(t) := argmin{f0(x) + 1
t φ(x) | Ax = b}

• As t →∞, the central path leads to the optimum
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Recall, recall (2): the barrier method

In order to approximate p∗ = min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b}
within error ε > 0, it suffices to solve the unconstrained problem

y∗(t) = argmin{f0(Wy + v) +
1
t
φ(Wy + v)}

with t = r/ε.

The barrier method

Given a strictly feasible y = y (0) and t = t(0) > 0, do
1 compute y∗(t), starting the solution algorithm with y (centering)
2 put y ← y∗(t) (update)
3 if r/t < ε then quit; else put t ← µt and repeat (increase)

The centering step uses the Newton method
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Recall, recall (3): the barrier method

Example: Linear programming

min{cT x | aT
i x ≤ bi , i = 1, . . . , r}

The logarithmic barrier for this problem is

φ(x) =
r∑

i=1

− log(bi − aT
i x)

Then

tf0(x) + φ(x) = tcT x +
∑

i

− log(bi − aT
i x)
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Self-concordant functions (1)

Definition
A convex function f : R→ R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2

for all x ∈ Dom(f ).

Note: This self-concordance condition is equivalent to (and motivated by)∣∣∣∣ ddt (f ′′(t)−1/2
)∣∣∣∣ ≤ 1

Example

f (x) = − log x
f (x) = x log x − log x
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Self-concordant functions (2)

Self-concordance is affine-invariant:

Lemma

If f is self-concordant, then so is g(y) := f (ay + b) for fixed a, b ∈ R.

Definition
A convex function f : Rn → R is self-concordant

if g(t) := f (x + tv) is self-concordant for all x , v ∈ Rn.
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Self-concordant functions (3)

Lemma
If f is self-concordant and a ≥ 1, then af is self-concordant.
If f1, f2 are self-concordant, then f1 + f2 is self-concordant.
If f is self-concordant, then f (Ax + b) is self-concordant.

Example

f (x) :=
∑

i − log(bi − aT
i x) is self-concordant

f (X ) := − log detX is self-concordant on Sn
++

f (x) := − log(xTPx + qT x + r) is self-concordant if P � 0
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Generalized logarithms (1)

Let K ⊆ Rq be a proper cone.

Definition
A function ψ : Rq → R is a generalized logarithm for the cone K , if

ψ is concave and twice continuously differentiable
ψ has closed sublevel sets
Dom(ψ) = intK , and ∇2ψ(y) ≺ 0 for y ∈ intK
There exists a constant θ > 0, so that for all y �K 0 and all s > 0
ψ(sy) = ψ(y) + θ log s

The constant θ is called the degree of ψ.

Example

The function ψ : x 7→
r∑

i=1

log(xi ) is a generalized logarithm of degree r

for the non-negative orthant cone Rr
+.
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Generalized logarithms (2)

Example

For the semi-definite cone Sq
+ we have the generalized logarithm

ψ(X ) := log detX

• The degree of ψ is q, since for all s > 0

log det(sX ) = log detX + q log s

• (Boyd & Vandenberghe, pp 641–642)
The gradient of ψ at X ∈ Sn

++ is

∇ψ(X ) = X−1

• Moreover, −ψ is self-concordant.
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Generalized logarithms (3)

Lorentz cone Lq+1 = {(x , t) ∈ Rq+1 | ‖x‖ ≤ t, x ∈ Rq, t ∈ R}

Example

For the second-order cone Lq+1 we have the generalized logarithm

ψ(x , t) = log(t2 − ‖x‖2)

• The degree of ψ is 2, since for all s > 0

ψ(sx , st) = log(s2(t2 − ‖x‖2)) = ψ(x , t) + 2 log s

• The gradient of ψ at (x , t) is

∇x,tψ(x , t) =
2

t2 − ‖x‖2
(−x1, . . . ,−xn, t)

• Moreover, −ψ is self-concordant.
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The Newton method on self-concordant functions (1)

Unconstrained scenario:
Given a convex, self-concordant f : Rn → R,
we want to determine the value p∗ = minx f (x)

Definition

The Newton decrement at x is λ(x) := (∇f (x)T∇2f (x)−1∇f (x))1/2

Lemma (Boyd & Vandenberghe, pp 501–502)

If f is self-concordant and λ(x) < 0.68, then p∗ ≥ f (x)− λ(x)2.
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The Newton method on self-concordant functions (2)

The Newton Algorithm

Given: a precision bound ε > 0, and a starting point x (0)

Initialize k = 0
Repeat

1 Determine ∆x (k) = −(∇2f (x (k)))−1∇f (x (k))
2 Determine t(k) by backtracking line search
3 Put x (k+1) = x (k) + t(k)∆x (k) and k ← k + 1.

until λ(x)2 ≤ ε

So the Newton algorithm terminates with an ε-approximation of p∗.

GJ Woeginger Non-linear Optimization (2DME20), lecture 7 13/40



The Newton method on self-concordant functions (3)

Theorem (Boyd & Vandenberghe, pp 503–505)

There exist real numbers η, γ with 0 < η ≤ 1/4 and 0 < γ,
so that the Newton search direction ∆x ,
the value t found by backtracking line search,
and the new point x+ = x + t∆x

satisfy the following statements:

If λ(x) > η, then f (x+) < f (x)− γ
If λ(x) < η, then 2λ(x+) ≤ (2λ(x))2

Consequently, the Newton algorithm terminates after at most
1
γ

(
f (x (0))− p∗

)
+ log2 log2(1/ε) iterations
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Barrier method for self-concordant functions (1)

Minimization scenario under constraints:
min{f0(x) | fi (x) ≤ 0, i = 1 . . . , r , Ax = b}

Our next goal is to analyze the performance of the Newton method
in the centering step of the barrier method

Assumptions

1 the function tf0 + φ is self-concordant for every t ≥ t(0)

2 the sublevel sets {x ∈ Rn | f0(x) ≤ u, fi (x) ≤ 0, Ax = b} are
bounded for any u
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Barrier method for self-concordant functions (2)

In the centering step,
we move from point x (for value t) to point x+ (for value µt),
and apply Newton to solve x+ = argmin{µtf (x) + φ(x) | Ax = b}

The number of iterations in the centering step is bounded by
1
γ

(
tf0(x) + φ(x)− µtf0(x+)− φ(x+)

)
+ log2 log2(1/ε)

Lemma (Boyd & Vandenberghe, pp 590–592)

tf0(x) + φ(x)− µtf0(x+)− φ(x+) ≤ r(µ− 1− log(µ))

By choosing µ = 1 + 1/
√
r ,

the number of Newton iterations can be bounded by O(
√
r)
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Barrier method for self-concordant functions (3)

The barrier method also applies to problems

min{f0(x) | fi (x) �Ki 0, Ax = b}

with generalized inequalities, by using

φ(x) := −
∑

ψi (−fi (x))

as barrier, where ψi is a generalized logarithm for Ki of degree θi .

• As before, we put x∗(t) = argmin{tf0(x) + φ(x) | Ax = b}
• For ν∗(t) with ∇f0(x∗(t)) +∇φ(x∗(t)) + ATν∗(t) = 0

and for λ∗i (t) := 1
t∇ψi (−fi (x∗(t))) we then get

g(λ∗(t), ν∗(t)) = f0(x∗(t))− 1
t

∑
i

θi

• As before, the central path leads to the optimum
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Homework 8

Read the following sections in Boyd & Vandenberghe
9.1, 9.2, 9.5, 9.6; 11.1–11.6

Recommended exercises (Boyd & Vandenberghe):
4.40, 4.43; 9.2, 9.13, 9.15; 11.3, 11.4, 11.5. 11.6, 11.15, 11.16

Attention!
Weeks 6-7 (Oct 6; Oct 9; Oct 13; Oct 16):
• all lectures and instructions in flux 1.06

• tuesday: 1+2 instructions; 3+4 lecture
• friday: 5+6 lecture
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Second-order cone optimization (SOCO)

• Lorentz cone Ln+1 = {(x , t) ∈ Rn+1 | ‖x‖ ≤ t, x ∈ Rn, t ∈ R}

Second-order cone optimization

For matrices A1, . . . ,Ar , vectors b1, . . . , br , c1, . . . , cr , reals d1, . . . , dr ,
for matrix F , and vectors f , g solve

minimize f T x

subject to ‖Aix + bi‖ ≤ cT
i x + di i = 1, . . . , r

Fx = g
x = (x1, x2, . . . , xn) ∈ Rn
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SOCO (1): Rotated second-order cone

Definition

The rotated second-order cone in Rn+2 is the set

Ln+2
r := {(x , y , z) | x ∈ Rn, y , z ∈ R, xT x ≤ 2yz , y , z ≥ 0}

• Note that ‖x‖2 ≤ 2yz and y , z ≥ 0 is equivalent to∥∥∥∥[ x
1√
2

(y − z)

]∥∥∥∥ ≤ 1√
2

(y + z)

• In other words,
(x , y , z) ∈ Ln+2

r if and only if (x , (y − z)/
√
2, (y + z)/

√
2) ∈ Ln+2

• These two sets are related by a rotation matrix R: x
1√
2
(y − z)

1√
2
(y + z)

 = R ·

 x
y
z

 with R =

 In 0 0
0 1√

2
− 1√

2
0 1√

2
− 1√

2
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SOCO (2): Linear and convex quadratic constraints

For s ∈ Rn and t ∈ R,
consider the linear constraint sT x ≤ t

For A = 0 and b = 0, this constraint is equivalent to
‖Ax + b‖ ≤ t − sT x

For Q ∈ Sn
+, c ∈ Rn and t ∈ R,

consider the convex quadratic constraint xTQx + cT x ≤ t

For Q = PTP, this constraint is equivalent to
w = Px , y = t − cT x , z = 1/2, and wTw ≤ 2yz

Observation
Linear programs & convex quadratic programs are special cases of SOCO.
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SOCO (3): Quadratic-over-linear

Example: Quadratic-over-linear problem

For matrices A1, . . . ,Ar , for vectors b1, . . . , br , c1, . . . , cr
and for numbers d1, . . . , dr ∈ R, consider the problem

min{
r∑

i=1

‖Aix − bi‖2

cT
i x + di

| cT
i x + di > 0 for i = 1, . . . , r }

minimize
∑r

i=1 ti
subject to ‖Aix − bi‖2 ≤ (cT

i x + di )ti i = 1, . . . , r

cT
i x + di > 0 i = 1, . . . , r

minimize
∑r

i=1 ti

subject to
∥∥∥∥[ 2(Aix − bi )

cT
i x + di − ti

]∥∥∥∥ ≤ cT
i x + di + ti i = 1, . . . , r

cT
i x + di > 0, ti ≥ 0 i = 1, . . . , r
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SOCO (4)

Example

For a ∈ Rn and b ∈ R,
determine min{aT x + bt | ‖x‖ ≤ t, x ∈ Rn, t ∈ R}.

• If ‖a‖ ≤ b, then aT x + bt ≥ aT x + ‖a‖‖x‖ ≥ 0
Hence opt = 0, by choosing x = 0 and t = 0

• If ‖a‖ > b, then choose x = −γa and t = ‖x‖ for γ ∈ R+.
Then aT x + bt = −γaTa + bγ‖a‖ = γ‖a‖(−‖a‖+ b).
As γ →∞, the objective value goes to −∞.
Hence opt = −∞.

Exercise

For a ∈ Rn and b ∈ R, determine min{aT x + b‖x‖ | x ∈ Rn}.
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Facility location

Example

A group of n remote communities wants to build a central warehouse.
The location of the ith community is given by coordinates (ai , bi ). Goods
will be delivered by plane from the warehouse to the communities, and
the ith community needs di deliveries per month.

The goal is to locate the warehouse so that the total travel distance of all
deliveries is minimized.

In other words: find a point x = (ax , bx) that
minimizes the objective value

∑
i di‖(ax , bx)− (ai , bi )‖

With real variables ax , bx and zi for i = 1, . . . , n, this becomes
minimize

∑n
i=1 dizi

subject to ‖(ax , bx)− (ai , bi )‖ ≤ zi i = 1, . . . , n
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Semi-definite programming (SDP)

Semi-definite programming

For matrices A0, . . . ,An and vector c , solve

minimize cT x

subject to A0 + x1A1 + · · ·+ xnAn � 0

x = (x1, x2, . . . , xn) ∈ Rn
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Recall, recall, recall (1)

Recall that A ∈ Sn is positive semi-definite
if and only if each eigenvalue of A is ≥ 0
if and only if there is some real matrix Z such that A = ZTZ
if and only if xTAx ≥ 0 for all x ∈ Rn

Recall that A ∈ Sn is positive semi-definite,
if and only if UTAU with non-singular U is positive semi-definite

Recall that A,B ∈ Sn are both positive semi-definite,

if and only if
[

A 0
0 B

]
is positive semi-definite
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Recall, recall, recall (2)

For a matrix A ∈ Sn and an integer k with 1 ≤ k ≤ n,
a principal minor of order k is the determinant of a submatrix of A
obtained by considering a k-element subset J ⊆ {1, . . . , n} of
its rows and columns.

Lemma
A � 0 if and only if for every k ,

the sum Sk(A) of the principal minors of order k is non-negative.

Example 1 + x x − y x
x − y 1− y 0
x 0 1 + y

 is positive semi-definite, if and only if

S1(A) = tr(A) = x + 3 ≥ 0
S2(A) = 3 + 2x + 2xy − 2x2 − 2y2 ≥ 0
S3(A) = det(A) = 1 + x − 2x2 − 2y2 + 2xy + xy2 − y3 ≥ 0
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SDP (1a): Linear programs

For matrix P and vectors q, r
consider the linear program min{qT x | Px ≤ r}

The ordinary affine inequalities pT
i x ≤ ri for i = 1, . . . ,m

can be cast as a single semi-definite constraint A(x) � 0

A(x) = diag(r1 − pT
1 x , . . . , rm − pT

mx)

=

 r1 − pT
1 x

. . .
rm − pT

mx

 � 0
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SDP (1b): Second-order cone constraints

Lemma

For a real number t, the second-order cone constraint ‖x‖ ≤ t
is equivalent to[

tI x

xT t

]
� 0

t ·
[

y
s

]T
[

tI x

xT t

] [
y
s

]
= ‖sx + ty‖2 + s2(t2 − xT x)

• If ‖x‖ ≤ t, then right hand side ≥ 0
• If ‖x‖ > t, then pick y = x and s = −t
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SDP (2): Eigenvalues

Example

For A ∈ Sn, show that min{t | tIn − A � 0} = λmax(A).

L(t,Z ) = t − tr(Z (tIn − A)) = t(1− trZ ) + tr(ZA)

g(Z ) =

{
tr(ZA) if trZ = 1
−∞ otherwise

Lagrange dual problem: max{tr(ZA) | trZ = 1, Z � 0}

Eigenvalue shift rule

For A ∈ Sn and t ∈ R, λi (A + tIn) = λi (A) + t for i = 1, . . . , n

• λmax(A) = min{t : tIn � A}
• λmin(A) = max{t : A � tIn}
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SDP (3a): Schur complement

Lemma (Schur complement)

For A ∈ Sn
++, X ∈ Rn×k and Y ∈ Sk ,

Y − XTA−1X � 0 if and only if
[

A X
XT Y

]
� 0

(Note: left hand side quadratic in X ; right hand side linear in X )[
A 0
0 Y − XTA−1X

]
=

=

[
I 0

−XTA−1 I

] [
A X
XT Y

] [
I −A−1X
0 I

]

• Y − XTA−1X is the Schur complement of A in
[

A X
XT Y

]
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SDP (3b): Schur complement

For matrices X ,Y ∈ Sn,

the constraint XTX � Y is equivalent to
[

In X
XT Y

]
� 0

For x ∈ Rn and y ∈ R,

the constraint xT x ≤ y is equivalent to
[

In x
xT y

]
� 0

For x ∈ Rn and y ∈ R,

the constraint xT x ≤ y2 is equivalent to
[

yIn x
xT y

]
� 0
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SDP (4): Spectral norm

Definition

For a matrix A, the spectral norm is ‖A‖ :=
√
λmax(ATA).

Lemma

Let A ∈ Rn×m be a matrix and let t > 0.

Then ‖A‖ ≤ t if and only if
[

tI A
AT tI

]
� 0.

[
tI A
AT tI

]
� 0 if and only if tI − AT ( 1

t I )A � 0

if and only if t2I � ATA
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SDP (5): Finsler’s lemma

Finsler’s lemma

For A ∈ Sn and B ∈ Rm×n, the following statements are equivalent:
1 xTAx > 0 for all x with Bx = 0 and x 6= 0
2 BT

⊥AB⊥ � 0, where B⊥ is a matrix of maximum rank with BB⊥ = 0
(that is, B⊥ contains by columns a basis for the null space of B)

3 There exists Y ∈ Rm×n, such that A + Y TB + BTY � 0
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Minimizing a uni-variate polynomial (1)

We will see how to find the global minimum of a
polynomial p ∈ R[x ] by means of semi-definite optimization

Example

A quadratic polynomial p(x) = ax2 + bx + c
satisfies p(x) ≥ 0 for all x ∈ R (in other words: p is PSD)
if and only if a ≥ 0 and b2 − 4ac ≤ 0.

These conditions hold, if and only if
[

c b/2
b/2 a

]
� 0

Similarly, one sees that

 a b c
d e f
g h i

 � 0 implies that the polynomial

p(x) = a + (b + d)x + (c + e + g)x2 + (f + h)x3 + ix4 is PSD.
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Minimizing a uni-variate polynomial (2)

Theorem #1

Let p ∈ R[x ]. Then p is positive semi-definite, if and only if
there exist two polynomials q, r ∈ R[x ] with p = q2 + r2.

Theorem #2

Let d ≥ 1 be an integer, and let c0, . . . , c2d ∈ R.
Then the polynomial p(x) = c0 + c1x + c2x2 + · · ·+ c2dx2d

is the sum of squares of several polynomials, if and only if
there exists A ∈ Sd+1

+ such that ck =
∑

i+j=k+2 aij for k = 0, . . . , 2d .

For p(x) = c0 + c1x + c2x2 + · · ·+ c2dx2d , these theorems imply that

min{p(x) | x ∈ R} =

= max{t | p(x)− t is positive semi-definite}
= max{t | p(x)− t is a sum of squares of polynomials}
= max{c0 − a11 |

∑
i+j=k+2

aij = ck for all k and (aij) ∈ Sd+1
+ }
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Minimizing a uni-variate polynomial (3)

Proof of Theorem #2

The polynomial p(x) = c0 + c1x + · · ·+ c2dx2d is a sum of squares,
if and only if ck =

∑
i+j=k+2 aij holds for all k , with (aij) ∈ Sd+1

+ .

• Assume that p is a sum of squares: p(x) =
∑m

i=1 qi (x)2

where qi (x) = z1,i + z2,ix + z3,ix2 + · · ·+ zd+1,ixd for i = 1, . . . ,m
• Consider the m × (d + 1) matrix Z = (zij).

Then A := ZTZ is PSD with ck =
∑

i+j=k+2 aij

• Assume that there is a (d + 1)× (d + 1) matrix A � 0
that satisfies ck =

∑
i+j=k+2 aij for k = 0, . . . , 2d .

• Then A = ZTZ for some matrix Z = (zij).
• Define qi (x) = z1,i + z2,ix + z3,ix2 + · · ·+ zd+1,ixd for all i .
• Then p(x) =

∑m
i=1 qi (x)2
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Minimizing a uni-variate polynomial (4)

Example

Consider the polynomial p(x) = x4 − 10x3 + 6x2 + 14x + 3.

• Then min{p(x) | x ∈ R} equals
the maximum value of 3− a11 subject to the constraints a11 a12 a13

a21 a22 a23
a31 a32 a33

 � 0 and

a12 + a21 = 14
a13 + a22 + a31 = 6

a23 + a32 = −10
a33 = 1

• An optimal solution with objective value 3− a11 = −634 is given by 637 7 −14
7 34 −5
−14 −5 1

 � 0
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Minimizing a uni-variate polynomial (5)

Attention!
This approach for minimizing uni-variate polynomials

does NOT generalize to polynomials in k ≥ 2 variables.

Example

Consider the polynomial p(x , y) = x2y2(x2 + y2 − 3) + 1.

• Arithmetic-geometric mean inequality for three variables yields

1
3

(
x2 + y2 +

1
x2y2

)
≥ 3

√
x2y2 1

x2y2 = 1

• If p(x , y) = q1(x , y)2 + q2(x , y)2 + · · ·+ qm(x , y)2,
then every qi (x , y) must be of the form a + bxy + cx2y + dxy2.

• Then the coefficient of x2y2 in p(x , y) must be non-negative.
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EOC
Question hour / Vraagenuur:

Tuesday, October 20, 9:45, laplace-gebouw -1.19
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