Exam "Nonlinear Optimization (2DE09)" Wednesday, 5 november 2014, 9:00-12:00

TU/e

There are 8 questions, each worth a total of 4 points. You are not allowed to use any tools other than pen and paper: no books, no notes, no pocket calculators!
(1) Are the following sets convex? Prove.
(a) $\{1,2,3,4,5,6\}$
(b) $\left\{x \in \mathbb{R}^{3} \mid\|x\| \geq 1\right\}$
(c) $\left\{\left.\left[\begin{array}{c}3 x+y \\ -y-2\end{array}\right] \right\rvert\, x \geq 0, y \leq 0, x^{2}+y^{2} \leq 1\right\}$
(d) The set of symmetric real 4×4 matrices whose smallest eigenvalue satisfies $\lambda_{\min } \leq 1$
(2) Let $K=\left\{A \in S^{n} \mid x^{T} A x \geq 0\right.$ for all $\left.x \geq 0\right\}$ and $L=\left\{B \in S^{n} \mid B=y y^{T}, y \geq 0\right\}$.
(a) Give a matrix in K that is not positive semi-definite.
(b) Prove that K is the dual cone L^{*} of L.
(c) Prove that cone K has non-empty interior and is pointed.
(3) Are the following functions convex on the given domain? Prove.
(a) $f(x)=\arctan (x)$ on \mathbb{R}_{++}
(b) $f(x, y, z)=(y+2 z)^{2} /(x-3 y)$ on $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-3 y>0\right\}$
(c) $f(x, y, z)=x^{2}+y^{2}+5 z^{2}-x y-x z-3 y z$ on \mathbb{R}^{3}
(d) $f(x)=\max \{\|x\|,\|x-a\|\}$ on \mathbb{R}^{n}, where $a \in \mathbb{R}^{n}$
(4) For $P, Q \in S^{n}$ consider the primal problem $\min \left\{x^{T} P x \mid 2 \leq x^{T} Q x \leq 3, x^{T} x=1\right\}$.
(a) Give the Lagrangian, Lagrange dual function, and Lagrange dual problem.
(b) Show that the dual is equivalent to a semi-definite optimization problem.
(5) For vector $a \in \mathbb{R}^{3}$, matrices $B_{0}, B_{1}, B_{2}, B_{3} \in S^{n}$, and $c \in \mathbb{R}$ consider the primal problem $\min \left\{a^{T} x \mid B_{0}+x_{1} B_{1}+x_{2} B_{2}+x_{3} B_{3} \succeq 0, x_{1}+x_{2}+x_{3}=c, x \in \mathbb{R}^{3}\right\}$.
Give the Lagrangian, Lagrange dual function, and Lagrange dual problem.
(6) Let $A_{0}, A_{1}, \ldots, A_{k}, B, C$ be symmetric $n \times n$ matrices and let $q \in \mathbb{R}$. We want to find a matrix A in the set $\left\{A_{0}+x_{1} A_{1}+\cdots+x_{k} A_{k} \mid x \in \mathbb{R}^{k}\right\}$ such that no eigenvalue of $B A$ exceeds the bound q and such that the smallest eigenvalue of $C A$ is as large as possible. Formulate this problem as a semi-definite optimization problem.
(7) Are the three functions in (a)-(c) self-concordant? Prove.
(a) $f(x)=x^{6} / 30$ on \mathbb{R}
(b) $f(x)=x \log x-8 \log x$ on \mathbb{R}_{++}
(c) $f(x)=-\log \left(x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{4}^{2}\right)$ on \mathbb{R}^{4}
(d) Prove or disprove: If f is self-concordant on \mathbb{R}, then $\frac{1}{2} f$ is self-concordant on \mathbb{R}.
(8) (a) Define when a search direction Δx is a descent direction.
(b) Show that for strictly convex f, the Newton direction $\Delta x_{n t}$ is a descent direction. (Recall that $\Delta x_{n t}=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)$.)
(c) Define the degree of a generalized logarithm for a cone K.
(d) State (without proof) a generalized logarithm for the semi-definite cone.

