2DME20 Exam "Non-linear Optimization"
 Friday, 30 october 2015

There are 8 questions worth a total of 80 points. You are not allowed to use any tools other than pen and paper: no books, no notes, no pocket calculators!
(1) (a) Formulate the arithmetic-geometric mean inequality for $n=3$ positive real variables.
(b) Determine the minimum of the following function $f(a, b, c, d)$ for $a, b, c, d \in \mathbb{R}^{+}$.

$$
f(a, b, c, d)=\frac{a^{8}+2 b}{b+c+d}+\frac{b+c+d}{a b c+2 d}+\frac{a b c+2 d}{a^{8}+2 b}
$$

(2) Let $K=\left\{x \mid y^{T} x \geq 0\right.$ for all $\left.y \in \mathbb{R}_{+}^{n}\right\}$.
(a) Prove that K is a convex set.
(b) Prove or disprove: $K=\mathbb{R}_{+}^{n}$
(3) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=6 x^{2}+y^{2}-12 x y$.
(a) Decide whether function f is convex.
(b) Give the KKT conditions for optimizing $f(x, y)$ subject to the constraint $x^{2}+y^{2}=13$.
(c) Determine the maximum and the minimum of $f(x, y)$ subject to $x^{2}+y^{2}=13$.
(4) For $A, B, C \in S_{+}^{n}$ consider the problem $\min \left\{x^{T} A x \mid x^{T} B x \leq 3, x^{T} C x \leq 5, x^{T} x=1\right\}$.
(a) Give the Lagrangian, the Lagrange dual function and the Lagrange dual.
(b) Show that the dual is equivalent to a semi-definite optimization problem.
(5) An instance of MATRIX-VALUE consists of an $n \times n$ matrix A with integer entries and an integer value t. The question is whether there exists a set S of n entries in the matrix, so that S contains exactly one entry from each row and each column, and so that the entries in S add up to the value t.
(a) Prove that MATRIX-VALUE lies in NP.
(b) Prove that MATRIX-VALUE is NP-hard.
(6) (a) State the ILP formulation for VERTEX COVER.
(b) Prove that the integrality gap of the LP relaxation is at least 2 .
(7) (a) Define the degree of a generalized logarithm for a cone K
(b) State (without proof) generalized logarithms for the non-negative orthant cone, for the second-order cone, and for the semi-definite cone.
(c) State (without proof) the degrees of the three generalized logarithms under (b).
(8) Reformulate the following problem into a second-order cone optimization problem with linear objective function and constraints that are either linear or SOC-constraints.

$$
\begin{array}{ll}
\operatorname{minimize} & \max \left\{x-4 y+9 z+20, \quad \frac{(z-x)^{2}+2 y^{2}}{1+x+y}\right\} \\
\text { subject to } & x^{2}+y^{2}-3 x+5 y \leq 23 z+6 \\
& x, y, z \geq 0
\end{array}
$$

