Optimization (2MMD10/2DME20), Final week

Gerhard Woeginger

Technische Universiteit Eindhoven

Fall 2015, Q1

General information

Exam (2MMD10 and 2DME20):
Friday, October 30, 09:00-12:00
Second chance exam: January 27 (2MMD10) and April 8 (2DME20)

- The exam consists of 8 questions
- English okay; Dutch okay
- Write clearly!
- Start every question on a new page

Types of exam questions

Typical types of exam questions:

- Formulate a result or definition presented in the course. Formulate a result or definition from the reading homework.
- Show a proof (or proof piece) presented in the course. Show a proof (or proof piece) from the reading homework.
- Construct a solution by applying a known theorem.
- Apply a known theorem to a concrete scenario.
- Decide whether some simple statement is true. (Show argument!)
- Provide a proof for a new statement.

Problem 1

Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function.
Does this imply that the function $x f(x)$ is convex on \mathbb{R}^{+}?

Typical student answers:
Yes!

No!

Yes and No.

Yes or No.

Problem 1

Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function.
Does this imply that the function $x f(x)$ is convex on \mathbb{R}^{+}?

Typical student answers:
Yes. A theorem from the course says that the product of two convex functions is again convex. As $f(x)$ is convex and $g(x)=x$ is linear, $f(x) g(x)=x f(x)$ is also convex.

Yes. The first derivative of $x f(x)$ is $f(x)+x f^{\prime}(x)$. The second derivative of $x f(x)$ is $2 f^{\prime}(x)+x f^{\prime \prime}(x)$.

No. The first derivative of $x f(x)$ is $f(x)+x f^{\prime}(x)$. The second derivative of $x f(x)$ is $2 f^{\prime}(x)+x f^{\prime \prime}(x)$.

Problem 1a
Decide whether the function $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ with $f(x, y)=(x-y)^{2} /(2 x+y)$ is convex.

Problem 2

An instance of the EXACT-PATH problem consists of an undirected graph $G=(V, E)$ together with a weight function $w: E \rightarrow \mathbb{Z}$, two vertices $s, t \in V$, and a value $U \in \mathbb{Z}$. The question is whether the graph contains a simple path from s to t so that the sum of edge weights along the path equals U.
(a) Prove that EXACT-PATH lies in NP.
(b) Prove that EXACT-PATH is NP-hard.

Problem 3

Give the Lagrangian, Lagrange dual function, and Lagrange dual of the problem $\left.\min \left\{\sum_{i=1}^{3} x_{i} \log \left(x_{i}\right)\right\} \mid x_{1}+x_{2}+x_{3}=1, x_{1}+2 x_{2}+4 x_{3} \leq 2\right\}$. Is this problem convex?

