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Abstract. In this paper we introduce the concept of an interactive mathe-
matical document. We give a formal description of such a document, which
enables us to introduce the notion of a context as user and time dependent
information regarding both mathematical and personal data. We also describe
the realization of interactive mathematical documents within the MathDox
system developed at Eindhoven University of Technology.
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1. Introduction

For some time the Discrete Algebra and Geometry group at Eindhoven University
of Technology has been working on the MathDox project. MathDox stands for a
format and a set of software tools for creating interactive mathematical documents,
see [9]. Such documents can be viewed via a web browser. The aim of the project is
to enable people to create interactive mathematical content accessible through the
web. One of the most popular applications is elearning; several showcases exist,
such as Wortel TU/e [37], MathAdore [26], IDA [8], and the on-line knot theory
course notes [19].

In an attempt at enriching the MathDox format with adaptivity we introduce
the concept of context in our documents. Context within MathDox documents en-
ables MathDox to store data pertaining to visitors of the web pages, and act upon
the stored state of these users. This makes MathDox more suitable for intelligent
tutoring, as it enables students to be guided by an adaptive system and offers
them the opportunity to create their own mathematical context.

A typical advantage of having a context for students is that a MathDox page
can adjust its contents to the mathematical level of the user. Beginners in the field
can be offered an elaborate explanation of the mathematical notions used on the
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page. Advanced students can do with just some references instead. The context
can be aware of the student’s knowledge level and still allow him/her great freedom
in deciding how and in which order to visit MathDox pages. Another advantage
of the mathematical context in learning is that it makes it possible for students to
create their own favourite running examples throughout parts of the document.

Our approach to offering MathDox users navigational freedom is based on
the concept of theory graphs. A theory graph dictates the relations between dif-
ferent notions, mathematical symbols, and variables in a specific mathematical
field. It gives an overview of different routes to a specific topic, which knowledge is
required, and which knowledge is optional for mastering that topic. These sets of
requirements and optional knowledge heavily depend on the users’ current knowl-
edge and their learning goals. MathDox’ way to determine the level of a user is to
determine which nodes from the theory graph are listed as being visited previously
within the user’s context. On the basis of these references, the MathDox page can
decide at construction to include, exclude, or adapt specific parts of the content.

The theory graphs play a key role in the formal description of an interactive
mathematical document given in Section 3. Before this theoretic section, we give
a short introduction to MathDox in Section 2, and following up on it, in Section
4, we discuss the realization in MathDox. Section 5 provides two illustrations of
the use of context in the MathDox system. In Section 6 we compare our system
with other systems for interactive mathematical documents. We finish with some
conclusions and discussion of further work in Section 7.

2. MathDox

Mathdox is a software system that provides means to interact with the mathe-
matical content of an interactive document over the World Wide Web, see [9].
These interactions vary from performing computations by calling web services,
see [1], to checking answers to exercises or creating and manipulating graphs of
functions. MathDox combines existing interactivity of web pages with the power of
mathematical computations, resulting in interactive mathematics. This is achieved
by means of a scripting language and interfaces with external software, notably
computer algebra systems. Triggered by user actions, pages are updated with new
parameters and web services are called to generate input for the preparation of a
new page. This results in adaptable pages and on the fly computations.

The source documents within the MathDox system are XML documents,
written in the MathDox format. This format combines in a modular way vari-
ous existing XML formats each of which contributes a useful facet for interactive
documents. The XML formats used in MathDox are:

• DocBook [36], for the global structure of documents
• OpenMath [31], for semantic encoding of mathematics
• XForms [38], for user driven interactivity
• Monet [2], for communication with web services, like CAS
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• Jelly [18], a programming and scripting format
• XInclude [39], for separating functionality into different files

The part of the MathDox system called MathDox Player makes MathDox
documents accessible over the web. Its task is similar to that of a web server in the
sense that both a web server and the MathDox Player offer stored documents from
the server to the outside world. The main difference between a static HTML web
server and the MathDox Player is that a web server offers ready-made HTML files,
whereas the MathDox Player dynamically creates these HTML files. As indicated
above, triggered by a user’s action, the MathDox server collects the relevant data
from the source document, from available user request bound information, and
from service requests to (mathematical) back engines, in order to create a new
view on the document. The views are presented by means of HTML pages. The
MathDox actions involve a series of XSL transformations depicted in Figure 1.

Figure 1. Sequence of XSLT transformations performed by the
MathDox player

The MathDox Player is implemented in Orbeon Forms [32], a Java Servlet
application [16] that runs in a Java Servlet container like Apache’s Tomcat and
JBoss.

In order to enable the users of MathDox documents to interact with the
system, HTML offers various options, like buttons, text areas, and links. How-
ever, there is no standard way to communicate mathematics in a meaningful way.
Modern browsers support rendering of mathematics with MathML [28], but do
not provide ways to interact with the mathematics. For interaction with a large
number of mathematical services offered by the system, we prefer to work with se-
mantically rich mathematical expressions (although other formats, such as LATEX,
are supported). For authoring mathematical expressions we have developed the
MathDox formula editor [9]. It can be employed for users to input mathematics in
a natural (structured) way, and translates the input to OpenMath format without
the user having to enter XML code.

For authoring MathDox sources, various tools are available, varying from the
above-mentioned formula editor to LATEX templates.
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3. Interactive Mathematical Document

The MathDox system as described above is very well suited for presenting a user
highly interactive mathematical pages over the web. However, when serving a
document that consists of various related MathDox pages, it is desirable to add
a common context to the different parts of the document, capturing the user’s
preferences, performance, browsing history, etc. Such context makes it possible
to guide users through the document, present them with related examples in the
various parts of the document, or offer them exercises that meet their knowledge
level; see for example [12]. In this section we explain the theoretical model be-
hind our implementation of such a context in the MathDox system. The actual
implementation is discussed in the next section.

An interactive mathematical document is considered to be a collection of
mathematical pages containing theorems, proofs, examples, exercises, and the like,
which are delivered to the user through hypermedia. As is common in hypermedia
systems, these pages need not have a strictly hierarchical structure of chapters,
sections, subsections, and paragraphs. Indeed, users may take their own (guided)
paths through the pages. Depending on their interest, skills or task, these paths
may vary.

But not only the path that a user is following may depend on his/her personal
settings, also the contents of each page are dynamically adapted to the user’s
context. This may, for example, imply that users can choose a favorite running
example throughout a full session, or that students of a single class are studying
the same pages of a course, but are offered personalized exercises, matching their
individual levels.

Over the years many hypermedia systems have been developed that offer the
user parts of the above-mentioned features. A standard model for such systems
is the so-called Dexter (or overlay) model [17], which describes an architecture
for hypermedia systems. This model also influenced the AHAM model of De Bra,
Houben, and Wu [11], which focuses more on the adaptive features of the hyper-
media system. Such a model can be divided into the following three parts: domain,
user, and presentation model. We have adopted this model for the realization of
interactive mathematical documents in our MathDox system.

Our domain model contains information on the knowledge domain of an inter-
active mathematical document. It is an abstract model for the main mathematical
concepts of the interactive mathematical document, such as symbols, definitions,
theorems, proofs, etc., and their relations within the interactive mathematical doc-
ument. The abstract items in this model refer to collections of MathDox sources.

The user model is an abstract model for the data pertaining to a user of
the system. It captures for example the logistic information of the user, such as
identity, profession, knowledge level, but also information on the history of the
user, such as acquired knowledge, navigation history, and scores on exercises.
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Finally, the presentation model consists of a set of rules that, with input
from the user model, selects and transforms parts of the domain model into a page
rendered for the user.

In the following three sections we give a more precise description of the three
abstract parts making up the interactive mathematical document model.

3.1. Domain

The domain model is concerned with the subject of the document. At the core
of the domain is the concept of a theory graph. Related graphs are the sym-
bol graph and the variable graph. The main ingredients of these graphs are the
mathematical objects, notions, and statements used within the Interactive Mathe-
matical Document, as well as their interdependence. Their purpose is to structure
the mathematical knowledge on which a(n interactive) mathematical document
is based. The author of a document needs to supply these data; for MathDox,
authoring tools using the XML structure of the sources help to automate these
activities. We discuss each of these three graphs in one of the next three subsec-
tions and conclude the section with an analysis of their mutual relations and the
formal definition of an interactive mathematical document.

3.1.1. The theory graph. The main notion for an interactive mathematical docu-
ment is the theory graph. In our view, a mathematical document is a collection of
statements involving mathematical symbols and variables together with a logical
structure on these statements. The two main types of statements are definitions
and assertions. These statements are then often enlightened by examples, exer-
cises, or remarks, or accompanied by proofs. A union of such statements hinging
on one definition or assertion (possibly a compound one) comprises a theory, rep-
resenting a node of the theory graph. In particular, at one extreme, one may view
each statement as an individual theory, or at another extreme, clump an entire
chapter into a theory.

Let T be a set of all theories of a document, and suppose vT is the relation
defined by x vT y if and only if y depends on x. In a sound mathematical con-
text, the relation vT is a partial order on the set of symbols. Indeed, in a sound
mathematical context this relation is assumed to be

• reflexive, i.e., x vT x for all x ∈ T ;
• anti-symmetric, i.e., x vT y and y vT x implies x = y for all x, y ∈ T ;
• transitive, i.e., x vT y and y vT z implies x vT z for all x, y, z ∈ T .

We write x @T y to denote x vT y and x 6= y. For any partial order v on a
set T one can define the Hasse diagram to be the directed graph with vertex set
T , in which two vertices (also called nodes) x and y are on an edge from x to y
if and only if x @ y and there is no element z ∈ T with x @ z and z @ y. We
notice that this Hasse diagram is an acyclic graph. Moreover, it is well known that
the ordering v can be recovered from the corresponding Hasse diagram, as this
ordering is the transitive closure of the adjacency relation of the Hasse diagram.
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We are now in a position to give a formal definition of our theory graph. It
is the Hasse diagram of the partial order (T,vT ).

In practice, a theory graph of an interactive mathematical document will be
stored in an XML file as will be explained in Section 4.1.1.

3.1.2. The symbol graph. The next graph we want to use is the so-called symbol
graph, i.e., a graph whose nodes are the mathematical objects and notions oc-
curring within a mathematical document. To define these mathematical objects
we will use the concept of symbols and Content Dictionaries as introduced in
OpenMath and used in the emerging standard MathML 3.0 [29]. These standards
provide semantic encoding of mathematical notions. In our set-up, a mathemati-
cal symbol is an OpenMath symbol defined in an OpenMath Content Dictionary.
These Content Dictionaries also provide some information on the relations be-
tween the various mathematical symbols. In particular, the FMP of an OpenMath
object provides such information; see [31]. As, in many cases, this information is
too restricted, we capture this dependence in our symbol graph. (Here an author
should provide the extra dependence relations.)

Let S be a set of OpenMath symbols, and suppose vS is the relation defined
by x vS y if and only if the mathematical notion of y depends on that of x.

As before, the relation vS on the set of symbols S in a sound mathematical
document is assumed to be a partial ordering. So, we can define the symbol graph
to be the Hasse diagram of the partial ordering vS on the set S of OpenMath
symbols in the interactive mathematical document.

An example of a symbol graph can be found in Section 4.1.2.

3.1.3. The variable graph. The third and last graph that we consider in our do-
main is the graph whose vertices are the (mathematical) variables inside our math-
ematical document.

A variable inside a document can be given a value by the user, by the source,
or by some external program depending on other variables. For example, the values
can be randomly chosen for generating exercises, or input by the user as answers
to exercises or for running examples.

These variables are ordered by a relation vV , where x vV y means that
variable y depends on variable x. Here dependence means that the value of x is used
to determine the value of y. Examples are the function case, such as y = cos(x),
or instances of mathematical notions introduced, such as y = VectorSpace(3, x),
where x is a variable whose value should be a field, for instance x = GaloisField(9).
As in the previous cases, this relation is considered to be a partial ordering. The
Hasse diagram of this ordering is called the variable graph.

Finally, to each variable a type can be attached—but this is optional. The
type is used to specify the kind of value that can be assigned to a variable. For
instance, the specification that the above-mentioned variable x should be a field.
Another example is the specification that the type of a variable should be integer,
in which case <OMI>23</OMI> would be an allowed value, but not

<OMA><OMS name=’plus’ cd=’arith1’/><OMI>20</OMI><OMI>3</OMI></OMA>.
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The above shows that the type of a variable should not be understood in the way
of a classical type theory. In our approach it refers to the type as an OpenMath
object, and is concerned with questions like: Which OpenMath symbols are used?
How are they nested? The type checking is performed by pattern and anti-pattern
checks. An example of how this type checking is used can be found in Section 4.1.3.

Besides being useful for checking user defined input, the typing mechanism is
also convenient to cast outputs of external programs to OpenMath expressions of
the required type. For instance, if the software package GAP ([15]) is used to assign
a value to the variable a whose type is a 7× 7 matrix with values in x (as above)
and returns a list of 7 lists of length 7 containing elements from GaloisField(9),
then it makes sense to transform the list of lists to such a matrix before assigning
the value from GAP to a.

3.1.4. Synthesis. Until now, the theory, symbol, and variables graphs are indepen-
dent of each other. However, given a mathematical document, one encounters, in
each assertion, example, proof, exercise, or remark of the document, a number of
mathematical symbols and variables. Moreover, each symbol or variable can occur
in various theories of the document. This is formalized by a relation ‘occurs in’
between the union of the sets of symbols and variables, and the set of theories.

The reverse relation from the set of theories to the set of symbols is called
the relation ‘contains’. For s ∈ S ∪ V and t ∈ T we write s → t if s occurs in t,
and t← s for the reverse relation, meaning t contains s.

Let Θ denote a map that assigns to each symbol s the set of theories in T
containing s. So for s ∈ S, we have

Θ(s) = {t ∈ T | s→ t}.

This set is called the scope of the element s. Similarly, we let ΣS denote the map
that assigns to each theory t ∈ T the set of symbols from S, which we call the
symbols occurring in t. So

ΣS(t) = {s ∈ S | s→ t}.

Similarly, ΣV denotes the map which assigns to each theory t ∈ T a set of
variables from V , which we call the symbols occurring in t. So

ΣV (t) = {v ∈ V | v → t}.

Let x be a symbol or variable and consider the set Θ(x). If this set contains
a unique minimal element with respect to the poset of the theory graph, then this
is called the introducing theory for x and it is denoted by θ(x).

We call the relation → sound, if

• for all symbols or variables x ∈ S∪V there exists an introducing theory θ(x);
• for all symbols s, s′ we have that s vS s

′ implies θ(s) vT θ(s′);
• for all variables v, v′ we have that v vV v′ implies θ(v) vT θ(v′);
• for all variables v and each symbol s in the type of v, we have θ(s) vT θ(v).
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Soundness is useful as a sanity check on an interactive mathematical document; it
prevents a reader from going astray because of obvious inconsistencies in the set-up.
Our notion of soundness is primarily a kind of well-formedness of the mathematics
served and has little bearing on formal mathematics.

The mathematical context emerges as the structured sets of symbols and
variables, as well the values of the variables, pertaining to the theory visited by
the user. As this is dependent on the user, further treatment of it belongs to the
next subsection.

3.2. User

The second of three models that together form an Interactive Mathematical Docu-
ment is the user model. It consists of logistic information, knowledge information,
and mathematical context.

The logistic information contains information about the user, like identity,
name, profession, affiliation, address, student level, etc.

The knowledge information is information attached to every node of the the-
ory graph. Here, one can think of information, whether a node is mastered, visited,
or ready to be read. Here is also the information on where the user is at present.
The student level may change as a result of the knowledge information.

Finally, mathematical context is the information about the mathematical con-
text that the user has created by visiting the document, setting variables, etc. In
fact, inside the mathematical context we store the values of each of the variables
inside the set V of variables in our document. Here, the difference between the
symbol graph and the variable graph becomes quite clear: the knowledge informa-
tion tells us which nodes t the user has visited, and so ΣS(t) can be determined
from it. In contrast, the knowledge of ΣV (t) is insufficient and needs to be com-
plemented with the values of the variables that it lists. As these values may vary
when the user progresses and can be called at each instance, these belong to the
user model and so are contained and maintained in the mathematical context.

The variable graph gives us the relations between the various variables. It
shows us, that the only variables that may be changed freely, without harming
this relation, are the minimal elements x ∈ V with respect to the relation vV .
Without any problem these variables can serve as input variables. (An element x
is called minimal with respect to a partial order ⊆ if and only if for all y with y ⊆ x
we have y = x.) Changing the value of variable x that is not minimal, can only be
done within the context defined by the variables y preceding x, i.e., those y with
y vV x. This clearly can put restrictions on the values that one can assign to x.
Moreover, if a variable x is changed, then the variables that have to be updated
are exactly those variables z with x vV z. A topological sorting of these elements
will provide a linear ordering in which we can update the elements.

In fact, the most important way of interaction that our interactive mathe-
matical document provides to the users is the interaction with the user model. By
visiting nodal pages and preforming well on exercises, they can alter the value of
the variables in the knowledge information. Moreover, users can also change the
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value of the mathematical variables and create in this way their own mathematical
context.

For example, within an interactive document on permutation groups, the user
visits an example in which he/she can choose two permutations g and h inside the
symmetric group Sym6 as well as an integer i ∈ {1, . . . , 6}. Within the example,
the orbit O of i under the action of the subgroup G of Sym6 generated by g and
h is computed. This mathematical context created by the user carries over to the
next examples, where the stabilizer H in G of i is determined and where it is
shown that |O| = |G/H|. The example is further elaborated in Section 5.2. Each
time a user visits a page, the information inside the user model is used to update
this page.

Figure 2. Part of the theory and variable graph and the relation Θ

3.3. Presentation model

In our model a user visits the nodes of the theory graph. According to the data in
the user model, a MathDox page is created for the user that reflects the content
of the node but is adapted to the user’s needs and/or preferences. The creation of
the page is done by a set of rules that take as input the theory that the user is
visiting and the information about the user that is present in the user model.

For example, if a user wants to visit a nodal page, the system may check
whether all the symbols occurring in the page are known to the user. If not, links
to the introducing theories of these symbols are added. Or, if the user has not
mastered all nodes on which the requested page is depending, he or she will first
be guided through these nodes before granting him/her access to the page. The
presentation model of our interactive mathematical document is responsible for
creating the pages, and keeping the user model up to date.
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Following [11], we let the presentation model of an interactive mathematical
document consist of a set of rules that carry out the above tasks. So, a rule in
the presentation model takes as input a triple (t, U,m), where t is the theory that
is visited, U is the (relevant subset of the) data stored in the user model, also
called the context, and m is the moment on which the rule should be applied.
The moment can have two values, namely pre or post. The value pre refers to the
moment that the user visits the theory, the value post refers to the moment where
the user leaves a theory and moves to the next theory (which might be the same).

For each value of t and U a page is produced and offered to the user consisting
of an ordered collection of renderings generated by fragments on input (t, U, pre).
Similarly, there is a rule that on input (t, U, post) guides the user to a new theory.
Besides these mandatory rules, there are also rules in the presentation model that
update the information in the user model.

Within a MathDox interactive mathematical document we implement our
presentation model as functions inside Jelly tags; see Section 4.3. Our system is
set up in such a way that it also allows for input from other (external) systems
that could rule the presentation of a page.

4. Interactive Mathematical Documents in MathDox

An interactive mathematical document within the MathDox system consists of a
set of MathDox sources, together with some tables stored in an XML database
supporting XQueries. Together they capture the domain, user, and presentation
model of the interactive mathematical document.

The main tools to realize the envisioned interactivity and adaptivity in a
MathDox interactive mathematical document are functions implemented in Jelly
tags and so-called MathDox fragments. Fragments are (reusable) MathDox sources.
Besides text, such fragments can contain calls to Jelly programs taking care of
parts of the presentation model. The fragments are designed in such a way, that
they can be included or called with parameters inside each MathDox source. Here,
calling is used to indicate that the results of an invocation are used, and including
means that the source of the fragment is dragged into the main document during
processing.

In the remainder of this section, we explain how each separate part of the
formal set-up of an interactive mathematical document as discussed in the previous
section is realized in MathDox.

4.1. Domain

4.1.1. The theory graph. The XML source files of a MathDox interactive mathe-
matical document can be divided into two parts, the nodal pages and fragments.

The nodal pages are in a one-to-one correspondence with the theories of the
interactive mathematical document. They represent the theory graph of the inter-
active mathematical document. The relation vT between these pages is captured
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in a table, stored in an XML database. Here all nodal pages have a unique identi-
fier (or name). Nodal pages can call and include further pieces of MathDox source,
called fragments.

Below, a typical nodal page is displayed; it corresponds to a node named
‘knot’ in the theory graph specified by the value ‘knottheorygraph.xml’ of the para-
meter ‘theoryGraphURL’. The page includes a fragment with the name ‘knot.mdf’,
which contains a text on knot theory. Moreover, it calls the fragment ‘succes-
sors.mdf’ twice with parameters ‘direction’ set to Backward and Forward, respec-
tively. This fragment computes the set of nodes in the theory graph that are on a
directed edge of the theory graph, pointing to, respectively, starting in ‘knot’.

<article>

<c:set var=’theoryName’>knot</c:set>

<c:set var=’theoryGraphURL’>knottheorygraph.xml</c:set>

<mdc:include-fragment fragment=’successors.mdf’>

<c:set var=’direction’>Backward</c:set>

</mdc:include-fragment>

<mdc:include-fragment fragment=’knot.mdf’/>

<mdc:include-fragment fragment=’successors.mdf’>

<c:set var=’direction’>Forward</c:set>

</mdc:include-fragment>

</article>

Inside this nodal page two fragments appear: ‘successors.mdf’ and ‘knot.mdf’.
These are called at the moment that a user is entering a page (pre-action). The
fragment ‘knot.mdf’ is merely included. Inclusion may be considered to be a de-
fault action of the presentation model. The first and last includes are calls of
the fragment ‘successors.mdf’, which contains a function that computes the set of
pages that have been visited or can be visited and has input parameters ‘direction’
and ‘theoryName’, which, as is the case in our example, might be defined outside
the fragment.

This function can be extended so as to work with more input parameters,
like ‘skills of user’, that are part of the user model. The user can leave the page
(post-action) by choosing a link generated by the ‘successors.mdf’ fragment. The
example will be further discussed in Section 5.1.

The subdivision of an interactive mathematical document into theory graph,
nodal pages, and fragments makes it possible to reuse MathDox sources in various
interactive mathematical documents. If one wants to include some parts of an
interactive mathematical document into another document, one just has to refer
to the right subset of nodal pages into the theory graph attached to the new
interactive mathematical document. Of course, this can only be done in a sound
way, as described in Section 3.

4.1.2. The symbol graph. As we already indicated in the previous section, mathe-
matical objects in the MathDox sources are represented by OpenMath expressions.
The leaves of each OpenMath expression tree are variables and symbols. Symbols
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are defined in content dictionaries, see [31]. Within the XML encoding of Open-
Math as used in MathDox, the name of a symbol and the content dictionary in
which it is defined are specified as attributes. The ordering vS on the set of sym-
bols S inside a MathDox interactive mathematical document takes into account
the OpenMath symbols needed for a formal definition of each element of S. Since
OpenMath does not provide such a definition, the individual choices need be made
by the author. Figure 3 shows a small symbol graph related to an example recur-
ring in Subsection 5.2.

Figure 3. A part of a symbol graph on group theory

The map Θ restricted to the set S of symbols is stored as an XML table
that can be produced by XSLT-transformations on the source documents. The
conditions for an interactive mathematical document to be sound require that
each symbol has a unique introducing theory. This introducing theory θ(s) for
a symbol s can be obtained by computing the gcd of all elements in Θ(S) with
respect to the relation vS . If this gcd is contained in Θ(s), then we have found the
introducing element. Otherwise we add the root element of the theory graph to
Θ(s) and consider the element s to be part of the prerequisites of our document.

4.1.3. The variable graph. The MathDox fragments can contain many mathemat-
ical variables. Together these form the set V of variables of the interactive mathe-
matical document. The relation vV between these variables is given by v vV w for
v, w ∈ V if and only if, in the definition or expression of w, or in the restrictions
imposed on it, a call is made to the variable v.

To illustrate this, consider the permutations g and h from the example in
Section 3.2. They are variables in the variable graph. The variable G is defined by
<set name=’G’>

<OMOBJ>

<OMA><OMS cd=’permgp1’ name=’group’/>

<OMS cd=’permutation1’ name=’right_compose’/>

<out name=’g’/>

<out name=’h’/>

</OMA>

</OMOBJ>

</set>
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As the variables g and h occur in the definition of G, we have g vV G and h vV G.
This relation between the variables defines the variable graph of the document.
The variables together with the relations vV and Θ are stored in a database table.

As in the case of the symbols, the information on the map Θ can be auto-
matically retrieved from the MathDox sources. Furthermore, we can compute the
introducing theory for all variables in V and store this information in a table. For
practical reasons, we use the identifier of the introducing theory, as part of the
information to identify our variables by unique global names.

The knowledge on the introducing theories, the information on the types of
the variables and on Θ enables us to perform a soundness check on our interactive
mathematical document.

Knowledge of the scope Θ(v) and its minimal element θ(v) is also valuable
information for an author who wants to alter or extend the existing interactive
mathematical document. Indeed, with this knowledge of the variables, he/she
knows which variables can be used or have to be introduced.

The typing of the variables is done with the help of OpenMath. The type of
a symbol is just a collection of OpenMath symbols (or combinations thereof) that
may be present (or forbidden) in the value that will be assigned to the variable.

For example a variable of type integer may be of the form <OMI>*</OMI> or
<OMA><OMS name=’unary_minus’ cd=’arith1’/><OMI>*</OMI></OMA>.

Type checking has been implemented by the use of Jelly [18] and XPath [40].
Indeed, checking whether a variable var is assigned a value of the type integer as
described above can be checked by the Jelly tag
<x:if select=’$var/OMA/OMS[@name=’unary_minus’]/following-sibling::OMI

or $var/OMI’>True</x:if>

<x:if select=’not($var/OMA/OMS[@name=’unary_minus’]/following-sibling::OMI

or $var/OMI)’>False</x:if>

4.2. User

The user model consists of mathematical context, logistic user information and
knowledge information. Needless to say, every user has his/her own instance of the
user model, so that all his/her data stored in the model is private.

Inside the mathematical context we store information on the values of each
of the variables inside the set V of variables in our document. These values may
vary when the user progresses and can be called at each instance.

The mathematical context controlled by a list of mathematical context vari-
ables, where all variables are represented by at least one tuple of the form (Variable
ID, Value, Timestamp). Each change of the value of a variable will lead to a new
tuple being added to the user model, creating a list of tuples representing the
mathematical context of any variable at any given time. The value and timestamp
are dynamic information attached to the variable, which is uniquely identified by
the variable ID. This variable ID is a reference to the variable in the variable graph
in which additional static information like its definition and type, a list of usage
by nodal pages, and conditions on type and value are stored.
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The logistic information contains information about the user; it is stored as
tuples of the form (user’s ID, date of birth, address, education, affiliation, pro-
fession, level of knowledge, Timestamp). After each change, a new tuple is added
to the database. Of course this information can be extended by other fields if
deemed necessary. Finally, knowledge information is the set that indicates which
nodes from the theory graph are visited or mastered by the user. Also knowledge
information is timestamped.

All information belonging to the user model is stored in, and can be retrieved
from an XML database supporting XQuery [41]. The user model is updated each
time a user performs an action. Indeed, once a visitor enters or leaves a nodal
page, the information in the user model is updated. After a topological sort of the
variables, such an update can be performed in a linear order.

The information inside the user model is input for the presentation model to
create a view on particular parts of the document. The user information adapts this
view to the user’s knowledge, skills, and mathematical context. Moreover, as all
information is timestamped, it is easy to replay previous views on the document.

4.3. Presentation

In the presentation model of our interactive mathematical document, input from
the domain and user model are used to create a page that is being served to the
user.

The composition of the page is ruled by various functions inside the frag-
ments, which can be called using Jelly tags and take the information in the user
model as input. We have already seen an example in Section 4.1.1. As a result a
new MathDox source is created that is then transformed to an HTML document
as explained in Section 2; in particular, see Figure 1. As only this HTML code is
served to the user, the MathDox source code need not be available to the user.

5. Examples and use cases

In this section we present two larger examples and provide some comments on the
use of MathDox within the system Wortel TU/e [37]. We start with navigation
in knot theory course notes [19] and continue with a permutation group theory
exercise from Interactive Documents on Algebra [8].

5.1. Knots

Recently, an existing MathDox document on knot theory was transformed into
an interactive mathematical document enriched with context; see [19]. The theory
graph of the interactive mathematical document is depicted in Figure 4.
To each node of this theory graph, we have attached a unique nodal page, which
typically looks as follows.
<article>

<mdc:include-fragment fragment=’template.mdf’ var=’result’ >

<!-- all set variables in this body are parameters for the fragment -->
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Figure 4. A theory graph customized for a user in such a way
that the theories mastered by the user are white, those that the
user can visit are gray, and the remaining theories are dark gray.

<c:set var=’theoryName’>primeknot</c:set>

<c:set var=’theoryGraphURL’>knottheorygraph.xml</c:set>

<c:set var=’fragmentAddress’>primeknot.mdf</c:set>

<c:set var=’passExercise’>primeknotpassexercise.md</c:set>

</mdc:include-fragment>

</article>

This nodal page calls only one fragment, ‘template.mdf’, which takes care of the
following tasks for the logged in user:

It determines the position of the nodal page in the theory graph using the
values of the parameters ‘theoryGraphURL’ and ‘theoryName’, which are pointers
to the theory graph and a node in this graph, respectively. Then it calls a fragment
defined by the value of the parameter ‘fragmentAddress’. This fragment contains
the actual contents to be displayed to the user. Moreover, an exercise related to the
contents of the page using the parameter ‘passExercise’ is specified. With input
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Figure 5. A view on a nodal page

from the user model the nodes of the theory graph that have been accessed (and
mastered) by the user and those that the user is now ready to visit are determined.
And finally, upon each action of the user the necessary calls to the databases and
updates of the databases are performed.

In the user model of this interactive mathematical document we store the
user ID. The knowledge information contains the names of the theories visited by
the user, as well as those mastered by the user.

Next we explain how the page is constructed from the code in the template
fragment. We have omitted parts of the code to improve readability. Figure 5
shows the resulting page. It begins with the title of the page to be rendered, which
is derived from the theory node in the theory graph. Next it assigns a Boolean
value to the variable ‘CanGoOn’ that indicates whether the user has the required
preknowledge. According to the value of this Boolean, it either serves the contents
(in ‘fragmentAddress’) or directs the user to a theory closer to the root in the
theory graph.
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<title>

<!-- 1 Title of this topic-->

<mdc:getTheoryProperty theoryGraphURL=’${theoryGraphURL}’

theoryName=’${theoryName}’ propertyName=’verbose’/>

</title>

<!-- if all required knowledge is present CanGoOn is set to true-->

<mdc:available-theories theoryGraphURL=’${theoryGraphURL}’

theoryName=’${theoryName}’ direction=’backward’ var=’CanGoOn’/>

<c:choose>

<c:when test=’${CanGoOn}’> <!-- preknowledge is present -->

<!-- 2 show previous topics leading up to the current topic-->

<mdc:include-fragment fragment=’successors.mdf’>

<c:set var=’buttonName’>Predecessors</c:set>

<c:set var=’direction’>Backward</c:set>

</mdc:include-fragment>

<!-- 3 show the content identified by the fragment address -->

<mdc:include-fragment fragment=’${fragmentAddress}’/>

<para> <!-- link to exercise -->

<ulink url=’${passExercise}’>Try to pass an exercise!</ulink>

</para>

<!-- 4 shows follow up topics available after current topic -->

<mdc:include-fragment fragment=’successors.mdf’>

<c:set var=’buttonName’>Successors</c:set>

<c:set var=’direction’>Forward</c:set>

</mdc:include-fragment>

</c:when>

<c:otherwise>

<!-- preknowledge not present, redirect -->

<para>Sorry, You first need to study the following sections.

<mdc:include-fragment fragment=’successors.mdf’>

<c:set var=’buttonName’>Predecessors</c:set>

<c:set var=’direction’>Backward</c:set>

<c:set var=’list’>true</c:set>

</mdc:include-fragment>

</para>

</c:otherwise>

</c:choose>

Here, a theory will be mastered by the user who passes a designated exercise
attached to the theory.

The functions implemented in the ‘successors.mdf’ fragment are a part of the
presentation model. Since the user has to log in to the system, these functions
have access to the information in his/her personal user model. In this way we have
realized adaptive navigation in the knot theory course notes.



18 Cohen, Cuypers and Verrijzer

5.2. Interactive Documents on Algebra

Subsection 5.1 on the knot theory course notes is a simple example of context
enrichment. It focuses mainly on the theory graph and the prerequisite knowledge
for viewing a certain text, i.e., it provides adaptive navigation. Of course, the
applications of context are much wider. Some other features appear in the context
enriched version of IDA (Interactive Documents on Algebra) under construction
[8]. Both in the knot theory example and IDA, adaptivity and interactivity are
being added in such a way, that users can work within the same mathematical
context between various sessions and pages.

By way of example, we consider a student of IDA working with permutation
groups. Somewhere during his/her visits of the document, the student has chosen
two permutations, g and h inside the group Sym6. This information is stored in
the mathematical context of the student.

In a next session, the student might be ready to do a multiple choice exercise
on permutation groups. The student is offered the following exercise

What is the G-orbit O of i?

Here G is a subgroup of Sym6 generated by the permutations g and h as in Section
3.2 and i an integer in {1, . . . , 6}. We can use the values of the variables of the
variable graph displayed in Figure 2. The values of the variables O and H inside
this graph will be calculated at the moment that the student needs them. For the
actual computations with these variables, the computer algebra system GAP [15]
is being used.

To construct an alternative to the correct answer O, we randomly select
elements r1 and r2, respectively, in the set {1, . . . , 6} and form the set Y = (O \
{r1, r2}) ∪ ({r1, r2} \O), which certainly is different from O. This set Y is stored
in the mathematical context as a variable named ‘wrong orbit’.

Finally, the multiple choice question is created by use of the following tem-
plate.
<mdc:include-fragment fragment=’mcfragment.mdf’>

<x:parse var=’question’>

<question> What is the orbit of <out name=’i’/> under the action

of the group <out name=’G’/> generated by the permutations

<out name=’g’/> and <out name=’h’/>?

</question>

</x:parse>

<x:parse xmlns:x=’jelly:xml’ var=’answer’>

<wrapper>

<mc-answer><mc-option>Answer A</mc-option>

<mc-text> <out name=’wrong_orbit’/></mc-text>

<mc-verdict>Incorrect</mc-verdict>

<mc-feedback>Wrong!</mc-feedback>

</mc-answer>

<mc-answer><mc-option>Answer B</mc-option>

<mc-text><out name=’O’/></mc-text>
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<mc-verdict>Correct</mc-verdict>

<mc-feedback>Yes, you are right!</mc-feedback>

</mc-answer>

</wrapper>

</x:parse>

</mdc:include-fragment>

Any change of the variables g, h and i triggers not only a new exercise, but
also new examples as described in Section 3.2. As the information in the user
model is timestamped, the student (or his/her teacher) can replay the examples
and exercises anytime.

5.3. Wortel TU/e

Wortel TU/e [37] is a mathematical elearning environment offering students a
wide range of automatically graded exercises. The system is built on the MathDox
software.

Wortel TU/e contains a set of exercises on linear algebra in which a limited
and preliminary version of our context is implemented. By the use of this context,
these exercises provide detailed feedback to the users. A study of the impact of
this extended feedback has shown that it has positive effects on motivation and
learning of the students. For the results of this study, we refer the reader to [5].

6. Related work

There are various systems offering interactive mathematical documents, ranging
from exercises systems like MapleTA [25], STACK [35], Aplusix [3] or the Digital
Mathematics Environment [13], and the notebooks and worksheets offered by CAS
like Mathematica [27], Maple [24], or Sage [33], to learning environments based
on SCORM [34] included in Learning Management Systems. We will compare our
system with those that, to the best of our knowledge, also provide interactive and
adaptive presentation of mathematical documents for intelligent tutoring.

The OMDoc format [7, 20] is a semantics-oriented representation format and
ontology language for mathematical knowledge. It is, just as MathDox, based on
OpenMath and MathML. It is especially tailored for capturing the structure and
interrelations of mathematical objects and statements, i.e. definitions, theorems,
and proofs. The use of OMDoc in mathematical elearning materials is discussed
in [21].

The OMDoc format is also used in the ActiveMath and LeActiveMath sys-
tems, see [30, 23], as well as Panta Rei [22]. Within ActiveMath and LeActiveMath
automatic course generation is based on hierarchical network planning producing
personalised courses that adapt to the user’s learning goals and competencies.

These OMDoc based systems offer a rich format for structuring mathemat-
ics. They also offer various forms of interactivity. However, the way MathDox
provides interactivity and, in particular, adaptation by the use of Jelly and Monet
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queries and the discussed mathematical context, seems to be new. In particular,
our running examples are a novel feature.

ConneXions [4] is an educational knowledge repository. Documents within
ConneXions are written in CNXML [6], a lightweight XML markup language for
educational content. CNXML embeds MathML as well as OpenMath for the rep-
resentation of mathematical objects, but does not provide markup for the math-
ematical structure of the document. Adaptivity is provided by so called ’lenses’.
These lenses are used to select appropriate content for a user according to his
membership to a specific mathematical community.

The Trail Solutions project [10] also aimed at developing a technology for the
generation of personalized teaching materials, notably in the field of mathematics.
However, its starting point was existing static documents. The background of this
project is the ’Slicing Book Technology’. Existing (linear and static) documents
are sliced into pieces and then presented in a nonlinear fashion.

Both ConneXions as Trail Solution only provide tools for static documents.
Their dynamics are restricted to navigation through the document.

Emilea-Stat [14] is an elearning environment in applied statistics. It contains
a large database of small modules containing for example a single theorem, example
or exercises. As the relations between these modules are stored in the database,
it is possible to automatically create (personalized) courses. The various concepts
are accessible in three layers of abstraction: elementary, basic, and advanced. The
interactivity in Emilea-Stat is mainly offered by Java applets.

The various systems described above all offer quite similar possibilities for
automatic creation of interactive mathematical documents and ways of navigation
through these documents. However, the ways to interact with the various parts of
such a document vary a lot. The main features that distinguish MathDox from
these other systems seems to be the notion of (mathematical) context and the
three graphs.

7. Conclusion

In this paper we discussed a formal model for interactive mathematical documents
and explained how it is realized in the MathDox system. In line with the Dex-
ter model [17] and the AHAM model of [11], it is divided into three parts: the
domain, the user, and the presentation model. The main new ingredients in our
formal model are the three graphs that are at the core of the domain: the the-
ory, symbols, and variable graphs. These graphs describe the relations between
the main theories, the mathematical symbols, and the variables in an interactive
mathematical document. Context is then interpreted as both the information re-
garding the user visiting an interactive mathematical document and the state of
the mathematics that is active during that visit. The mathematical context can
conveniently be defined by means of the three graphs. Laws regarding relations
between these graphs are described that capture soundness of the mathematical
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context. This implies control over the proper order of introduction of mathematical
notions and variables.

We have also discussed the realization of the model in the MathDox system,
which is being developed at the Eindhoven University of Technology. Here the
theory graph is the backbone for navigation through a document. This is exem-
plified by interactive navigation features through notes of a knot theory course.
The use of variables consistent with the mathematical context is illustrated in a
group theory exercise from IDA, an Interactive Documents on Algebra set up in
MathDox.

Although the construction of tools for the context handling in MathDox is
still under development, it shows promising advantages over the usual writing of a
document. For instance, an overview of where new symbols are introduced can be
fully automated so that, when a teacher compiles his/her favourite treatment of the
text for a course from a MathDox interactive mathematical document, he/she can
invoke a check whether this choice is mathematically sound (in the sense that no
symbols or variables are used before they are properly introduced) at any desired
moment.

Various aspects need further elaboration. We mention a few of the many
unresolved issues involved in the writing of powerful interactive mathematical
documents that we would like to address. At the end of the Subsections 3.1.3
and 4.1.3 we discussed the concept of typed variables, but the management of
possible types and their dependencies has not been worked out. Also the various
presentation models have to be worked out. Moreover, as our context software is
still in a development phase, we have not been able to evaluate usability. But the
MathDox software has been successfully used within the mathematical elearning
environment Wortel TU/e [37] of the TU/e.
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