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Abstract

We give a complete description of the geometric hyperplanes of the 759-point near
hexagon belonging to M24.

1. Introduction

Consider the unique Steiner system S(5, 8, 24) on a set Ω of 24 symbols. By Γ = (P,L)
we denote the partial linear space (with points set P and line set L) obtained by taking
the 759 octads as points, and the triples of pairwise disjoint octads as lines. The space
Γ is the (unique) regular near hexagon of order (s, t, t2) = (2, 14, 2) on 759 points; its
automorphism group is isomorphic to the Mathieu group M24, see [2, 3, 7].

A geometric hyperplane, or hyperplane for short, of a partial linear space is a subset
of the point set which meets each line in one or all points of the line. In this note we
determine the M24-orbits on the hyperplanes of Γ, completing, correcting and simplifying
the results of Chapter 4 of [5]. This classification is used in the study of circular extensions
of Γ, see [4].

2. The hyperplanes of the near hexagon Γ

Let Γ = (P,L) be the near hexagon on 759 points related to M24. (We use the notation
introduced in the previous section.) In this section we determine the M24-orbits on the
geometric hyperplanes of Γ. But first we discuss some results on embeddings of Γ.

Projective embeddings. A (projective) embedding of Γ = (P,L) is an injective map φ of
P into the point set of a projective space P such that lines are mapped onto lines and φ(P )
generates P. The near hexagon Γ admits three different group-admissible embeddings,
i.e., embeddings into a projective space for which Aut(Γ) 'M24 acts as a subgroup of the
projective linear group on the embedded near hexagon.

First of all, there is the universal embedding into P (U), where U is the quotient of
F2P by the subspace K spanned by the various vectors Σx∈l x, where l ∈ L. Here a point
p is mapped to p+K. By [6], the dimension of U is 23. Any other embedding is a quotient
of this universal embedding.

For every point p ∈ P , the points at distance at most 2 from p form a hyperplane
which we denote by p⊥. The map p ∈ P 7→ p⊥ yields an embedding into the subspace of
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P (U∗), where U∗ is the dual of U . This subspace is 22-dimensional and the embedding is
called the near polygon embedding, see [3]. Finally, we can embed Γ into the 11-dimensional
Golay code module for M24, see [1]. Indeed, if we define the extended binary Golay code G
to be the subspace of the 24-dimensional space F2Ω generated by Σx∈B x, where B runs
through the set of octads of the Steiner system S(5, 8, 24), then the Golay code module is
the space G/〈v〉 where v = Σx∈Ω x, and the map p ∈ P 7→ p + 〈v〉 is an embedding of Γ
into this 11-dimensional Golay code module, see [1].

Hyperplanes. The M24-orbits on the geometric hyperplanes of the near hexagon Γ are
listed in the table below. We explain the notation of this table and how to find the various
M24-orbits on the set hyperplanes.

Let H1 and H2 be two hyperplanes of Γ. Then it is easily seen that the complement
H1 +H2 of the symmetric difference of H1 and H2 is also a geometric hyperplane. So, the
hyperplanes form a F2 vector space, V say, which is isomorphic to the dual of the universal
embedding space U of Γ, see [6]. Below we will analyze the action of M24 on this space of
geometric hyperplanes. In particular, we determine the orbits of M24 on this module.

A 12-dimensional subspace. First we describe some particular hyperplanes of Γ, i.e.,
elements of V . The trivial hyperplane consisting of all octads is denoted by 0, as it is the
zero element in V . If one fixes a symbol o from Ω, then each line of Γ contains a unique
octad containing o. Thus the set of 253 octads containing this symbol is a hyperplane
without any lines, i.e., it is an ovoid of Γ. This ovoid will also be denoted by the symbol
o. As there are 24 elements in Ω, this yields 24 hyperplanes.

We will now determine all the hyperplanes in the subspace VT of V generated by the
24 symbols in Ω. The sum of i different symbols, i ≤ 24, say o1 + · · ·+ oi, is the geometric
hyperplane consisting of the octads missing an even number of symbols from o1, . . . , oi. If
B is an octad, then every other octad meets B in an even number of points. Thus the
hyperplane Σo∈B o contains every octad and is equal to 0. Since a hyperplane which is
the sum of at most 7 symbols is easily seen to be nontrivial, we find that the submodule
of V generated by the hyperplanes o, o ∈ Ω, consists of sums of 0, 1, 2, 3 or 4 symbols.
Moreover, since every tetrad (set of 4 symbols) is in exactly 5 octads, we can describe a
hyperplane, which is the sum of 4 symbols, in exactly 6 different ways as the sum of 4
symbols. The corresponding six tetrads form a partition of Ω, also called a sextet. We
notice that the
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and denoted by 0, o, oo, ooo and oooo, respectively. The submodule VT is isomorphic to
the 12-dimensional Todd module for M24. Its 11-dimensional submodule consisting of the
hyperplanes in the orbits 0, oo and oooo is the 11-dimensional Todd module, see [1].

The remaining hyperplanes. The near polygon embedding in 22-space is self dual
and admits a quotient isomorphic to the Golay code module for M24. The kernel of this
quotient map is then the 11-dimensional Todd module described above. This implies that
the 23-dimensional space of hyperplanes V admits an 11-dimensional quotient isomorphic
to the Golay code module with kernel the 12-dimensional Todd module VT described
above.
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The group M24 has two nontrivial orbits on the Golay code module, one of size 759
corresponding to the octads of the Steiner system, and one of size 1288 corresponding
to duums. A duum is a partition of Ω in two dodecads (i.e., sets of size 12 that are the
symmetric difference of two octads meeting in 2 points). To each octad B we can associate
the hyperplane, labeled by B, consisting of all octads at distance at most 2 from B in Γ,
i.e., octads meeting B in 8, 4 or 0 points. The M24-orbit of hyperplanes labeled by an
octad is denoted by B. If D is a dodecad then each octad meets D in 2, 4 or 6 points.
This implies that either one or all three octads on a line of Γ meets D in 4 points. So to
D we can associate the hyperplane, labeled by D, of all the octads meeting D in 4 points.
The dodecad Ω \D determines the same hyperplane as D. The M24-orbit of size 1288 on
hyperplanes labeled by dodecads is denoted by D. The hyperplanes labeled by octads and
dodecads are the representatives of the various nontrivial cosets of VT in V .

The set of hyperplanes that are a sum of a hyperplane labeled by an octad B and a
hyperplane labeled by up to 3 symbols in or outside the octad is denoted Bi, Bo, Bii, etc.
Since the stabilizer of an octad B induces the full alternating group on the symbols in B
and 24 : L4(2) on the 16 symbols outside B, we easily see that the group M24 is transitive
on the sets Bi, Bo, . . . , Booo. If we fix an octad B and a sextet S, then B is either the
union of two tetrads of S, or it meets 4 tetrads in 2 points, or it meets each tetrad from
S in one or three points. In other words, the point B of Γ is either in the quad of Γ
determined by the sextet S, at distance 1 or at distance 2 from this quad. This leads to
three M24-orbits on hyperplanes denoted by Biiii, Biioo and Biiio, respectively.

The set of hyperplanes that are a sum of a hyperplane labeled by a dodecad D and
a hyperplane labeled by up to 3 symbols in or outside the dodecad is denoted Di, Do,
Dii, etc. The stabilizer of a dodecad D induces the group M12 on D in one of its 5-
transitive actions. On the complement of D it also induces the group M12 on D in one of
its 5-transitive actions, but the two actions on D and its complement are not the same.

From this one easily derives that the group M24 is transitive on the sets Di, Do, . . . ,
Diio. (Notice that by interchanging the rôle of D and its complement we may assume
that the majority of the symbols is inside D.) It remains to describe the M24-orbits on
hyperplanes that are sums of hyperplanes labeled by a dodecad and hyperplanes labeled
by four symbols. Fix a dodecad D. Then have one of the following situations for a sextet
S. One tetrad of S is in D, one misses D and the other four meet D in two points; since
the stabilizer of D induces the 5-transitive group M12 on D, this leads to an orbit on
hyperplanes of size 1288×

(
12
4

)
denoted by Diiii. There are three tetrads in S meeting D

in 3 points and three meeting it in 1 point. This leads to an orbit of hyperplanes of size(
12
3

)
× 12 × 1

3 × 1288 denoted by Diiio. Finally, the remaining 396 sextets S only have
tetrads meeting D in 2 points. This leads to an M24-orbit of hyperplanes of size 396×1288
denoted by Diioo.

The table. In the table below, we give for each M24-orbit on the hyperplanes, its name
(explained above), the universal embedding dimension of the partial linear space induced
on a hyperplane in the orbit (found by computer), the size of the hyperplanes in the
orbit (viewed as collection of octads), the size of the orbit, and the line distribution of a
hyperplane H in the orbit: in iai the number ai is the number of points of H that are on
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precisely i lines entirely contained within H. Moreover the name used in [5] is also given
in the column EWL name. Under the header submodule we describe in which submodule
an orbit can be found, the 11-dimensional Todd module 11-Todd, the 12-dimensional Todd
module 12-Todd, the near polygon embedding module Near Polygon and the dual universal
space Universal. (Notice that 11-Todd is contained in 12-Todd and Near Polygon and that
all are contained in Universal.) Since the orbit sizes add up to the right number 223, the
list is complete. The line distribution helps to identify a given orbit with one from the
list.

M24-orbits on the hyperplanes of Γ

EWL name name udim size orbit size submodule line distribution
(X) 0 23 759 1 11-Todd 15759

(H13) oo 22 407 276 11-Todd 73301577

(H4) oooo 23 375 1771 11-Todd 73601515

o 253 253 24 12-Todd 0253

ooo 43 381 2024 12-Todd 0218360

(H1) B 51 311 1× 759 Near Polygon 32801531

(H14) Bii 23 343 28× 759 Near Polygon 36051927301160151

(H7) Bio 23 351 128× 759 Near Polygon 33551267120970

(H10) Boo 23 407 120× 759 Near Polygon 314712092241142157

(H2) Biiii 23 439 35× 759 Near Polygon 38724925611144157

(H9) Biiio 23 383 896× 759 Near Polygon 35578712091501130

(H5) Biioo 23 375 840× 759 Near Polygon 36596712691281118151

D 22 495 1× 1288 Near Polygon 11495

(H3) Dii 23 367 132× 1288 Near Polygon 33057271809401145

(H11) Dio 23 407 144× 1288 Near Polygon 5227165911011110

(H12) Diiii 23 367 495× 1288 Near Polygon 32456471929641123

(H6) Diiio 23 375 880× 1288 Near Polygon 31855471899781136

(H8) Diioo 23 399 396× 1288 Near Polygon 524718091201175

Bi 23 477 8× 759 Universal 011033612140

Bo 37 365 16× 759 Universal 01562801270

Biii 24 349 56× 759 Universal 014120616010481220

Biio 23 397 448× 759 Universal 41561008135101321215

Bioo 23 381 960× 759 Universal 421614081291084127

Booo 26 365 560× 759 Universal 03436616881081048122

Di 23 341 24× 1288 Universal 416561101066

Diii 23 405 440× 1288 Universal 49654821610901236

Diio 23 373 1584× 1288 Universal 455690818010381210

Subspaces. A subset S of a partial linear space is called subspace if it contains every line
that meets it in at least two points. The partial linear space Γ has many subspaces, and
one may wonder whether any reasonable classification is possible.

A way to obtain many subspaces is the following: Let G be an abelian group, and
u = (uω) a vector indexed by Ω with elements in G such that

∑
uω = 0. Then S(u) :=

{B|
∑

ω∈B uω = 0} is a subspace. If we call such subspaces abelian, then the intersection
of two abelian subspaces is again abelian.
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For example, let us take G = Z16, then, in obvious notation, we have: oo = S(82022),
B = S(48016), D = S(412012), o = S(71(−1)23). We see that there is an embedding (of
abelian groups) of V into the quotient of Z24

16 by the subgroups spanned by twice the
all-1 vector and 8 times the extended binary Golay code; in the image all coordinates are
congruent mod 4 and sum to zero.

A few more large subspaces (that are not hyperplanes) are found in the same way.
For example, the subspace S(u) where u = (24(−2)4016) (with the 4 + 4 positions forming
an octad) is a subspace on 431 points and udim 22, contained in the hyperplane S(2u)
of type Biiii with 439 points. Similarly, the subspace S(u) with u = (111(−3)1(−1)1131)
(with the 11 + 1 positions forming a dodecad) is a subspace on 385 points and udim 22
contained in the hyperplane S(2u) of type Dio with 407 points.

In this way it happens that most hyperplanes have udim 23 again—they are of the
form S(2u) and have hyperplanes S(u) not obtained by intersection with a hyperplane in
the entire space. (Note that u is not determined by 2u.) Of course, isolated points, visible
in the line distribution as points on zero lines, each add 1 to udim. Finally hyperplanes of
type B are unions of a bouquet of 35 quads on a point, and visibly have udim 1+15+35 =
51.

Spanning. A subset A is said to span a subspace S when S is the smallest subspace
containing A. Clearly, this implies that |A| ≥ udim(S). Cooperstein asked whether Γ is
spanned by 23 points, and this is indeed the case, as computer calculation reveals. More
generally, each of the hyperplanes H listed in the table can be spanned by udim(H) points.
Of course there do exist partial linear spaces S with lines of size 3, for which one needs
more than udim(S) points to span. For example, the affine plane AG(2, 3) on 9 points is
spanned by 3 points but has no hyperplanes so that its udim is 0.

One can manufacture a less trivial example S with udim(S) = 6 that requires 7 points
to span as follows. Let a tripod with feet p, q, r be a set of seven points, say x, a, b, c, p, q, r,
and four lines, namely xap, xbq, xcr, abc. Let S be the partial linear space with 21 points
and 15 lines obtained by taking the union of three tripods with feet pi, qi, ri (i = 1, 2, 3)
and adding the three lines p1p2p3, q1q2q3, r1r2r3. One easily checks that at least 7 points
are required to span S.

A tripod admits 8 geometric hyperplanes, each determined by the feet it contains.
So, S has exactly 26 hyperplanes, each uniquely determined by its intersection with the
three lines p1p2p3, q1q2q3, r1r2r3. As we have seen before, these hyperplanes form an F2

vector space, V say. For any pair of points we can find a hyperplane containing one and
not the other point. So, mapping a point of S to the set of hyperplanes containing it,
yields an embedding into P (V ∗). This embedding is universal and udim(S) = 6.
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