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Abstract

In this note we prove the uniqueness of the tight spherical 7-design in R23

consisting of 4600 vectors and with automorphism group 2 × Co2 as well as
the uniqueness of the tight spherical 5-design in R7 on 112 vectors and with
automorphism group 2× Sp6(2).

1. Introduction

In [5], Delsarte, Goethals and Seidel introduced the concept of a spherical t-design
as follows. Consider Rd with its standard inner product 〈·, ·〉 and let O(d) be the
orthogonal group of this space. Denote by Homk(Ωd) the linear space of all functions
V : Ωd → R which are represented by homogeneous polynomials of degree k in the
d coordinates of the elements of Ωd, the unit sphere in Rd.

A finite, nonempty subset ∆ of the unit sphere Ωd is called a spherical t-design
if for all polynomials P ∈ Homk(Ωd), where k ≤ t, and elements T ∈ O(d) we have∑

x∈∆

P (Tx) =
∑
x∈∆

P (x).

Here Tx denotes the image of the vector x under the orthogonal transformation
T .
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As is shown in [5], the cardinality of a t-design is bounded from below. Indeed,
if ∆ is a 2e-design, then

|∆| ≥
(
d+ e− 1
d− 1

)
+

(
d+ e− 2
d− 1

)
and if ∆ is a 2e+ 1-design, then

|∆| ≥ 2

(
d+ e− 1
d− 1

)
.

Spherical t-designs attaining the above bounds are called tight.
Although for any value of t there exist infinitely many spherical t-designs, see

[6], tight t-designs in Rd, with d ≥ 3 only exist for t ≤ 11, see [1]. For t = 11
and d ≥ 3, there exists a unique design in Ω24. Up to scaling it consists of the
196560 vectors of minimal norm 4 in the Leech lattice. Its uniqueness has been
shown by Bannai and Sloane [2]. In this design the inner product between two
vectors equals ±4,±2,±1, or 0. If one fixes a norm 4 vector v of the design, then
there 4600 vectors having inner product 2 with v. Projection of these vectors onto
the orthogonal complement of v and rescaling yields a tight spherical 7-design on
4600 vectors in R23 with automorphism group 2× Co2. Bannai and Sloane [2] also
showed the uniqueness of this design by embedding it into the Leech lattice and the
11-design on 196560 in R24. In the same paper, Bannai and Sloane also present a
proof of the uniqueness of a tight 5-design on 112 vectors in R7. This design can
be obtained from the E8-root lattice. Indeed, if v denotes a vector of norm 2 in the
E8-root lattice, then projection of the 112 vectors making inner product −1 with v
on the orthogonal complement of v yields 112 vectors of a tight spherical 5-design
in R7 with automorphism group 2× Sp6(2). In this note we give a different proof of
the uniqueness of both the tight 7-design in R23 and the tight 5-design in R7.

Theorem 1.1 There exists (up to orthogonal transformations) a unique tight spher-
ical 7-design in R23 as well as a unique tight spherical 5-design in R7 .

In our proof of the above theorem we exploit the geometry of the designs. The
4600 vectors of the tight spherical 7-design ∆ described above come in antipodal
pairs. Moreover, the inner product between two vectors from ∆ equals ±1,±1/3 or
0. The set ∆ is tetrahedrally closed, i.e., if three vectors of ∆ are the vertices of a
regular tetrahedron centered at the origin, then the fourth vertex of the tetrahedron
is also present. If we fix a norm 1 vector v in ∆, then the set of tetrahedra on
this particular vector induces a partial linear space on the set of 891 vectors having
inner product −1/3 with v. This partial linear space is a dual polar space of type
PSU6(2), see [7]. Fixing a generalized quadrangle of order (2, 4) (a so-called quad,
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see [7]) inside this near hexagon, we obtain a set of 28 vectors, v together with
the 27 vectors from the quad, which have pairwise inner product equal to −1/3.
Together with their antipodes this yields a set of 56 vectors of norm 1 forming the
tight spherical 5-design in Ω7 as described above, see [5]. The pairs of vectors with
inner product −1/3, the tetrahedra and spherical 5-designs on 56 vectors inside ∆
form a Buekenhout geometry with diagram

s s s s
vectors pairs tetrahedra 5-designs

c

Both the spherical 7-design and the 5-design are characterized by these geometric
properties, as is shown in [4]. These characterizations are used to prove Theorem
1.1.

2. Tight spherical designs in R7 and R23

Let ∆7 be a tight spherical 5-design in R7, and ∆23 a tight spherical 7-design in R23.
Then

|∆7| = 2 ·
(

7 + 3− 1
6

)
= 112,

and

|∆23| = 2 ·
(

23 + 3− 1
22

)
= 4600.

After rescaling we may (and do) assume that all vectors in ∆7 and ∆23 have norm
3.

Lemma 2.1 (i) If v, w ∈ ∆7, then 〈v, w〉 = ±3 or ±1. Moreover, −v ∈ ∆7.

(ii) If v, w ∈ ∆23, then 〈v, w〉 = ±3, ±1 or 0. Moreover, −v ∈ ∆23.

Proof. This follows by Theorem 5.12 of [5]. 2

Let d be 7 or 23. Suppose α ∈ R, then by ∆d,α we denote the set of all pairs of
vectors (v, w) from ∆d with inner product α. If v ∈ ∆d, then ∆d,α(v) denotes the
set of vectors in ∆d having inner product α with v. Of course, the relevant values
for α are ±3,±1 and 0.

Consider the graph Γd with vertex set ∆d and and edge set ∆d,−1. The distance
distribution diagram of Γd with respect to a vector v is uniquely determined, see [5,
Theorem 7.4] and its proof. The distribution diagrams for both d = 7 and d = 23
are displayed below.
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The next proposition is crucial in our proof of Theorem 1.1, as it reveals the
geometry of the designs. Its proof relies heavily on the basic results on spherical
designs obtained by Delsarte, Goethals and Seidel, see [5]. (For the notion and
theory of near hexagons, the reader is referred to [7].)

Proposition 2.2 Let v be a vector in ∆d. Then the subgraph of Γd induced on
∆d,−1(v) is the collinearity graph of a generalized quadrangle of order (2, 4) when
d = 7, and, of a regular near hexagon of order (2, 4, 20) when d = 23.

Proof. First consider the case d = 7. Fix a vector v in ∆7. The projection of
∆7,−1(v) onto the orthogonal complement of v yields a set of 27 vectors in R6. As is
shown in [5, Theorem 8.2], these vectors form a tight spherical 4-design on 27 vectors
in R6. After rescaling the vectors to norm 4, the inner product between any two
vectors in this 4-design equals 4,−2, 1,−1. Such a design carries a 2-class association
scheme, cf. [5, Theorem 7.5]. In particular, by [5, Theorem 7.4], the intersection
numbers are uniquely determined. But that implies that the subgraph of Γd induced
on ∆7,−1(v) by taking as edges the pairs of vectors with inner product −1, is distance
regular graph with intersection array {10, 4; 5, 1}. (Indeed, in the known example,
the local graph is the collinearity graph of a classical generalized quadrangle of order
(2, 4), which is distance regular with the above intersection array.) In particular,
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as any distance regular graph with intersection array {10, 4; 5, 1} is the collinearity
graph of a generalized quadrangle of order (2, 4), we have proved the lemma for
d = 7.

Now assume d = 23. As before, fix a vector v in ∆23. The projection of ∆23,−1(v)
onto the orthogonal complement of v now yields a set of 891 vectors in R22. As is
shown in [5, Theorem 8.2], these vectors form a spherical 5-design on 891 vectors in
R

22. After rescaling the vectors to norm 8, the inner product between any two vec-
tors in this 5-design equals 8,−4, 2,−1. Such a design carries a 3-class association
scheme, cf. [5, Theorem 7.5]. In particular, by [5, Theorem 7.4], the intersection
numbers are uniquely determined. But that implies that the graph induced on
∆23,−1(v) is distance regular graph with intersection array {42, 40, 32; 1, 5, 21}. (In-
deed, in the known example, the local graph is the collinearity of the classical near
hexagon related to PSU6(2), a distance regular with the above intersection array.)
Since any two adjacent vertices of this local graph have a unique common neighbour,
we see that this graph carries the structure of a partial linear space with lines of size
3. Now it is easy to check that this partial linear space is a regular near hexagon of
order (2, 4, 20), see [7]. This proves the lemma. 2

We notice that there exists, up to isomorphism, a unique generalized quadrangle
of order (2, 4) and a unique regular near hexagon of order (2, 4, 20), see for example
[7].

The above lemma implies that if u, v and w are three vectors of ∆d with 〈u, v〉 =
〈v, w〉 = 〈w, u〉 = −1, then there is a fourth vector x ∈ ∆ with 〈x, y〉 = −1 for y
equal to u, v or w. But then 〈x+u+v+w, x+u+v+w〉 = 0, so x = −(u+v+w). In
other words, if u, v and w are three vectors of ∆ forming three vertices of a regular
tetrahedron centered at the origin, then the fourth vertex of that tetrahedron (i.e.,
−(u+ v + w)) is also present in ∆d. We say that ∆d is tetrahedrally closed.

The above implies that the lines spanned by the vectors of ∆d form a regular line
system in Rd, in the sense of [4]. By Theorem 1.1 of [4], this line system, and hence
∆d is unique up to orthogonal transformations. This of course, proves Theorem 1.1.

For convenience of the reader, we sketch a proof of the uniqueness in case d = 7.

Assume d = 7 and let L be the set of 28 lines spanned by the vectors of ∆7. A
tetrahedron (of lines) is considered to be the set of 4 lines spanned by 4 vectors of ∆7

forming the vertices of a regular tetrahedron centered at the origin. If we fix a line
l ∈ L, then l is contained in 45 tetrahedra. These tetrahedra induce the structure
of a generalized quadrangle of order (2, 4) on the remaining 27 lines different from
l, see Proposition 2.2. If T1 and T2 are two tetrahedra on l meeting in a second line,
then the symmetric difference T1 ∪ T2 \ (T1 ∩ T2) is again a tetrahedron. Actually,
any tetrahedron not on l can be obtained as such a symmetric difference. As, up to
isomorphism, there is a unique generalized quadrangle of order (2, 4), this implies
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that the Gram matrix of ∆7 is uniquely determined. Indeed, let +l and −l be the
two norm 1 vectors on l, then we can choose on each line m ∈ L different from
l the two vectors +m and −m of norm 1 in such a way that 〈+l,−m〉 = −1/3
and 〈+l,+m〉 = +1/3. But then 〈−m,−n〉 = −1/3 if and only if l,m and n are
three lines in a tetrahedron, or equivalently, m and n are collinear in the generalized
quadrangle induced on L \ {l}.

The uniqueness of the Gram matrix of ∆7 clearly implies the uniqueness of the
design. So we have obtained a proof of Theorem 1.1 in the case that d equals 7.

Although the uniqueness proof in case d = 23 is much harder, it is along the
same lines. For details we refer the reader to [4].
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