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Abstract We propose a new model order reduction (MOR) approach to obtain ef-
fective reduction for transport-dominated problems or hyperbolic partial differential
equations. The main ingredient is a novel decomposition of the solution into a func-
tion that tracks the evolving discontinuity and a residual part that is devoid of shock
features. This decomposition ansatz is then combined with Proper Orthogonal De-
composition applied to the residual part only to develop an efficient reduced-order
model representation for problems with multiple moving and possibly merging dis-
continuous features. Numerical case-studies show the potential of the approach in
terms of computational accuracy compared with standard MOR techniques.

1 Introduction

Hyperbolic partial differential equations (PDEs) are ubiquitous in science and engi-
neering. Applications encompassing the fields of chemical industry, nuclear industry,
drilling industry, etc., fall within this class. Model Order Reduction of systems of
non-linear hyperbolic PDEs is a challenging research topic and is an active area of
research in the scientific community. Moving discontinuities (such as shock-fronts)
are representative features of this class of models and pose a major hindrance to
obtain effective reduced-order model representations [1]. As a result, standard MOR
techniques [2] do not fit the requirements for real-time estimation and control or
multi-query simulations of such problems. This motivates us to investigate and pro-
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pose efficient, advanced and automated approaches to obtain reduced models, while
still guaranteeing the accurate approximation of wave propagation phenomena.

A lot of research is in progress to improve the state of the art of MOR for transport-
dominated problems: (i) (data-based and model-based) time and space-dependent
coordinate transformation/ symmetry reduction framework [3, 4, 5, 6, 7, 8], (ii)
optimal transport [9, 10, 11], (iii) interpolation/ dictionary/ tracking framework
[12, 13, 14], (iv) adaptive and stabilization strategies [15, 16], and, (v) deep learning/
neural network concepts [17, 18]. These works have mainly focused on resolving
transport along a single direction [3] and multiple directions [4] for linear and
non-linear classes of (parameterized) problems.

Effective reduction of non-linear transport-dominated problems in the context
of multiple moving (and merging) discontinuous features is still challenging. Few
notable works that aim at mitigating this problem are [12, 13, 4]. The works [12,
13] are based on the concept of (low and high resolution) transformed snapshot
interpolation. Such an approach has been particularly tested in the regions near (and
at) the singularity, induced upon merging of the wavefronts. Another work in this
direction is the concept of freezing multiple frames [19]. However, their performance,
demonstrated for parabolic problems, does not carry over to less regular hyperbolic
problems and suffers from additional travelling structures or numerical instabilities in
the decomposed components. Moreover, the existing methods [4, 19] lack the (online-
efficient) automated identification of switching point from multiple wavefront setting
to single wavefront setting upon merging of wavefronts.

We propose an approach that is a stepping stone towards resolving the aforemen-
tioned issues. The main contribution of the work is to propose a new decomposition
ansatz that decomposes the solution into a basis function that tracks the evolving
discontinuity and a residual part that is expected to be devoid of shock features. This
decomposition renders the residual part to be amenable for reduced-order approxi-
mation. We, then, use these generated bases to apply Proper Orthogonal Decompo-
sition (POD) on the residual part and later reconstruct the solution by lifting it to
the high-dimensional problem space. We finally assess the combined performance
of decomposition, reduction and reconstruction approach (as opposed to conven-
tional reduction and reconstruction approach) in the scope of transport-dominated
problems with moving and interacting discontinuities.

2 Mathematical Formulation

We consider a scalar 1D conservation equation of the form:

Oru(x,t) + Ox f(u(x, 1)) =0, u(x,0) = up(x). (1

We assume that u(x,0) = up(x) already has S number of discontinuities at loca-
tions x1(0),...,xs(0) with values u (x4(0),0), s = 1,...,S from the left and val-
ues u*(x;(0),0), s =1,...,S from the right. We associate a single basis function
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os(x — x4(t)) to each discontinuity at their respective locations. This basis function

has a jump of height 1, i.e., o7 (0)—o7; (0) = 1, at the location of the discontinuity and

can have any (preferably continuous and smooth) shape away from the discontinuity.
We now decompose the solution of (1) in the following way:

S
u(t) = 3 joOo(x = x(0) + up(x,1),
s=1

Js(t) = u™ (xs(0),1) = “+(xs(t), 1). ()

If x,(¢) exactly matches the shock locations and (2) is exactly fulfilled, then u, (x, 1)
does not contain any discontinuities and is amenable to a low-rank approximation.
The time-stepping scheme is defined in the following way. In each time step, we:

« Compute updated shock locations x4 (#**!) using the Rankine Hugoniot condition.
p p g g
o Compute u*(xs(*1),#"*!) in a neighborhood of x¢(r**!) and define jumps,
Js(™*), via (2).
+ Compute the residual part u,(x,#**!) from

ur(x» t”+1) - ur(x’ tn) =

S S
D s (x = (M) = At fu(x ") = Y st Do (x = x5, (™). (3)
s=1 s=1

The standard way to construct a reduced-order model (ROM) is to reduce (1) by
applying Galerkin projection on u. Instead, we reduce (3) via Galerkin projection
onto Vv C Vi, where Vy is a N-dimensional reduced space spanned by the functions
obtained from a truncated singular value decomposition of the u,- snapshot matrix,
and Vj, is a h-dimensional high-fidelity space. Upon considering the projection
operator Py : Vj, — Vp, the reduced scheme takes the following form:

S
uy =l o+ P D e () = xn (4) = At f(Pyud )~

s=1

s
Doy = x @) @)
s=1
where u’r‘ ~ € Vi and u?» N= Pn (%) with ”11(\/ defined in the following form:

N
Pyl = > o n(F)o(x = 2 (1F)) + PRk, 5)
s=1
and, js y and x,, y are, respectively, the jumps and shock locations computed during
the ROM time-stepping. js v and x n can be obtained in a manner similar to the
steps carried out during the full-order model (FOM) time-stepping.
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It is well known that projection alone is not sufficient to reduce the costs of
computing the solution of a reduced-order model if the Finite Volume operators are
non-linear in nature. Empirical Operator Interpolation [20] can be used here as a
recipe for hyper-reduction. We do not delve into the full and efficient offline and
online decomposition as its discussion is not within the scope of this work. However,
we mention that we need to know j n(t*) and u, n(xs (%), %) for computing
Xs, ~ (1), In a reduced scheme this means that we need to keep the entire reduced
basis in memory. However, the basis vectors are only evaluated at the shock locations
at each time step. The same consideration holds for the computation of the jg n (£%*1).

3 Numerical Experiments

We numerically test the new approach and show its potential as a reduced-order
modelling technique. We reduce Burgers equation, which is given by:

w2
Opu + Bx(?) =0,x €[0,L]. (6)

The case studies consider that the shock is already present in the initial data,
which for single and multiple wavefront scenarios, is respectively given by:

x—2, 2<x<4,
and u(x,0) = up(x) = (xz;s) 5<x<7,

0, otherwise.

<x<1
u(x,o):uo(x):{xa O_X_ s

0, otherwise

We consider only periodic boundary conditions. Furthermore, we consider the
spatial domain to be L = 10 and use an upwind finite volume (FV) scheme for the
spatial discretization and first-order Forward Euler for the time-stepping. We take
8000 steps in time for the scenarios under considerationi.e., ¢ € [0,4] with a timestep
of 0.0005. We consider three different spatial mesh resolutions (spatial step size of
0.005, 0.002 and 0.001) to assess the performance of the standard (POD without
decomposition) and the proposed approach.

We quantify the performance of the standard and the proposed approach by
computing the reduced-order modeling (ROM) error. We consider L? in space and
L? in time (absolute) error and define it in the following manner (for a basis-size N):

Nr+1 Ny 5
erom = \[At D" Ax Y ik = (Pyuk )ix I ™
k=1 i=1

where At is the time-step, Ax is the spatial step, Ny is the number of time-steps
and N, is number of Finite Volume elements. u; x means u at x = x; and ¢ = f;
(similarly for (P;\,u’;\,),-,k). Herewith, (7) expresses the error between the full-order
model (Finite Volume solution) governed by (1) and the reconstruction given by (5)).
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3.1 Single wavefront scenario

We first consider the scenario where only a single discontinuous front evolves across
the spatial domain. Here, we use the following shape function for os(x — x):

l+x—x5 x3—1<x< x4,

os(x — xg) = { , s=1,.,8, ®)

0, otherwise.

with S = 1, x;(t = 0) = 1.

3.2 Multiple wavefront scenario

Here, we consider the setting where multiple (discontinuous) wavefronts evolve
across the spatial domain and also interact non-linearly with each other. We study
the scenario where two wavefronts are present in the spatial domain and the left
front propagates faster than the right one. We, however, restrict the study to only
assess the performance of the proposed approach in dealing with the interaction of
the head of one wavefront with the tail of the other one. We postpone the discussion
of automatically dealing with the merging of wavefronts for future work. We use the
following shape function for o5(x — x5) to study this scenario.

1
1+§(x_xs)’ Xg =2 < x < X,
0, otherwise

O-s(x - xs) = {

with § =2, x;-1(t =0) =4 and x,»(r =0) = 7.

3.3 Discussion

Interpolation of oy (x — x4(¢)) onto the FV mesh results in numerical approximation
error. As a result, we observe residual jumps in the residual part, u,, during FOM
simulation. The aim is to build a reduced space by applying POD on the residual
part. One option could be to build the bases (or reduced space) from the computed
residual part (with residual jumps). An other alternative could be to post-process the
residual part (computed during FOM) in order to get rid of the residual jumps. This
post-processed residual part, which is even more low-rank approximable than the
residual part with residual jumps, can be then used to build the (effective) reduced
space. We invoke one of these ways to generate the bases and build a ROM.

We, first, consider the setting where the shock locations and jumps computed
during FOM simulation are used during the ROM time-stepping i.e., we assume that
Js.N = js and xg y = xs. We, further, use the computed residual part (with residual
jumps) to generate the bases. We can clearly see the benefits of the proposed approach
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in Figure 1, which shows the behavior of the ROM error for increasing basis sizes N
across different mesh resolutions. Firstly, the initial error incurred via the proposed
approach is clearly lower than that of the standard approach. This is attributed to the
fact that our decomposition approach associates a basis function corresponding to
the travelling discontinuity. Secondly, the rate of decay of the error is better for the
proposed approach compared to the standard approach. We also see that the ROM
error for the standard approach is larger for finer mesh-sizes. This occurs as the effect
of the shock becomes more pronounced for finer meshes. Also, the finer mesh implies
less numerical viscosity. We also observe that the ROM errors could even increase
with an increment in the basis size. It can be argued that this could occur as a result
of insufficiently many basis functions. However, the ROM error for the proposed
approach decreases with an increment in basis size. Moreover, the ROM error is
lower (and stagnates later) for finer mesh-sizes. This can be argued from the fact that
the proposed approach is able to resolve the shock more accurately at finer meshes.
This error behavior is clearly in contrast to that of the standard approach which fails
to efficiently capture the shock. As a result, the difference between the ROM error (at
a certain number of basis function) computed via standard and proposed approach
becomes even more pronounced for finer meshes.

Figure 2 demonstrates the performance for fully ROM computations, i.e., shocks
locations, xs n and jumps, js n are computed during ROM time-stepping. We
perform post-processing on the residual part computed during FOM. u, is post-
processed by linear interpolation between the locations x;, x; where the local min-
imum u* and maximum u~ in a neighborhood of x; is attained. We, then, generate
the bases from this post-processed residual part. The post-processing was not needed
in an earlier setting (discussed in the paragraph above) as accurate shock locations
and jumps from the FOM simulation were used. However, it becomes essential here
in order to approximate x; n and js ny within the ROM time-stepping with good
accuracy. We observe that the proposed approach still performs better than the stan-
dard approach. However, the proposed approach seems to incur larger ROM error for

——ROM error (standard) on dx = 0.005
——ROM error (modified) on dx = 0.005
ROM error (standard) on dx = 0.002
——ROM error (modified) on dx = 0.002
~——ROM error (standard) on dx = 0.001
ROM error (modified) on dx = 0.001
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Fig. 1 ROM error upon using shock locations and jumps computed during FOM simulation: (left)
single wavefront scenario and (right) multiple wavefront scenario.
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1 OO - ——ROM error (modified, post-processed, fully ROM computations) at dx = 0.002

ROM error (standard) at dx = 0.001
——ROM error (modified, post-processed, fully ROM computations) at dx = 0.001
1 0—1 L
IS
o
—_
()
1 0—2 L
1 0.3 I I I I L
0 5 10 15 20 25 30 35 40

M (Number of Modes)

Fig. 2 ROM error under fully ROM computations for the single wavefront scenario.

larger POD mode numbers. Similar issues (not included in this paper) are observed
for the multiple wavefront scenario. Such issues did not exist when we used the shock
locations and jumps from FOM during the ROM time-stepping. Hence, the issues
could be caused from a poor approximation of the shock. A possible explanation
could be that we have more oscillations (around the shock position in the residual
part) as the number of POD modes increases. The oscillations, which appear due to
the reduced regularity of the residual part, lead to wrong computation of x, n and
Js.n- It is clear that x; x (and js n) need to be approximated with good accuracy.
The error in x, n, which would increase over time, should be in the order of the
discretization error to achieve an overall ROM error in the order of the discretiza-
tion error. A mitigating measure could be to improve shock approximation similar to
[14]. The high-frequency modes could also be a source of the problem. The potential
solution could be to filter out the high-frequency modes when advancing the shock.

4 Conclusions

We have proposed a decomposition ansatz and used it in conjunction with POD. We
have show-cased the performance of the proposed approach on the Burgers equation.
The proposed approach is able to resolve the discontinuities and also offers reduction
in ROM error. Future work will deal with resolving issues that exist in the proposed
approach for larger POD mode numbers. Moreover, we will adapt the discussed
formulation for system of conservation laws. We will also assess the performance of
the method for parametrized scalar and system of conservation laws.
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