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Abstract Accurate and real-time temperature control for wafer heating is one of
the main challenges in semiconductor manufacturing processes. With reduced-order
modelling (ROM), the computational complexity of the mathematical model can be
decreased in order to solve the model quickly at a low computational cost, while
still maintaining the computational accuracy. However, the translating temperature
profile, due to moving sources, render the standard reduction approaches to be in-
effective. We propose to invoke the concept of the “Method of Freezing” and use
it in conjunction with the standard ROM approaches to obtain an effective low-
complexity model. We finally assess the effectiveness of the proposed approach on
the 2-dimensional heat equation with moving heat loads. Numerical results clearly
show the potential of the proposed approach over the standard one in terms of com-
putational accuracy and the dimension of the resulting reduced-order model.

1 Introduction

In photolithography, feature sizes are decreasing in effort for manufacturers to keep
up with Moore’s law. This has prompted the use of higher energy lasers, leading to
more wafer heating and, therefore, more thermal expansion. Accurate and real-time
prediction of the temperature distribution around the moving laser beam is a neces-
sity as this facilitates to correct the laser beam trajectory and to create the desired
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temperature at every place on the wafer [1]. However, this remains a challenge since
standard numerical methods take a lot of computational time, and the increased res-
olution requirements due to the reduced feature sizes slow the model down.

Reduced-order modelling (ROM) reduces the model complexity and aids in real-
time prediction of the quantity of interest. Translating temperature profiles, due to
moving sources, render the standard ROM approaches ineffective [2]. Hence, we
propose to invoke the “Method of Freezing” along with standard ROM approaches
in order to obtain an effective low-complexity model computable in real-time.

The concept of the “Method of Freezing” has been applied on parabolic and hy-
perbolic problems in the past [3]. However, [4] is the only work which so far exploits
the “Method of Freezing” for non-linear reduced basis approximations. This work
considers a numerical experiment, which falls in the realm of hyperbolic problems,
namely the parameterized Burgers-type problem in 2D (without source terms).

The main contribution of this work is to use the “Method of Freezing” in conjunc-
tion with standard ROM approaches to facilitate accurate and real-time prediction of
the temperature. The “Method of Freezing” relies on an ansatz that decomposes the
original dynamics into shape and travelling dynamics. The resulting shape dynam-
ics is amenable for an efficient basis generation. We then use these generated bases
to apply Proper Orthogonal Decomposition (POD) on the shape dynamics and, ul-
timately, obtain a reduced-order model. We finally assess the performance of the
combined approach of the “Method of Freezing” and reduced basis approximations
on a test-case of practical relevance, and discuss the computational merits of the
proposed ROM approach over the standard one.

The paper is organized as follows. In Section 2.1, we introduce the 2-dimensional
heat equation and discuss the numerical method for its discretization. We invoke the
idea of the “Method of Freezing”, reformulate the model problem and present the
corresponding discretized representation in Section 2.2. A Galerkin-type projection-
based ROM is performed on a semi-discrete model representation in Section 3. A
numerical case-study is presented in Section 4 to showcase the effectiveness of the
proposed approach. Finally, Section 5 ends with conclusions and future works.

2 Theory

In this section, we first introduce the model and the numerical method employed
for the spatio-temporal discretization. We then introduce the idea of the “Method of
Freezing” and present a model reformulation and its discrete representation.

2.1 Model introduction

To model the wafer heating, we use the well-known heat equation in two-dimensions.
As the height of the wafer is one order of magnitude less than the length and the
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width of the wafer, the temperature gradient along the thickness of the wafer is very
small. This makes the 2-dimensional heat equation a good approximation of the real
situation. The 2-dimensional heat equation is governed by:

∂u
∂ t
−α

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
= Q(x,y, t), (x,y) ∈Ω , t ∈ [0, t f ], (1)

u(x,y, t = 0) = u0, (2)

nx
∂u
∂x

+ny
∂u
∂y

= 0 on ∂Ω , (3)

where u represents the wafer temperature, u0 stands for a constant initial tempera-
ture, Ω stands for the spatial domain of interest, n = (nx,ny) denotes the normal to
the boundary ∂Ω , t f indicates the final simulation time, and α is the thermal diffu-
sivity constant. The thermal diffusivity constant can be expressed with the thermal
conductivity k, the specific heat capacity Cp and the density ρ of the wafer in the
form α = k

ρCp
. Here, a moving heat load Q(x,y, t) is assumed to be of the non-affine

form:

Q(x,y, t) = e−
1
2 (

x−cxt
σx )

2− 1
2

(
y−cyt

σy

)2

, (4)

where cx and cy are the speeds of the heat load in the x− and y−direction, re-
spectively and, the variance of the Gaussian distribution along the x− and the
y−direction is given by σ2

x and σ2
y , respectively.

After multiplying (1) by a smooth test-function w, integrating over the domain
and invoking Green’s theorem, a weak formulation of the 2-dimensional heat equa-
tion can be constructed, resulting in:∫

Ω

∂u
∂ t

wdA+α

(∫
Ω

∂u
∂x

∂w
∂x

dA+
∫

Ω

∂u
∂y

∂w
∂y

dA
)
−α

∫
∂Ω

∂u
∂n

wds =
∫

Ω

QwdA,

(5)
where dA = dxdy and ds is a boundary surface element. Using (3), the fourth term
on the left-hand-side of (5) cancels out [5].

In order to solve (5) numerically, discretization in space and time is necessary.
We discretize the domain such that the structured mesh aligns with the orientation
of the features which need to be printed. We then employ a finite element method
to discretize in space. We approximate the solution with a summation over B-spline
basis-functions φi, u = ∑

N
i=1 ui(t)φi(x) [6]. Here, N is the number of finite elements

used in the domain discretization and ui is the weight of every basis function. To
discretize in time, the first-order backwards Euler method is applied as is also used
in Chapter 8 of [5]. Discretizing in both space and time results in the following
equation:

Muk+1 +∆ tαDuk+1−∆ tQ̃k+1 = Muk, (6)

where M is the mass matrix, D is the diffusion matrix, Q̃ is the source vector rep-
resentative of the moving heat loads and ∆ t indicates the time-step. Equation (6)
needs to be solved for every time instant k+1.
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The numerical solution will be at most first-order accurate if the first-order back-
wards Euler method is applied in conjunction with the higher-order spatial dis-
cretization. However, in this paper, we are not concerned about the order of accuracy
of the numerical solution, but intend to show the potential of the “Method of Freez-
ing”. To this end, the first-order temporal discretization is representative enough for
quantifying the numerical performance, while being simple to implement. The im-
plementation of a higher-order temporal discretization is deferred to future works.

We will now discuss a change of coordinates or so-called “Method of Freezing”
that we propose to use in conjunction with standard ROM techniques to obtain an
effective complexity reduction for problems with moving heat load(s).

2.2 Model reformulation: Method of Freezing

The “Method of Freezing” maps all symmetry-related solutions to a single class
of solutions. This method separates the dynamics in the group direction from the
dynamics in the remaining directions of the phase space. The general idea of this
method is to perform a coordinate transformation of the form:

u(x,y, t) = v(x− cxt,y− cyt, t) = v(ξx,ξy, t), (7)

Incorporating (7) in (1) results in the following modified heat equation:

∂v
∂ t
− cx

∂v
∂ξx
− cy

∂v
∂ξy
−α

(
∂ 2v
∂ξ 2

x
+

∂ 2v
∂ξ 2

y

)
= Q(ξx,ξy). (8)

This modified heat equation is quite similar to the original equation given in (1),
except the additional second and third term on the left-hand side which represent an
extra convection term. The weak formulation of (8) under zero Neumann boundary
conditions is given by:∫

Σ

∂v
∂ t

wdξxdξy− cx

∫
Σ

∂v
∂ξx

wdξxdξy− cy

∫
Σ

∂v
∂ξy

wdξxdξy

−α

(∫
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∂v
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∂w
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∫

Σ

∂v
∂ξy

∂w
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dξxdξy

)
=
∫

Σ

Q(ξx,ξy)wdξxdξy,

(9)

where Σ represents the transformed domain as per the coordinate transformation.
Discretizing (9) in space and time yields:

Mvk+1 +α∆ tDvk+1−∆ tCvk+1−∆ tQ̃k+1 = Mvk, (10)

where M and D are, respectively, the mass and diffusion matrix, and C is the con-
vection matrix.

Although we consider constant cx and cy, the “Method of Freezing” can handle
time-dependent speeds by adding an ingredient known as phase conditions; see [3].
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3 Reduced order modelling

In this section, we build a reduced-order model both via the standard and the pro-
posed ROM approach. The standard and the proposed ROM approach, built upon a
Galerkin type projection-based ROM methodology [7], is discussed in Section 3.1
and Section 3.2, respectively.

3.1 Standard reduced order modelling approach

The numerical solution of the 2-dimensional heat equation can be written as a u-
snapshot matrix, where every column k represents the solution at the k-th time-
step. Upon performing singular value decomposition (SVD) on the snapshot matrix
composed of u, a projector PT : Uh → Ur is obtained and further used to build a
reduced-order model. Here, Uh is a h-dimensional high-fidelity space and Ur is a
r-dimensional reduced space spanned by the functions obtained from a truncated
singular value decomposition of the u snapshot matrix. The standard reduced-order
model is given by:

Mreduk+1
red +α∆ tDreduk+1

red −PT
∆ tQ̃k+1 = Mreduk

red , (11)

where Dred =PT DP and Mred =PT MP are the reduced diffusion and mass matrices,
respectively.

3.2 Proposed reduced order modelling approach

The proposed novel ROM approach employs the “Method of Freezing” in conjunc-
tion with standard projection-based reduction techniques. We again employ SVD.
However, in this proposed framework, the SVD is performed on the v snapshot ma-
trix, instead of the u snapshot matrix. We now obtain a projector LT : Vh→Vr where
Vh is a h-dimensional high-fidelity space and Vr is a r-dimensional reduced space
spanned by the functions obtained from a truncated singular value decomposition of
the v snapshot matrix. Finally, the proposed (frozen) reduced-order model is:

Mred,pvk+1
red +α∆ tDred,pvk+1

red −∆ tCred,pvk+1
red −LT

∆ tQ̃k+1 = Mred,pvk
red , (12)

where Cred,p = LTCL represents the reduced matrix corresponding to the extra con-
vection term, and, Mred,p = LT ML and Dred,p = LT DL, respectively, represent the
reduced mass and diffusion matrices.
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4 Numerical results

In this section, we numerically test the proposed (Freezing-POD) approach and
show its effectiveness as a reduced-order modelling technique.

Let the domain of the wafer be given by Ωd = [−0.01,0.02]m× [−0.02,0.04]m.
The wafer is subdivided into 9 smaller rectangular sub-domains and each sub-
domain has the dimensions 1 by 2 cm. The heat load will move around one of these
sub-domains in practice. In order to not consider the boundary conditions close to
the boundary edges of the wafer, we consider that the laser only moves over the
middle sub-domain Ω , i.e., Ω = [0,0.01]m× [0,0.02]m. Motivated by the applica-
tion, we consider u0 in (2) to be equal to the room temperature, i.e., u0 = 298K.
Furthermore, we spatially discretize a rectangular sub-domain by a 20× 20 mesh,
i.e., 400 finite-elements. Moreover, we consider a silicon wafer with thermal diffu-
sivity constant α = 8.8 ·10−5 m2/s [8]. Additionally, we assume that the laser has a
surface of approximately 2 by 20 mm. As a result, the variance in the x-direction,
σ2

x , is 0.002 m, and the variance in the y-direction, σ2
y , is 0.02 m. We take 50 steps

in time for the scenario under consideration, i.e., t ∈ [0,0.05]s with a time step of
0.001s. A laser is considered to move along the x-direction with a speed of 0.2 m/s
for first 25 time steps, i.e., cx = 0.2 m/s and cy = 0 m/s for t = [0,0.025]s and along
the y-direction with a speed of 0.2 m/s for next 25 time steps, i.e., cx = 0 m/s and
cy = 0.2 m/s for t = (0.025,0.05]s.

We build the snapshot matrix composed of solution u obtained in (6) and an-
other snapshot matrix composed of shape dynamics v obtained in (10). We then
perform SVD on these snapshot matrices to obtain the corresponding singular val-
ues, whose decay behavior is known to give a good expectation about the possible
reduction in the dimensionality of the full-order model. In Figure 1, the singular
value decay behavior for the proposed and the standard ROM approach is shown.
It can be observed that incrementing the number of POD modes by one yields a
sharp initial decrease in the singular values both for the proposed and the standard
ROM approach. However, post the sharp decay, we can see that the singular values
corresponding to the proposed approach decay faster than the one corresponding to
the standard approach. An initial sharp decrease is attributed to the fact that only a
single mode is representative enough to capture the mean temperature on the silicon
wafer. Other modes are required to accurately determine the change (with respect
to the mean) in the temperature due to the moving heat loads. The observed decay
behavior clearly indicates a possibility of an effective dimensionality reduction if
the “Method of Freezing” is used together with the standard ROM techniques.

Further computational benefits of the proposed approach over the standard one
can be clearly seen in Figure 2, which shows the behavior of the reduced-order
modelling (ROM) error for increasing dimensions of the reduced-order model. We
assess the error of the standard and proposed approaches in the (absolute) L2-norm
in space and time. The error via the standard approach corresponds to the difference
between the finite-element based numerical solution u and the reconstructed solu-
tion obtained by lifting the standard reduced-order solution ured , obtained in (11),
to the high-dimensional problem space. And, the error via the proposed approach
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Fig. 1: Singular value decay behav-
ior for the proposed and the standard
approach.

Fig. 2: ROM error for the proposed and
the standard approach versus varying di-
mensions of the reduced-order model.

corresponds to the difference between the finite-element based numerical solution
u and the reconstructed solution obtained by lifting and shifting the reduced-order
solution vred obtained in (12). It is clearly observable that the (absolute) ROM error
incurred upon using the proposed approach for varying dimensions of the reduced-
order model is lower than the error incurred while using the standard approach. The
proposed approach is expected to give a lower ROM error as the shape dynamics
is essentially localized around the initial configuration. In principle, the ROM error
is a function of the spatial and the temporal discretization error. Given the fact that
the shape dynamics is essentially localized in the proposed approach, the amount of
temporal discretization error is significantly less than that obtained in the standard
approach. We also claim that the larger time-step size can be used to advance the
reduced-order model built using the “Method of Freezing” compared to the admis-
sible time-step size in the standard ROM framework. This claim is supported by the
fact that the time-step size is generally controlled by the CFL restrictions, which
are dictated by the time-scale of the problem. As a consequence of localized shape
dynamics, the time-step size is not too severely restricted in the proposed approach
as in the standard approach, which also eventually aids in temporal complexity re-
duction. As a result, the dimension of the reduced-order model obtained by using
the proposed approach will be much smaller than the counterpart obtained using the
standard reduction approach in order to have the same accuracy.

5 Conclusion and future outlook

We have proposed to employ the concept of the “Method of Freezing” in conjunc-
tion with a Galerkin-type projection based methodology in order to overcome the
limitation of the standard projection-based reduced-order modelling (ROM) tech-
niques in dealing with moving heat loads. We have demonstrated the performance
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of the proposed approach on a test-case of practical relevance that encompasses the
movement of the laser beam along both dimensions of the wafer.

This work focused on reproducing the results of the time-dependent heat equation
via standard and proposed ROM approaches. This reproduction step is essential
before attempting to develop a parametric reduced-order model as we cannot hope
to have an effective low-complexity reduced-order model if the numerical approach
does not fare well in the reproduction step. Furthermore, it should be emphasized
that the considered model is non-affine due to the nature of the moving heat load(s),
and that the projection alone is not sufficient to reduce the costs of constructing a
reduced-order model for such non-affine (and non-linear) problems. Moreover, there
might be other sources of non-affine and/or non-linear nature, such as radiative heat
fluxes, temperature-dependence of parameters, etc. These non-affine and non-linear
problems can be effectively dealt with the proposed ROM approach by using an
additional concept of hyper-reduction introduced in [9].

Future works will deal with a modification to the idea of the “Method of Freez-
ing” to eventually obtain a suitable decomposition ansatz that accounts for the phys-
ical boundary conditions. In addition, the effectiveness of the proposed approach
will be investigated in terms of the computational speed-up. Moreover, the “Method
of Freezing” in conjunction with standard projection-based ROM approaches and
hyper-reduction will be used to develop a framework for parametric ROM.
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