
I:\Papers\Cscwd2001\xrl_woflan_cscwd.doc

Page 1 of 6

Verification of XRL: An XML-based Workflow Language

W.M.P. van der Aalst1, H.M.W. Verbeek1, and A. Kumar2
1 Faculty of Technology and Management, Eindhoven University of Technology,

PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.
2 Database Systems Research Department, Bell Laboratories,
600 Mountain Ave., 2A-406, Murray Hill, NJ 07974, USA.

E-mail: w.m.p.v.d.aalst@tm.tue.nl, h.m.w.verbeek@tm.tue.nl, akhil@acm.org

Abstract

XRL (eXchangeable Routing Language) is an instance-
based workflow language that uses XML for the
representation of process definitions and Petri nets for its
semantics. Since XRL is instance-based, workflow
definitions can be changed on the fly and sent across
organizational boundaries. These features are vital for
today’s dynamic and networked economy. However, the
features also enable subtle, but highly disruptive, cross-
organizational errors. On-the-fly changes and one-of-a-
kind processes are destined to result in errors. Moreover,
errors of a cross-organizational nature are difficult to
repair. In this paper, we show soundness properties of
XRL constructs by using a novel, constructive approach.
We also describe a software tool based on XML and
Petri-net technologies for verifying XRL workflows.

1. Introduction

Recent years have seen the proliferation of workflow
management systems developed for different types of
workflows and based on different paradigms [9]. Despite
the abundance of such tools, the critical issue of workflow
verification is virtually neglected [1]. Few tools provide
any form of verification support. The tools Woflan [11]
and Flowmake [10] are two noteworthy exceptions.

To complicate matters, more and more workflow
management systems are used to support inter-
organizational business processes, e.g., in the context of
Business-To-Business (B2B) E-commerce. Especially for
open E-commerce (i.e., doing business among parties
having no prior trading relationship), the workflow
support should be trustworthy in the sense that trading
partners who do not know each other, and may even come
from different countries and cultures, may conduct
business with the assurance that their interests will be
protected in the event that "things go wrong", whether by

accident, negligence, or intentional fraud. One of the
prerequisites for this is the guarantee that the workflow
process definitions do not contain any logical errors.

Another requirement for open E-commerce is that one
cannot make any arbitrary assumptions about the
workflow processes implemented in the participating
organizations. For instance, in the context of inter-
organizational workflow it is unrealistic to assume that the
different organizations share a common process model.
Therefore, we developed the eXchangeable Routing
Language (XRL), which describes processes at an
instance level [4]. Traditional workflow modeling
languages describe processes at a class or type level [7].
An XRL routing schema describes the partial ordering of
tasks for one specific instance. The advantages of doing so
are that: (1) the workflow schema can be exchanged more
easily, (2) the schema can be changed without causing any
problems for other instances, and (3) the expressive power
is increased (workflow modeling languages typically have
problems handling a variable number of parallel or
alternative branches) [4].

The semantics of XRL are expressed in terms of Petri
nets [4]. Such formal semantics allow for powerful
analysis techniques, an efficient and compact
implementation, interfaces to many existing tools, and,
last but not least, an unambiguous understanding of XRL.

We have developed a workflow management system,
named XRL/flower [4], to support XRL. XRL/flower
benefits from the fact that it is based on both XML and
Petri nets. Standard XML tools can be deployed to parse,
check, and handle XRL documents. The Petri net
representation allows for a straightforward and succinct
implementation of the workflow engine. XRL constructs
are automatically translated into Petri net constructs. On
the one hand, this allows for an efficient implementation.
On the other hand, the system is easy to extend: For
supporting a new routing primitive, only the translation to
the Petri net engine needs to be added and the engine itself
does not need to change. Last, but not least, the Petri net

I:\Papers\Cscwd2001\xrl_woflan_cscwd.doc

Page 2 of 6

representation can be analyzed using state-of-the-art
analysis techniques and tools.

In this paper, we present a verification tool that can
analyze workflows specified in terms of XRL. The tool is
built on top of Woflan [11] and detects design errors
resulting in deadlocks, livelocks, etc. We also give some
analytical results which show that for a subset of XRL
correctness is guaranteed if the design is consistent (i.e., a
well-formed and valid XML file) with the XRL Document
Type Definition (DTD).

2. XRL and XRL/flower

The focus of this paper is on verification. Therefore,
we limit ourselves to only a brief introduction to XRL, the
translation of XRL to Petri nets, and the workflow
management system XRL/flower. The syntax of XRL is
completely specified by the DTD given in the appendix. A
routing element is an important building block of XRL
and it can be any one of the following: task (a step to be
performed), sequence (a set of tasks to be done in a
specific order), any_sequence (a set of tasks to be done in
any order), choice (any one task out of a set of tasks),
condition (test a condition and determine next step based
on result of the test), parallel_sync (create multiple
parallel routing elements and later join them),
parallel_no_sync (create multiple parallel routing
elements which do not have to join), parallel_part_sync
(create multiple parallel routing elements, some of which
must join), wait_all (insert a wait step to wait for the
completion of a group of events), wait_any (insert a wait
step to wait for the completion of any one of a group of
events), while_do (enable repetition of a task while a
condition is true), stop (end the execution of this
particular path of the workflow instance), terminate (end
this workflow instance).

An example of a consistent XRL file is shown in
Figure 1. This corresponds to the Petri net shown in
Figure 2. It describes a workflow where a customer
complaint is registered and then a questionnaire is sent to
the customer in parallel with the complaint being sent to a
manager for evaluation. If the customer does not fill the
form within 3 days the event receipt occurs any way and
puts a token in the receipt place. This event and the
evaluate activity enable the loop in which process and
check steps occur. After the result of check step is okay,
the archive step is enabled.

This translation from XRL to Petri net is done
according to rules given in [4]. For the sake of readability,
we removed superfluous transitions and places that were
generated by the rules. Note that task transitions are
represented by squares and routing transitions by bars.
<?xml version="1.0" encoding="UTF-8"?>
<route name="example">

<sequence>
<task name="register"/>
<parallel_sync>
<sequence>
<task name="send"/>
<wait_all>
<event_ref name="receipt"/>
<timeout time="3 days">
<task name="timeout">
<event name="receipt"/>

</task>
</timeout>

</wait_all>
</sequence>
<sequence>
<task name="evaluate"/>
<condition>
<true>
<sequence>
<wait_all>
<event_ref name="receipt"/>

</wait_all>
<while_do condition="okay">
<sequence>
<task name="process"/>
<task name="check"/>

</sequence>
</while_do>

</sequence>
</true>

</condition>
</sequence>

</parallel_sync>
<task name="archive"/>

</sequence>
</route>

Figure 1. An example XRL file
In the remainder, we will use the term XRL route to

refer to a consistent XRL routing schema such as the one
shown in Figure 1. A consistent sub-workflow made from
these constructs is also called a routing element, e.g.,
re_1, re_2, etc. Please note that, since an XRL route
specifies the life cycle of a particular workflow instance
(i.e., work case), any instance can be modified without
reference to some underlying workflow schema type.

receipt

register

send
timeout

process check

archive

evaluate

i o

Figure 2. Petri net of example XRL file

I:\Papers\Cscwd2001\xrl_woflan_cscwd.doc

Page 3 of 6

Based on XRL, we have developed a workflow
management system named XRL/flower. XRL/flower.
XRL/flower can handle XRL files arriving through e-mail
or ftp. An incoming XRL file, i.e., workflow instance, is
parsed and translated into a Petri net. The Petri net
description drives the workflow engine, which calculates
enabled tasks. The enabled tasks are offered to the proper
workers through role-based worklists. Whenever a task is
executed, the engine calculates newly enabled tasks. The
engine or an authorized user can also decide to migrate a
running instance to another workflow engine. For
migration, an XRL file is created with entries for the
current workflow state and shipped through e-mail or ftp.

3. Verification

XRL is aimed towards application domains where
workflows cross organizational boundaries and change
over time. In these applications domains, the correctness
issues are particularly relevant because the distributed and
dynamic nature of the workflow is a potential source of
errors. Unfortunately, today’s workflow management
systems do not support advanced techniques to verify the
correctness of workflow process definitions. These
systems typically restrict themselves to a number of
simple syntactic checks. Therefore, erroneous conditions
such as deadlocks and livelocks may remain undetected.
This means that an erroneous workflow may go into
production, thus causing dramatic problems for the
organization. An erroneous workflow may lead to extra
work, legal problems, angry customers, managerial
problems, and depressed employees. Therefore, it is
important to verify the correctness of a workflow process
definition before it becomes operational. In fact, for inter-
organizational workflows, the costs of putting an
erroneous workflow process definition into production are
enormous because of the efforts required to repair errors
crossing organizational boundaries.

The soundness property, defined in [1], relates to the
dynamics of the workflow process definition expressed in
terms of a so-called workflow net. A workflow net is a
Petri net with one unique source place (for the initial
state) and one unique sink place (for the final state). A
workflow net is sound if the following requirements are
satisfied: (1) termination is guaranteed, (2) upon
termination, no dangling references (tokens) are left
behind, and (3) there are no dead tasks, i.e., it should be
possible to execute an arbitrary task by following the
appropriate route. Soundness is the minimal property any
workflow net should satisfy. Note that soundness implies
the absence of livelocks and deadlocks. Soundness can be
verified using Petri net techniques. In fact, we have
developed a workflow verification tool, named Woflan, to
decide soundness [12]. For a given workflow net, Woflan

is able to decide whether it is sound. For this purpose,
Woflan uses an interesting relation between soundness on
the one hand, and liveness and boundedness on the other.
A workflow net is sound, if and only if, the net obtained
by connecting the sink place to the source place via an
additional transition t* is live and bounded. This
relationship enables the use of efficient analysis
techniques and the deployment of powerful software
packages.

In a workflow net there is one unique source place and
one unique sink place. For a straightforward translation of
XRL to Petri nets, this requirement is too restrictive.
Therefore, we introduce extended workflow nets. An
extended workflow net may have multiple source places
and multiple sink places. Furthermore, the requirement
that only source places can indicate the arrival of a case
and only sink places can indicate completion of a case is
too restrictive. For this reason, we introduce so-called
start- and end places. A workflow instance (i.e., case) is
started by marking one of the start places, and it is
completed if only end places are marked. Typically, a start
place is a source place and an end place is a sink place.
However, we also allow for instance the situation with end
places that are no sink places (i.e., with outgoing arcs).
We define start and end places as follows. A place is a
start place if and only if it is a source place, i.e., a place
without any ingoing arcs. A place p is an end place if
every transition that consumes tokens from p also
produces at least one token for p. Formally, a place is an
end place if and only if it is a trap [6]. Note that any sink
node is a trap, i.e., an end place. Any node of the extended
workflow net should be on a path from some start place to
some end place. Finally, we drop the assumption that
every transition corresponds to some task. Transitions that
do correspond to tasks are called task transitions.

Definition I. Extended workflow net
A Petri net is called an extended workflow net if and only if
(1) it contains at least one start place, (2) it contains at
least one end place, and (3) every task transition is on a
path from some start place to some end place.

The Petri net shown in Figure 2 is an extended
workflow net, There is one start place (i.e., place i) and
two end places: receipt and o. Note that receipt is an end
place but not a sink place. A state is called a start state if
precisely one of the start places is marked. The set of
reachable states of an extended workflow net are those
states that are reachable from any start state. A reachable
state is called a final state if and only if only end places
are marked.

Definition II. Soundness
An extended workflow net is sound if and only if (1) from
any reachable state it is possible to reach a final state, (2)
no transitions are enabled in any reachable final state,
and (3) there are no dead task transitions, i.e., it should

I:\Papers\Cscwd2001\xrl_woflan_cscwd.doc

Page 4 of 6

be possible to execute an arbitrary task by following the
appropriate route.

Recall that the soundness property is important
because it implies absence of deadlocks and livelocks. It
is easy to verify that the extended workflow net shown in
Figure 2 is indeed sound.

4. Modeling XRL constructs

Although a (non-extended) workflow net is too
restrictive in general, it is sufficient if we limit ourselves
to use only certain XRL constructs. These constructs
typically can be modeled as a workflow net and preserve
soundness. We show this in a constructive manner.
Afterwards, we discuss constructs for which workflow
nets are too restrictive.

The Petri net corresponding to a task is a workflow net,
provided it does not generate any events. It is
straightforward to show that this net is sound.

For all constructs, we assume that each embedded
routing element corresponds to a Petri net that is a sound
workflow net.

For the sequence construct, it is straightforward to see
that its corresponding Petri net is a workflow net. This
workflow net is sound under the assumption mentioned
above, which is easy to verify.

In a similar way, the constructs any_sequence,
parallel_sync, choice, condition, and while_do have
corresponding Petri nets that are workflow nets and are
sound under the assumption as mentioned above. For sake
of completeness, we mention that the semantics as given
in [4] for the condition construct assumes that exactly two
routing elements are embedded: one if the condition
evaluates to true and one if it evaluates to false. In
general, the semantics of the condition construct can be
described as in Figure 3.

Result 1: If an XRL route is restricted to the constructs
sequence, any_sequence, choice, condition, while_do,
and parallel_sync, and if no events are produced by the
tasks, then the corresponding Petri net representation is a
sound workflow net.

The use of tasks producing events and the constructs
parallel_no_sync, parallel_part_sync, wait_all, and
wait_any results in additional end places. For the
parallel_no_sync, an output place is added to each
embedded routing element. Such an output place is an end
place. For the parallel_part_sync, a rather complex
network is used to make sure that the remaining control
threads are detached, i.e., superfluous tokens are removed.
This network contains an additional end place to signal
completion. Furthermore, each event place is also an end
place. As a result, if the constructs stop and terminate are
not used, the Petri net corresponding to an XRL route is

an extended workflow net. This net is sound, which is
straightforward to prove, if the following conditions hold:
(1) for each parallel_part_sync the number of branches k
to synchronize is valid, i.e., at least 1 and at most the total
number of branches n, (2) every wait_all and wait_any
construct has a timeout defined. From now on we will
assume that all parallel_part_sync constructs are valid,
which seems reasonable.

begin end

re_true_1

re_true_n

re_false_1

re_false_m

is_true

is_false

Figure 3. Construct condition

Result 2: If an XRL route does not contain stop or
terminate constructs, and if every wait_all and wait_any
construct contains a timeout, then the corresponding Petri
net representation is a sound extended workflow net.

This result can be applied in many situations and
requires only checks at the syntactical level. However,
whenever stop and terminate constructs are used and/or
wait_all and wait_any constructs without a timeout are
used, a more detailed analysis is required.

Assume the stop construct is put in the middle of a
sequence, e.g., in-between tasks t1 and t2. Task t2 can
never be executed, thus violating the third requirement of
soundness. Therefore, the stop construct should only be
used at the end of a sequence. Moreover, when a sequence
is embedded in, for instance, a parallel_sync construct,
then no stop construct is allowed in it.

Similarly, the terminate construct can invalidate
soundness. Moreover, the terminate construct can also
prevent tasks executed in parallel from being executed.

By enforcing syntactical requirements it is possible to
extend Result 2 to nets using stop and terminate
constructs. For example, in any sequence a stop should
not be followed by a task. However, if some wait_all or

I:\Papers\Cscwd2001\xrl_woflan_cscwd.doc

Page 5 of 6

wait_any does not contain a timeout, it is not possible to
decide whether or not the net is sound using only
syntactical criteria. To deal with this situation, we have
developed a link between XRL and our workflow
verification tool Woflan [11].

5. Verification tool: XRL/Woflan

In this section we describe an automatic translation
from XRL to Woflan. This way any workflow
management based on XRL can benefit from state-of-the-
art verification software.

Woflan (http://www.tm.tue.nl/it/woflan) is designed as
a WFMS-independent analysis tool. In principle it can
interface with many workflow management systems. At
present, Woflan can interface with the workflow products
COSA (Thiel Logistic AG/Software Ley), METEOR
(LSDIS), and Staffware (Staffware), and the BPR-tool
Protos (Pallas Athena).

Woflan can read Petri Net Markup Language (PNML)
files. PNML is a Petri net file format based on XML [8].
Therefore, it is obvious to use XSL to automatically
translate an XRL route into a PNML representation that
can be diagnosed using Woflan. This translation can be
done in a rather straightforward way; the only difficulty is
the generation of unique names for the transitions and
places used in the various constructs. Figure 4 shows a
snippet of the PNML file corresponding to the example
XRL file:
<?xml version="1.0" encoding="UTF-8"?>
<net id="example">

<name>
<value>example</value>

</name>
<transition id="register_begin">

<name>
<value>"register begin"</value>

</name>
<place id="register_executing">

<name>
<value>"register executing"</value>

</name>
</place>
<arc id="register_begin_executing"

source="register_begin"
target="register_executing"/>

…
</net>

Figure 4. The resulting PNML file (snippet)
Note that it is only necessary to use Woflan if Result 2

does not apply, i.e., for verifying wait_all and wait_any
constructs that do not contain timeouts sub-elements or
nasty stop and terminate constructs. We tested Woflan on
the example XRL file of Figure 1. In this case there is one
wait_all without timeout. Therefore, we use Woflan to
check whether this wait_all can deadlock. At first, Woflan

concludes that a transition corresponding to the other
wait_all is dead. But for this wait_all a timeout is defined,
so this situation is not problematic. After removing the
dead transition from the net, Woflan concludes that the net
is a sound extended workflow net.

Figure 5. Woflan's results

6. Conclusion

We presented a way to verify XRL routes. Depending
on the constructs used in an XRL route, we can (1) claim
soundness, (2) decide soundness by checking the XRL
route’s structure, or (3) decide soundness by using Woflan
as a verification tool. We only need to use Woflan if
wait_all or wait_any construct are used that do not
contain a timeout. If those constructs are not used,
soundness depends only on the positioning of the stop and
terminate constructs.

Because Woflan only could check soundness on
workflow nets, we have extended Woflan. Woflan can
now also check soundness on extended workflow.

For translating XRL route to Woflan, we have build an
XSL file that translates the XRL route to a PNML file.
Woflan can read PNML files.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets
to Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21-66, 1998.
[2] W.M.P. van der Aalst. Process-oriented Architectures
for Electronic Commerce and Interorganizational
Workflow. Information Systems, 25(1):43-69, 2000.
[3] W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors. Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of

http://www.tm.tue.nl/it/woflan

I:\Papers\Cscwd2001\xrl_woflan_cscwd.doc

Page 6 of 6

Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2000.
[4] W.M.P. van der Aalst and A. Kumar. XML Based
Schema Definition for Support of Inter-organizational
Workflow. Technical report Bell-Labs. 2001.
[5] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E.
Maler, "eXtensible Markup Language (XML) 1.0 (Second
Edition),” http://www.w3.org/TR/REC-xml, World Wide
Web Consortium (W3C), October 2000.
[6] J. Desel and J. Esparza. Free choice Petri nets,
volume 40 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, 1995.
[7] S. Jablonski and C. Bussler. Workflow Management:
Modeling Concepts, Architecture, and Implementation
International Thomson Computer Press, 1996.
[8] M. Jüngel, E. Kindler and M. Weber. The Petri Net
Markup Language. In S. Philippi (ed.), AWPN, Koblenz,
2000.
[9] P. Lawrence, editor. Workflow Handbook 1997,
Workflow Management Coalition. John Wiley and Sons,
New York, 1997.
[10] W. Sadiq and M.E. Orlowska. Analyzing Process
Models using Graph Reduction Techniques. Information
Systems, 25(2): 117-134, 2000.
[11] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan
2.0: A Petri-net-based Workflow Diagnosis Tool. In M.
Nielsen and D. Simpson (editors), Application and Theory
of Petri Nets 2000, volume 1825 of Lecture Notes in
Computer Science, pages 475-484. Springer-Verlag,
Berlin, 2000.
[12] H.M.W. Verbeek and T. Basten and W.M.P. van der
Aalst. Diagnosing Workflow Processes Using Woflan,
BETA Working Paper Series, WP 48. Eindhoven
University of Technology, Eindhoven, 2000.
[13] Workflow Management Coalition, Workflow
Standard – Interoperability Wf-XML Binding, Document
Number WFMC-TC-1023, Version 1.0,
http://www.wfmc.org, May 2000.

Appendix: XRL Document Type Definition

For the semantics of the following DTD, we refer to [4].

<!ENTITY % routing_element
"task|sequence|any_sequence|choice|
condition|parallel_sync|parallel_no_sync|
parallel_part_sync|wait_all|wait_any|
while_do|stop|terminate">
<!ELEMENT route (%routing_element;)>
<!ATTLIST route name ID #REQUIRED

created_by CDATA #IMPLIED
date CDATA #IMPLIED>

<!ELEMENT task (event*)>
<!ATTLIST task name ID #REQUIRED
address CDATA #REQUIRED
role CDATA #IMPLIED

doc_read NMTOKENS #IMPLIED
doc_update NMTOKENS #IMPLIED
doc_create NMTOKENS #IMPLIED
result CDATA #IMPLIED
status (ready|running|enabled|disabled|

aborted|null) #IMPLIED
start_time NMTOKEN #IMPLIED
end_time NMTOKEN #IMPLIED
notify CDATA #IMPLIED>

<!ELEMENT event EMPTY>
<!ATTLIST event name ID #REQUIRED>
<!ELEMENT sequence
((%routing_element;|state)+)>
<!ELEMENT any_sequence
((%routing_element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition (true|false)*>
<!ATTLIST condition condition CDATA
#REQUIRED>
<!ELEMENT true (%routing_element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT parallel_sync
((%routing_element;)+)>
<!ELEMENT parallel_no_sync
((%routing_element;)+)>
<!ELEMENT parallel_part_sync
((%routing_element;)+)>
<!ATTLIST parallel_part_sync number NMTOKEN
#REQUIRED>
<!ELEMENT wait_all (event_ref|timeout)+>
<!ELEMENT wait_any (event_ref|timeout)+>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref name IDREF #REQUIRED>
<!ELEMENT timeout (%routing_element;?)>
<!ATTLIST timeout time CDATA #REQUIRED
type (relative|s_relative|absolute)
"absolute">
<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do condition CDATA
#REQUIRED>
<!ELEMENT stop EMPTY>
<!ELEMENT terminate EMPTY>
<!ELEMENT state (event+)>

http://www.w3.org/TR/REC-xml
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-7-2000.pdf
http://www.wfmc.org/

	Verification of XRL: An XML-based Workflow Language
	E-mail: w.m.p.v.d.aalst@tm.tue.nl, h.m.w.verbeek@tm.tue.nl, akhil@acm.org
	
	Definition II. Soundness

	References
	Appendix: XRL Document Type Definition

