
1

Adaptive workflow

On the interplay between flexibility and support

W.M.P. van der Aalst1,3 T. Basten1 H.M.W. Verbeek1 P.A.C. Verkoulen1,2 M. Voorhoeve1
1 Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB,

Eindhoven, The Netherlands, {wsinwa,tbasten,wsineric,verkoulen,wsinmarc}@win.tue.nl
2 Origin DTS/Infrastructure Consultancy, Building VH-4; P.O. Box 6435, NL-5600 HK, Eindhoven, The Netherlands,

peter.verkoulen@nl.origin-it.com
3 Large Scale Distributed Systems, Department of Computer Science, University of Georgia, 415 Graduate Studies

Research Center, Athens, GA 30602-7407, USA, wvdaalst@om.cs.uga.edu

Key words: Workflow management, Workflow management systems, Process modeling, Petri nets, exception handling.

Abstract: Today’s information systems do not support adaptive workflow: either the information system abstracts
from the workflow processes at hand and focuses on the management of data and the execution of individual
tasks via applications or the workflow is supported by the information system but it is hard to handle
changes. This paper addresses this problem by classifying the types of changes. Based on this classification,
issues such as syntactic/semantic correctness, case transfer, and management information are discussed. It
turns out that the trade-off between flexibility and support raises challenging questions. Only some of these
questions are answered in this paper; most of them require further research. Since the success of the next
generation of workflow management systems depends on the ability to support adaptive workflow, it is
important to provide answers for the questions raised in this paper.

1. INTRODUCTION

Recently, many Workflow Management
Systems (WFMSs) have become available.
These systems signify that the term ‘workflow
management’ is not just another buzzword.
The phenomenon workflow management will
have a large impact on the next generation of
information systems. As the workflow
paradigm continues to infiltrate organisations
that need to cope with complex administrative
processes, the workflow management system
will become a fundamental building block
(Koulopoulos 1995; Jablonski & Bussler
1996). Therefore, the subject workflow
management is of the utmost importance for
people involved in the (re)design of
administrative processes or the development of
systems to support these processes.

At the moment, there are more than 200
workflow products commercially available
(Lawrence 1997) and many organisations are
introducing workflow technology to support
their business processes. It is widely
recognised that workflow management
systems should provide flexibility (Van der
Aalst et al 1998; Agostini & De Michelis
1998; Casati et al 1998; Ellis et al 1995; Ellis
et al 1998; Han & Sheth 1998; Heinl et al
1998; Klein et al 1998; Voorhoeve & Van der
Aalst 1996; Wolf & Reimer 1996). However,
today’s workflow management systems have
problems dealing with changes. E.g., new
technology, new laws, and new market
requirements may lead to (structural)
modifications of the workflow process
definition at hand. In addition, ad-hoc changes
may be necessary, e.g., because of exceptions.
The inability to deal with various changes
limits the application of today’s workflow
management systems.

2

Figure 1 shows the different fields of
support for collaborative work. We distinguish
between unstructured, information centric
approaches (Computer-Supported Co-
operative Work or CSCW) and structured,
process centric ones (production workflow).
Existing tools are typically in one of the two
extremes of the spectre: groupware products
such as Lotus Notes and Exchange are typical
CSCW tools, not providing much process
support, whereas commercially available
(production) WFMSs such as Staffware and
Flowmark are not able to cope with
unstructuredness.

CSCW

adaptive
workflow

production
workflow

structured

unstructured

information
centric

process
centric

Figure 1. The workflow spectrum.

Linking production WFMSs to groupware
products does not really solve the problem, as
the process logic is then still handled by the
same inflexible workflow engine. To bridge
the gap between CSCW and production
workflow, several research groups are working
on the problems associated to adaptive
workflow.

Adaptive workflow aims at providing
process support like normal workflow systems
do, but in such a way that the system is able to
deal with certain changes. These changes may
range from ad-hoc changes such as changing
the order of two tasks for an individual case
(often called exceptions) to the redesign of a
workflow process as the result of a Business
Process Redesign (BPR) project.

Typical issues related to adaptive workflow
are:

• Correctness
What kind of changes are allowed and is
the resulting workflow process definition
correct with respect to the criteria
specified? We distinguish syntactic
correctness (e.g. is it still a workflow?) and
semantic correctness (e.g. can existing
cases in the system be finished in a proper
way?).

• Dynamic change
What to do with running instances (cases)
of a workflow of which the definition has
been changed? The term dynamic change
refers to the problems that occur when
running cases have to migrate from one
process definition to another.

• Management information
How to provide a manager with aggregated
information about the actual state of the
workflow processes?
Taking these issues into account, a

classification of the types of changes is
presented. Based on this classification,
potential problems are identified and pointers
to solutions based on Petri-net theory are
given.

2. ESSENCE OF WORKFLOW
MODELING

The term Workflow Management actually
refers to the “logistics” of business processes.
Workflow management does not focus on
what information is being passed in a business
process, but more on the control of the activity
chain that is necessary to execute the business
processes. The Workflow Management
Coalition (WfMC) defines a workflow
management system as follows: “A system
that completely defines, manages, and
executes workflows through the execution of
software whose order of execution is driven by
a computer representation of the workflow
logic” (Lawrence 1997). Workflows are case-
based, i.e., every piece of work is executed for
a specific case: an order, an insurance claim, a

3

tax declaration, etc. The objective of a
workflow management system is to handle
these cases (by executing tasks) as efficiently
and effectively as possible. The workflow
process definition specifies which tasks need
to be executed and in what order. When a task
is executed for a case, this is usually done by
using one or more resources, e.g., a machine,
an employee, etc.

As can be seen in Figure 2, we identify
three dimensions of a workflow (Van der Aalst
1998b):

i. the case dimension, making clear that
all cases are dealt with independently,

ii. the process dimension, specifying the
overall workflow process, abstracting
from individual cases,

iii. the resource dimension, depicting and
classifying the resources used in the
process.

task

case

resource

work item = case + task

activity = case + task + resource

process dimension

resource dimension

case dimension

FKDQJH

In our work, we use Petri nets to represent
workflow systems (Van der Aalst 1998a; Van
der Aalst 1998b; Ellis & Nutt 1993). A Petri
net represents a workflow iff it has exactly one
starting place (source) and exactly one end
place (sink) and the net obtained by adding a
transition with the sink as the only input place
and the source as the only output place is
strongly connected. The latter is the case if for
every two nodes x and y in the net, there is a
path from x to y. Petri nets with this particular
structure are called workflow nets. Figure 6
shows two workflow nets. The left-hand-side
process describes the sequential execution of
four tasks (A, B, C, and D). Each task is

modelled by a transition. Tasks are connected
by places (represented by circles) to specify
the ordering of tasks. Places may contain
tokens (represented by black dots). A
transition, i.e., a task, is enabled if and only if
each of the input places contains a token.
Enabled transitions can fire while removing
tokens from the input places and putting
tokens on the output places. In the sequential
process shown in Figure 6, transition C is
enabled because there is a token in the input
place. Firing C will result in a situation where
D is enabled. In the right-hand-side process in
Figure 6 tasks B and C are in parallel, i.e.,
they can be executed in any order. Note that A
consumes one token and produces two tokens
and that D consumes two tokens and produces
one token. A detailed description of the class
of workflow nets is beyond the scope of this
paper and not needed for the remainder.
However, some basic knowledge of Petri nets
is needed to fully understand the concepts.

3. CLASSIFICATION OF
CHANGE

This section deals with the different kinds
of changes and their consequences. Some of
the perspectives relevant for change are:

• process perspective, e.g., tasks are added
or deleted or their ordering is changed,

• resource perspective, e.g., resources are
classified in a different way or new classes
are introduced,

• control perspective, e.g., changing the way
resources are allocated to processes and
tasks,

• task perspective, e.g., upgrading or
downgrading tasks,

• system perspective, e.g., changes to the
infrastructure or the configuration of the
engines in the enactment service.

In this paper, we restrict ourselves to changes
in the process perspective as indicated in
Figure 2.

Figure 2. Three dimensions of workflow.

4

Figure 3 shows that two kinds of change
are identified:
• individual (ad-hoc) changes

Ad-hoc adaptation of the workflow process:
a single case (or a limited set of cases) is
affected. A good example is that of a
hospital: if someone enters the hospital
with a cardiac arrest, you are not going to
ask him for his ID, although the workflow
process may prescribe this. Figure 3
distinguishes entry time changes (changes
that occur when a case is not yet in the
system) and on-the-fly changes (while in
the system, the process definition for a case
changes).

• structural (evolutionary) changes
Evolution of the workflow process: all new
cases benefit from the adaptation. A
structural change is typically the result of a
BPR effort. An example of such a change is
the change of a 4-year curriculum at a
university to a 5-year one.

changes

restart

on-the-fly

entry time

structural

individual

proceed

transfer

extend

replace

re-order

Figure 3. Classification of change.

At the left-hand side in Figure 3, we see the
three different ways in which a workflow can
be changed:
• the process definition is extended (e.g. by

adding new tasks to cover process
extensions),

• tasks are replaced by other tasks (e.g. a task
is refined into a subprocess),

• tasks in the process are re-ordered (e.g. two
sequential tasks are put in parallel).

Figure 3 gives three possible alternatives
for handling existing cases in the system when

a process definition changes. Dealing with
existing cases is only relevant in the case of a
structural change because individual changes
will always be (similar to) exceptions and as
such will be dealt with by the one who
initiated the change explicitly.

(a) restart

(b) proceed

(c) transfer

Figure 4. How to handle running cases?

Figure 4 shows the three alternatives: (a)
restart: running cases are rolled back and
restarted at the beginning of the new process,
(b) proceed: changes do not affect running
cases by allowing for multiple versions of the
process, and (c) transfer: a case is transferred
to the new process. The term dynamic change
(Ellis et al 1995) is used to refer to the latter
policy.

4. CORRECTNESS

In the previous section, we presented some
of the possibilities to change workflow
specifications. In addition, we have presented
some alternatives for dealing with cases that
are somewhere in their workflow life cycle the
moment that the workflow is being changed.

These changes actually only make sense
when they can be performed such that we can
guarantee beforehand that the transformation
satisfies a certain set of correctness-
preservation properties. If we would not be
able to make any statements about correctness
preservation, it would mean that the new
system would have no relationship with the
old one. Being interested in adaptive

5

workflow, this is obviously an undesired
situation. Thus, it is very important that
verification techniques and supporting tools
are being developed that support such
correctness-preserving transformations.

Two different kinds of correctness notions
can be distinguished, viz. syntactic and
semantic correctness.

F

C

A

B E

D

p1

p6

p3

p4

p2

p5

p7

Figure 5. An incorrect workflow process definition.

Syntactic correctness is independent of the
context, i.e., it refers to the minimal
requirements any workflow should satisfy. For
example, there should be no tasks without
input places. Note that syntactic correctness
not only refers to the structure of the workflow
but also to the dynamic behaviour, e.g.,
potential deadlocks and livelocks are not
allowed. A very important correctness criterion
is the so-called “soundness property” that
guarantees proper termination (Van der Aalst
1998b). Proper termination means that the
state is reached with a single token in the sink
place. Figure 5 shows an incorrect workflow
process definition. The execution of task E
before task B will result in a deadlock because
the case gets stuck in the state with just a token
in p5. If task C is executed, then it is possible
to execute D but a livelock is created because

it is not possible to escape from the cycle
formed by B and F. The workflow can be
corrected by adding an arrow from E to p2,
removing p7, and adding an arrow from p4 to
F. Today, Petri-net theory provides adequate
tools to verify syntactic correctness.
Nevertheless, such facilities are still missing
in most of the commercial workflow
management systems.

Semantic correctness is concerned with the
context in which the change occurs.
Intuitively, semantic correctness deals with
similarities between the capabilities of the old
workflow and the capabilities of the new
workflow. E.g., it may be desirable that the
new workflow is able to handle cases the old
way (but probably has some more
functionality). Consider for example the two
process definition shown in Figure 6: the
right-hand process can do more than the left-
hand process but not vice versa. A similar
relation holds between the right-hand process
in Figure 6 and the corrected version of the
process shown in Figure 5. Comparing
different variants of the same workflow
requires advanced inheritance concepts
(Basten 1998; Van der Aalst & Basten 1997;
Voorhoeve & Van der Aalst 1996). Research
efforts should be aiming at defining semantic
correctness and providing easy-to-use
verification methods.

5. DYNAMIC CHANGE

We identified three ways to deal with
running cases after a structural process
change: (a) restart, (b) proceed, and (c)
transfer. Restarting cases causes no real
difficulties except that it is often difficult to
rollback the tasks that have already been
executed. The proceed policy causes no
problems. In fact, it is the only policy truly
supported by today’s commercial workflow
management systems. The only policy that
causes serious theoretical and practical
problems is the transfer of cases. The term

6

dynamic change refers to the problem of
handling old cases in a new process, e.g., how
to transfer cases to a new, i.e., improved,
version of the process.

Figure 6 illustrates the dynamic change
problem. If the sequential workflow process
(left) is changed into the workflow process
where tasks B and C can be executed in
parallel (right) there are no problems, i.e., it is
always possible to transfer a case from the left
to the right. The sequential process has five
possible states and each of these states
corresponds to a state in the parallel process.
For example, the state with a token in s3 is
mapped onto the state with a token in p3 and
p4. In both cases, tasks A and B have been
executed and C and D still need to be
executed.

A

B

C

D

s1

s5

s4

s3

s2

A

B C

D

p1

p6

p3

p4

p2

p5

OK

?

Figure 6. The dynamic change problem.

Now consider the situation where the parallel
process is changed into the sequential one, i.e.,
a case is moved from the right-hand-side
process to the left-hand-side process. For most
of the states of the right-hand-side process this
is no problem, e.g., a token in p1 is moved to

s1, a token in p3 and a token in p4 are mapped
onto a single token in s3, and a token in p4
and a token in p5 are mapped onto a single
token in s4. However, the state with a token in
p2 and p5 (A and C have been executed)
causes problems because there is no
corresponding state in the sequential process
(it is not possible to execute C before B). This
simple example shows that it is not
straightforward to migrate old cases to the
new process after a change. Some authors
have proposed a solution for the dynamic
change problem (Agostini & De Michelis
1998; Ellis et al 1995; Ellis et al 1998).
However, these solutions either require human
intervention or are restricted to workflows
with a particular structure. Note that both
changes in Figure 6 correspond to the
reordering of tasks (see classification in
Section 3).

6. MANAGEMENT INFO

Another problem of change is that it
typically leads to multiple variants of the same
process. For evolutionary (i.e. structural)
change the number of variants is limited. Ad-
hoc changes may lead to the situation where
the number of variants may be of the same
order of magnitude as the number of cases. To
manage a workflow process with different
variants it is desirable to have an aggregated
view of the work in progress. Note that in a
manufacturing process the manager can get a
good impression of the work in progress by
walking through the factory. For a workflow
process handling digitised information, this is
not possible. Therefore, it is of the utmost
importance to supply the manager with tools
to obtain a condensed but accurate view of the
workflow processes. Figure 7 shows a
workflow processes with two variants: a
sequential one (left) and a parallel one
(middle). The numbers in the places indicate
the number of cases in a specific state, e.g., in
the sequential process there are 3 cases in-

7

between task B and task C, and in the parallel
process there are 2 cases in-between A and B.
Since the manager requires an aggregated view
rather than a view for every variant of the
workflow process, the cases need to be
mapped onto a generalised version of the
different processes. A solution is to find the
‘greatest common divisor’ (gcd) or the ‘least
common multiple’ (lcm) for the two processes
shown. Since all the states of the sequential
process can be represented in the parallel
process, we choose the parallel process to
present management information. Figure 7
shows the aggregated view of the two
workflow processes (right). For all places in
the right-hand-side process except m3, it is
quite straightforward to verify that the
numbers are correct. The number of tokens in

place m3 corresponds to the number of cases
in-between A and C. In the sequential process,
there are 1+3=4 cases in-between A and C. In
the parallel process, there are also 4 cases in-
between A and C, which brings the total to 8.
For this small example, it may seem trivial to
obtain this information. However, in general
there are many variants of processes which
may have up to 100 tasks and it is far from
trivial to present aggregated information to the
manager. The topic of generating management
information was addressed in (Voorhoeve &
Van der Aalst 1996; Voorhoeve & Van der
Aalst 1997). Despite its relevance for the next
generation of workflow management systems
only few researchers seem to be working on
this topic. At the moment, only intuitive
notions for gcd and lcm exist.

7. CONCLUSION

In this paper, we discussed some of the
problems that need to be solved to enable
adaptive workflow. Most of the problems

stem from the fact that flexibility (the ability
to handle changes) on the one hand and
process support (enactment, control, and
management information) on the other hand
impose (partially) conflicting constraints. We
have classified the various forms of change.
Based on this classification we pointed out

A

B

C

D

s1

s5

s4

s3

s2

A

B C

D

p1

p6

p3

p4

p2

p5

3 4

1

3

2

1

2 4

5 3

7

A

B C

D

m1

m6

m3

m4

m2

m5

7

3 8

10 5

8

+ =

Figure 7. Mapping cases in different processes onto the “least common multiple” of all processes.

8

some solutions for the problems identified.
Future work in this area will focus on
verification (semantic correctness), relating
different versions of a workflow process for
supporting dynamic change, and generating
management information. It is our belief that
the inheritance-preserving transformation
rules presented in (Van der Aalst & Basten
1997; Basten 1998) are a good starting point
for solving the problems identified. Each of
the rules corresponds to a design construct
which is often used in practice, namely
choice, parallel composition, sequential
composition, and iteration. The rules preserve
to some extent syntactic and semantic
correctness. Future research will be aimed at
exploiting the transformations to deal with
dynamic change and the generation of useful
management information.

8. REFERENCES

Aalst, W.M.P. van der 1998a. Chapter 10: Three Good
reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama et al., editors,
Information and Process Integration in Enterprises:
Rethinking documents, Kluwer Academic Publishers.

Aalst, W.M.P. van der 1998b. The Application of Petri
Nets to Workflow Management. The Journal of
Circuits, Systems and Computers, 8(1):21-66.

Aalst, W.M.P. van der & Basten, T. 1997. Life-cycle
Inheritance: A Petri-net-based approach. In P. Azéma
and G. Balbo, editors, Application and Theory of
Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 62-81. Springer, Berlin,
Germany.

 Aalst, W.M.P. van der & Michelis, G. De & Ellis, C.A.
(editors) 1998. Proceedings of Workflow
Management: Net-based Concepts, Models,
Techniques and Tools (WFM’98). Computing
Science Report 98/7, Eindhoven University of
Technology, Eindhoven, the Netherlands.

Agostini, A. & De Michelis, G. 1998. Simple Workflow
Models. In (Van der Aalst & De Michelis & Ellis
1998), pages 146-164.

Basten, T. 1998. In Terms of Nets: System Design with
Petri Nets and Process Algebra. PhD Thesis.
Eindhoven University of Technology, Department of
Computing Science, Eindhoven, the Netherlands.

Casati, F. & Ceri, C. & Pernici, B. & Pozzi, G. 1998.
Workflow Evolution. Data and Knowledge
Engineering, 24(3):211-238.

Ellis, C.A. & Keddara, K. & Rozenberg, G. 1995.
Dynamic change within workflow systems. In N.
Comstock and C.A. Ellis, editors, Conf. on
Organizational Computing Systems, pages 10 - 21.
ACM SIGOIS, ACM. Milpitas, California.

Ellis, C.A. & Keddara, K. & Wainer, J. 1998. Modeling
Workflow Dynamic Changes Using Timed Hybrid
Flow Nets. In (Van der Aalst & De Michelis & Ellis
1998), pages 109-128.

Ellis, C.A. & Nutt, G.J. 1993. Modelling and Enactment
of Workflow Systems. In M. Ajmone Marsan, editor,
Application and Theory of Petri Nets 1993, volume
691 of Lecture Notes in Computer Science, pages 1-
16. Springer, Berlin, Germany.

Han, Y. & Sheth, A. 1998. On Adaptive Workflow
Modeling. In Proceedings of the 4th International
Conference on Information Systems Analysis and
Synthesis, pages 108-116, Orlando, Florida.

Heinl, P. & Horn, S. & Jablonski, S. & Neeb, J. & Stein,
K. & Teschke, M. 1998. A comprehensive approach
to flexibility in workflow management systems.
Technical report TR-16-1998-6, University of
Erlangen-Nuremberg, Erlangen, Germany.

Jablonski, S. & Bussler, C. 1996. Workflow
Management: Modeling Concepts, Architecture, and
Implementation International Thomson Computer
Press.

Klein, M. & Dellarocas, C. & Bernstein, A. (editors)
1998. Proceedings of the CSCW-98 Workshop
Towards Adaptive Workflow Systems, Seattle.

Koulopoulos, T.M. 1995. The Workflow Imperative.
Van Nostrand Reinhold, New York.

Lawrence, P. (editor) 1997. Workflow Handbook 1997,
Workflow Management Coalition. John Wiley and
Sons, New York.

Sheth, A. 1997. From Contemporary Workflow Process
Automation to Dynamic Work Activity Coordination
and Collaboration. Siggroup Bulletin, 18(3):17-20.

Voorhoeve, M. & Aalst, W.M.P. van der 1996.
Conservative Adaption of Workflow. In (Wolf &
Reimer 1996), pages 1-15.

Voorhoeve, M. & Aalst, W.M.P. van der 1997. Ad-hoc
Workflow: Problems and Solutions. In R. Wagner,
editor, Proceedings of the 8th DEXA Conference on
Database and Expert Systems Applications, pages
36-41, Toulouse, France.

Wolf, M. & Reimer, U. (editors) 1996. Proceedings of
the International Conference on Practical Aspects of
Knowledge Management (PAKM’96), Workshop on
Adaptive Workflow, Basel, Switzerland.

