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Abstract. The tool Carpa (Counter examples in Abstract Rewriting
Produced Automatically) automatically tries to find finite counter ex-
amples for any given set of rewriting properties.

The input for the tool Carpa (Counter examples for Abstract Rewriting Pro-
duced Automatically) is a list of properties of binary relations. On such an input
the tool either builds a set of binary relations on the specified number of ele-
ments that satisfies these properties, or shows that this is impossible. The tool
Carpa can be downloaded from

http://www.win.tue.nl/~hzantema/carpa.html

including the source code, a Linux executable, a file Readme with basic instruc-
tions, and encodings of several examples.

The input for Carpa always starts by two numbers n, m, each on a separate
line, possibly followed by comment. Here n = #A is the cardinality of the set A
on which we search for binary relations. The number m is the number of basic
relations in the specification, internally referred to by the numbers 1, . . . ,m. So
if we look for a single relation R with a given set of properties we choose m = 1,
and if we look for two relations R and S with a given set of properties we choose
m = 2.

The rest of the input consists of a number of lines each being either a predicate
or an assignment. In the following R,S refer to binary relations on A, and x, y
refer to elements of A. The possible predicates are

– subs, where subs(R,S) means that R ⊆ S,
– nsubs, where nsubs(R,S) means that ¬(R ⊆ S),
– disj, where disj(R,S) means that R ∩ S = ∅,
– trans, where trans(R) means that R is transitive,
– ntrans, where ntrans(R) means that R is not transitive,
– irr, where irr(R) means that R is irreflexive,
– nirr, where nirr(R) means that R is not irreflexive,
– symm, where symm(R) means that R is symmetric,
– sn, where sn(R) means that R is terminating,
– nsn, where nsn(R) means that R is not terminating,



– wn, where wn(R) means that R is weakly normalizing (every element has at
least one normal form),

– nwn, where nwn(R) means that R is not weakly normalizing,
– cr, where cr(R) means that R is confluent,
– ncr, where ncr(R) means that R is not confluent,
– wcr, where wcr(R) means that R is locally confluent,
– nwcr, where nwcr(R) means that R is not locally confluent,
– un, where un(R) means that R has the unique normal form property (every

element has at least one normal form),
– nun, where nun(R) means that R does not have the unique normal form

property,
– compl, where compl(R) means that R is complete,
– nf, where nf(x, R) means that x is a normal form with respect to R, and
– red, where red(x, y,R) means that (x, y) ∈ R.
– nrrules, where nrrules(R, j) means that R has at most j elements, and
– nriter, where nriter(j) means that the number k used to define transitive

closures is replaced by j; its default value is dlog2 ne. This default value is
always safe, but in some cases smaller values may be appropriate.

Assignments always consist of a variable name followed by the symbol ’=’,
followed by an operation applied on a number of arguments. Here the variable
names are always ’x’ followed by a number. The possible operations are

– union, where union(R,S) represents the relation R ∪ S,
– inters, where inters(R,S) represents the relation R ∩ S,
– comp, where comp(R,S) represents the relation R · S,
– peak, where peak(R,S) represents the relation R−1 · S,
– val, where val(R,S) represents the relation R · S−1,
– inv, where inv(R) represents the inverse R−1 of R,
– tc, where tc(R) represents the transitive closure R+ of R,
– rc, where rc(R) represents the reflexive closure R ∪ I of R, and
– trc, where trc(R) represents the transitive reflexive closure R∗ of R.

Here the relations R,S should be either one of the basic relations, numbered
1, . . . ,m, or a variable name that has been defined in an earlier assignment.

Space symbols are not allowed; lines starting with a space symbol are con-
sidered as comment.

Examples

Finding a locally confluent irreflexive relation on four elements that is not con-
fluent can be done by the following input:

4 (nr of elements)
1 (nr of basic relations)
wcr(1)
ncr(1)
irr(1)
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Alternatively, avoiding wcr and cr in order to introduce trc(1) internally
only once, for the same task the following input can be chosen:

4
1
x1=trc(1)
x2=peak(1,1)
x3=val(x1,x1)
subs(x2,x3)
x4=peak(x1,x1)
nsubs(x4,x3)
irr(1)

Both versions give as output the desired relation:

Relation 1:
(1,2)
(1,3)
(2,1)
(2,4)

which coincides with the well-known example of a locally confluent relation that
is not confluent.

By the next example we look for two complete relations R and S satisfying
R−1 ·S ⊆ S ·R∗ · (R−1)∗ for R being 1 and S being 2, on 8 elements, for which
the element 1 has two distinct normal forms 2 and 3 with respect to the union
of R and S.

As the input we define

8
2
compl(1)
compl(2)
x1=union(1,2)
nf(2,x1)
nf(3,x1)
x2=tc(x1)
red(1,2,x2)
red(1,3,x2)
x1=trc(1)
x2=comp(2,x1)
x3=peak(1,2)
x4=val(x2,x1)
subs(x3,x4)

On this input within a few seconds Carpa generates the output
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Relation 1:
(1,4)
(5,4)
(7,6)
(8,6)
Relation 2:
(1,3)
(4,3)
(4,8)
(5,7)
(6,2)
(6,5)
(7,2)
(8,1)

that indeed can be checked to have the given properties.
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