
Manual for the tool Carpa

Hans Zantema1,2

1 Department of Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, email: H.Zantema@tue.nl

2 Institute for Computing and Information Sciences, Radboud University
Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. The tool Carpa (Counter examples in Abstract Rewriting
Produced Automatically) automatically tries to find finite counter ex-
amples for any given set of rewriting properties.

The input for the tool Carpa (Counter examples for Abstract Rewriting Pro-
duced Automatically) is a list of properties of binary relations. On such an input
the tool either builds a set of binary relations on the specified number of ele-
ments that satisfies these properties, or shows that this is impossible. The tool
Carpa can be downloaded from

http://www.win.tue.nl/~hzantema/carpa.html

including the source code, a Linux executable, a file Readme with basic instruc-
tions, and encodings of several examples.

The input for Carpa always starts by two numbers n, m, each on a separate
line, possibly followed by comment. Here n = #A is the cardinality of the set A
on which we search for binary relations. The number m is the number of basic
relations in the specification, internally referred to by the numbers 1, . . . ,m. So
if we look for a single relation R with a given set of properties we choose m = 1,
and if we look for two relations R and S with a given set of properties we choose
m = 2.

The rest of the input consists of a number of lines each being either a predicate
or an assignment. In the following R,S refer to binary relations on A, and x, y
refer to elements of A. The possible predicates are

– subs, where subs(R,S) means that R ⊆ S,
– nsubs, where nsubs(R,S) means that ¬(R ⊆ S),
– disj, where disj(R,S) means that R ∩ S = ∅,
– trans, where trans(R) means that R is transitive,
– ntrans, where ntrans(R) means that R is not transitive,
– irr, where irr(R) means that R is irreflexive,
– nirr, where nirr(R) means that R is not irreflexive,
– symm, where symm(R) means that R is symmetric,
– sn, where sn(R) means that R is terminating,
– nsn, where nsn(R) means that R is not terminating,



– wn, where wn(R) means that R is weakly normalizing (every element has at
least one normal form),

– nwn, where nwn(R) means that R is not weakly normalizing,
– cr, where cr(R) means that R is confluent,
– ncr, where ncr(R) means that R is not confluent,
– wcr, where wcr(R) means that R is locally confluent,
– nwcr, where nwcr(R) means that R is not locally confluent,
– un, where un(R) means that R has the unique normal form property (every

element has at least one normal form),
– nun, where nun(R) means that R does not have the unique normal form

property,
– compl, where compl(R) means that R is complete,
– nf, where nf(x, R) means that x is a normal form with respect to R, and
– red, where red(x, y,R) means that (x, y) ∈ R.
– nrrules, where nrrules(R, j) means that R has at most j elements, and
– nriter, where nriter(j) means that the number k used to define transitive

closures is replaced by j; its default value is dlog2 ne. This default value is
always safe, but in some cases smaller values may be appropriate.

Assignments always consist of a variable name followed by the symbol ’=’,
followed by an operation applied on a number of arguments. Here the variable
names are always ’x’ followed by a number. The possible operations are

– union, where union(R,S) represents the relation R ∪ S,
– inters, where inters(R,S) represents the relation R ∩ S,
– comp, where comp(R,S) represents the relation R · S,
– peak, where peak(R,S) represents the relation R−1 · S,
– val, where val(R,S) represents the relation R · S−1,
– inv, where inv(R) represents the inverse R−1 of R,
– tc, where tc(R) represents the transitive closure R+ of R,
– rc, where rc(R) represents the reflexive closure R ∪ I of R, and
– trc, where trc(R) represents the transitive reflexive closure R∗ of R.

Here the relations R,S should be either one of the basic relations, numbered
1, . . . ,m, or a variable name that has been defined in an earlier assignment.

Space symbols are not allowed; lines starting with a space symbol are con-
sidered as comment.

Examples

Finding a locally confluent irreflexive relation on four elements that is not con-
fluent can be done by the following input:

4 (nr of elements)
1 (nr of basic relations)
wcr(1)
ncr(1)
irr(1)

2



Alternatively, avoiding wcr and cr in order to introduce trc(1) internally
only once, for the same task the following input can be chosen:

4
1
x1=trc(1)
x2=peak(1,1)
x3=val(x1,x1)
subs(x2,x3)
x4=peak(x1,x1)
nsubs(x4,x3)
irr(1)

Both versions give as output the desired relation:

Relation 1:
(1,2)
(1,3)
(2,1)
(2,4)

which coincides with the well-known example of a locally confluent relation that
is not confluent.

By the next example we look for two complete relations R and S satisfying
R−1 ·S ⊆ S ·R∗ · (R−1)∗ for R being 1 and S being 2, on 8 elements, for which
the element 1 has two distinct normal forms 2 and 3 with respect to the union
of R and S.

As the input we define

8
2
compl(1)
compl(2)
x1=union(1,2)
nf(2,x1)
nf(3,x1)
x2=tc(x1)
red(1,2,x2)
red(1,3,x2)
x1=trc(1)
x2=comp(2,x1)
x3=peak(1,2)
x4=val(x2,x1)
subs(x3,x4)

On this input within a few seconds Carpa generates the output

3



Relation 1:
(1,4)
(5,4)
(7,6)
(8,6)
Relation 2:
(1,3)
(4,3)
(4,8)
(5,7)
(6,2)
(6,5)
(7,2)
(8,1)

that indeed can be checked to have the given properties.

4


