# Process Algebra 

Bas Luttik<br>s.p.luttik@tue.nl<br>HG 6.85

FSA seminar (22 September 2011)

## Algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

## Algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

This collection of axioms is sound (and complete?) for $(\mathbb{N},+, \cdot, 0,1)$.

## Algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

This collection of axioms is sound (and complete?) for $(\mathbb{N},+, \cdot, 0,1)$.
sound: only valid equations can be derived;

## Algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

This collection of axioms is sound (and complete?) for $(\mathbb{N},+, \cdot, 0,1)$.
sound: only valid equations can be derived; complete: all valid equations can be derived.

## Process algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

## Process algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

Let $\mathbb{P}$ be a set of processes, $0 \in \mathbb{P}$ is the deadlocked process, $1 \in \mathbb{P}$ is the (successfully) terminated process, + is nondeterministic choice and - is sequential composition.

## Process algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

Let $\mathbb{P}$ be a set of processes, $0 \in \mathbb{P}$ is the deadlocked process, $1 \in \mathbb{P}$ is the (successfully) terminated process, + is nondeterministic choice and . is sequential composition.

Question
Is the collection of axioms sound and complete for $(\mathbb{P},+, \cdot, 0,1)$ ?

## Process algebra

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+0 & =x \\
x \cdot y & =y \cdot x \\
x \cdot 1 & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z
\end{aligned}
$$

Let $\mathbb{P}$ be a set of processes, $0 \in \mathbb{P}$ is the deadlocked process, $1 \in \mathbb{P}$ is the (successfully) terminated process, + is nondeterministic choice and . is sequential composition.

## Question

Is the collection of axioms sound and complete for $(\mathbb{P},+, \cdot, 0,1)$ ?
Answer
Most likely not, but first tell me a bit more about $(\mathbb{P},+, \cdot, \underline{T}, 1)!$

## Recipe for a concrete process algebra (1)

1. syntax: $\quad P::=0|1| a \cdot P|P \cdot P| P+P$.

## Recipe for a concrete process algebra (1)

1. syntax: $\quad P::=0|1| a \cdot P|P \cdot P| P+P$.
2. operational semantics:

$$
\begin{aligned}
& \overline{1 \downarrow} \frac{}{a \cdot P \xrightarrow{a} P} \quad \frac{P \stackrel{a}{\longrightarrow} P^{\prime}}{P \cdot Q \stackrel{a}{\longrightarrow} P^{\prime} \cdot Q} \\
& \frac{P \downarrow \quad Q \stackrel{a}{\longrightarrow} Q^{\prime}}{P \cdot Q \xrightarrow{a} Q^{\prime}} \\
& \frac{P \xrightarrow{a} P^{\prime}}{P+Q \xrightarrow{a} P^{\prime}} \quad \frac{Q \xrightarrow{a} Q^{\prime}}{P+Q \xrightarrow{a} Q^{\prime}}
\end{aligned}
$$

## Recipe for a concrete process algebra (1)

1. syntax: $\quad P::=0|1| a \cdot P|P \cdot P| P+P$.
2. operational semantics:

$$
\begin{gathered}
\frac{1 \downarrow}{1 \downarrow} \quad \frac{P \xrightarrow{a} P^{\prime}}{P \cdot P \xrightarrow{a} P} \quad \begin{array}{c}
P \cdot Q \xrightarrow{a} P^{\prime} \cdot Q \\
P \cdot Q \xrightarrow{a} Q^{\prime}
\end{array} \stackrel{Q \xrightarrow{a} Q^{\prime}}{P+Q \xrightarrow{a} P^{\prime}} \quad \stackrel{Q \xrightarrow{a} Q^{\prime}}{P+Q \xrightarrow{a} Q^{\prime}}
\end{gathered}
$$

3. behavioural equivalence: $\overleftrightarrow{\leftrightarrow}$ is the largest equivalence relation on the syntax such that, whenever $P \overleftrightarrow{Q}$,

- if $P \xrightarrow{a} P^{\prime}$, then $Q \xrightarrow{a} Q^{\prime}$ and $P^{\prime} \overleftrightarrow{\leftrightarrow} Q^{\prime}$;
- if $P \downarrow$, then $Q \downarrow$.


## Recipe for a concrete process algebra (1)

1. syntax: $\quad P::=0|1| a \cdot P|P \cdot P| P+P$.
2. operational semantics:

$$
\begin{aligned}
& \frac{1 \downarrow}{a \cdot P \xrightarrow{a} P} \quad \frac{P \xrightarrow{a} P^{\prime}}{P \cdot Q \xrightarrow{a} P^{\prime} \cdot Q} \\
& \frac{P \downarrow \quad Q \xrightarrow{a} Q^{\prime}}{P \cdot Q \xrightarrow{a} Q^{\prime}} \\
& \frac{P \xrightarrow{a} P^{\prime}}{P+Q \xrightarrow{a} P^{\prime}} \\
& \frac{Q \xrightarrow{a} Q^{\prime}}{P+Q \xrightarrow{a} Q^{\prime}}
\end{aligned}
$$

3. behavioural equivalence: $\leftrightarrow$ is the largest equivalence relation on the syntax such that, whenever $P \overleftrightarrow{Q}$,

- if $P \xrightarrow{a} P^{\prime}$, then $Q \xrightarrow{a} Q^{\prime}$ and $P^{\prime} \overleftrightarrow{\leftrightarrow} Q^{\prime}$;
- if $P \downarrow$, then $Q \downarrow$.

4. Define $\mathbb{P}$ as the set of $\overleftrightarrow{\text {-classes of expressions. }}$

## Recipe for a concrete process algebra (2)

Recall that $\mathbb{P}$ consists of equivalence classes of expressions.

## Recipe for a concrete process algebra (2)

Recall that $\mathbb{P}$ consists of equivalence classes of expressions. Convenient notation: $[P]=\{Q \mid Q \overleftrightarrow{P}\}$.

## Recipe for a concrete process algebra (2)

Recall that $\mathbb{P}$ consists of equivalence classes of expressions.
Convenient notation: $[P]=\{Q \mid Q \overleftrightarrow{P}\}$.
Suggested definition of $+, \cdot, 0$ and 1 :

$$
\begin{aligned}
& {[P]+[Q]=[P+Q]} \\
& {[P] \cdot[Q]=[P \cdot Q]}
\end{aligned}
$$

$$
\begin{aligned}
& 0=[0] \\
& 1=[1]
\end{aligned}
$$

## Recipe for a concrete process algebra (2)

Recall that $\mathbb{P}$ consists of equivalence classes of expressions.
Convenient notation: $[P]=\{Q \mid Q \overleftrightarrow{P}\}$.
Suggested definition of $+, \cdot, 0$ and 1 :

$$
\begin{array}{ll}
{[P]+[Q]=[P+Q]} & 0=[0] \\
{[P] \cdot[Q]=[P \cdot Q]} & 1=[1]
\end{array}
$$

5. Check whether the behavioural equivalence is compatible with the syntax, i.e.,

$$
\begin{aligned}
& \text { if } P_{1} \overleftrightarrow{Q} Q_{1} \text { and } P_{2} \overleftrightarrow{G} Q_{2}, \\
& \quad \text { then } P_{1}+P_{2} \overleftrightarrow{G} Q_{1}+Q_{2} \text { and } P_{1} \cdot P_{2} \overleftrightarrow{Q} Q_{1} \cdot Q_{2} .
\end{aligned}
$$

(A syntax-compatible equivalence is called a congruence.)

## Recipe for a concrete process algebra (2)

Recall that $\mathbb{P}$ consists of equivalence classes of expressions.
Convenient notation: $[P]=\{Q \mid Q \overleftrightarrow{P} P$.
Suggested definition of $+, \cdot, 0$ and 1 :

$$
\begin{array}{ll}
{[P]+[Q]=[P+Q]} & 0=[0] \\
{[P] \cdot[Q]=[P \cdot Q]} & 1=[1]
\end{array}
$$

5. Check whether the behavioural equivalence is compatible with the syntax, i.e.,
```
if }\mp@subsup{P}{1}{}\overleftrightarrow{\unlhd}\mp@subsup{Q}{1}{}\mathrm{ and }\mp@subsup{P}{2}{}\leftrightarrows\mp@subsup{Q}{2}{}\mathrm{ ,
    then }\mp@subsup{P}{1}{}+\mp@subsup{P}{2}{}\overleftrightarrow{\unlhd}\mp@subsup{Q}{1}{}+\mp@subsup{Q}{2}{}\mathrm{ and }\mp@subsup{P}{1}{}\cdot\mp@subsup{P}{2}{}\overleftrightarrow{L}\mp@subsup{Q}{1}{}\cdot\mp@subsup{Q}{2}{}
```

(A syntax-compatible equivalence is called a congruence.)
6. Define $+, \cdot, 0$ and 1 as suggested above.

## Assignment

Prove that rooted divergence-preserving branching bisimilarity is a congruence for a syntax with $+, \cdot, \ldots$.

Possible follow-up graduation projects:

- find a collection of axioms and prove that it is sound and complete;
- find SOS format ensuring that rooted divergence-preserving branching bisimilarity is comptabile with all syntactic constructions (i.e., is a congruence).


## Back to the axioms

$$
\begin{aligned}
x+y & =y+x \\
(x+y)+z & =x+(y+z) \\
x+x & =x \\
(x+y) \cdot z & =x \cdot z+y \cdot z \\
x+0 & =x \\
x \cdot 1 & =x \\
1 \cdot x & =x
\end{aligned}
$$

## Theorem

This collection of axioms is sound and complete for $(\mathbb{P},+, \cdot, 0,1)$.
There are many variations possible with respect to:

- the behavioural equivalence used to define $\mathbb{P}$;
- the operations defined on $\mathbb{P}$.

Assignment: extend one of the results in [CFLN08] with sequential composition.

