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x+ y = y + x

(x+ y) + z = x+ (y + z)
x+ 0 = x

x · y = y · x
x · 1 = x

(x+ y) · z = x · z + y · z

Let P be a set of processes, 0 ∈ P is the deadlocked process, 1 ∈ P

is the (successfully) terminated process, + is nondeterministic
choice and · is sequential composition.

Question
Is the collection of axioms sound and complete for (P,+, ·, 0, 1)?

Answer
Most likely not, but first tell me a bit more about (P,+, ·, 0, 1)!
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1. syntax: P ::= 0 | 1 | a.P | P · P | P + P .
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2. operational semantics:

1 ↓ a.P
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3. behavioural equivalence: ↔ is the largest equivalence relation
on the syntax such that, whenever P ↔ Q,

• if P a

−→ P ′, then Q
a

−→ Q′ and P ′ ↔ Q′;
• if P ↓, then Q ↓.

4. Define P as the set of ↔-classes of expressions.
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Recall that P consists of equivalence classes of expressions.
Convenient notation: [P ] = {Q | Q ↔ P}.

Suggested definition of +, ·, 0 and 1:

[P ] + [Q] = [P +Q]
[P ] · [Q] = [P ·Q]

0 = [0]
1 = [1]

5. Check whether the behavioural equivalence is compatible with
the syntax, i.e.,

if P1
↔ Q1 and P2

↔ Q2,

then P1 + P2
↔ Q1 +Q2 and P1 · P2

↔ Q1 ·Q2.

(A syntax-compatible equivalence is called a congruence.)

6. Define +, ·, 0 and 1 as suggested above.
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Assignment

Prove that rooted divergence-preserving branching bisimilarity is a
congruence for a syntax with +, ·, . . . .

Possible follow-up graduation projects:
◮ find a collection of axioms and prove that it is sound and

complete;
◮ find SOS format ensuring that rooted divergence-preserving

branching bisimilarity is comptabile with all syntactic
constructions (i.e., is a congruence).
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Back to the axioms

x+ y = y + x

(x+ y) + z = x+ (y + z)
x+ x = x

(x+ y) · z = x · z + y · z
x+ 0 = x

x · 1 = x

1 · x = x

Theorem
This collection of axioms is sound and complete for (P,+, ·, 0, 1).

There are many variations possible with respect to:
◮ the behavioural equivalence used to define P;
◮ the operations defined on P.

Assignment: extend one of the results in [CFLN08] with sequential
composition.


