Bas Luttik s.p.luttik@tue.nl HG 6.85

FSA seminar (22 September 2011)

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot 1 = x$$

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

This collection of axioms is sound (and complete?) for $(\mathbb{N}, +, \cdot, 0, 1)$.

This collection of axioms is sound (and complete?) for $(\mathbb{N}, +, \cdot, 0, 1)$.

sound: only valid equations can be derived;

This collection of axioms is sound (and complete?) for $(\mathbb{N}, +, \cdot, 0, 1)$.

sound: only valid equations can be derived; complete: all valid equations can be derived.

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot 1 = x$$

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot 1 = x$$

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

Let \mathbb{P} be a set of processes, $0 \in \mathbb{P}$ is the **deadlocked process**, $1 \in \mathbb{P}$ is the **(successfully) terminated** process, + is **nondeterministic choice** and \cdot is **sequential composition**.

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot 1 = x$$

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

Let \mathbb{P} be a set of processes, $0 \in \mathbb{P}$ is the **deadlocked process**, $1 \in \mathbb{P}$ is the **(successfully) terminated** process, + is **nondeterministic choice** and \cdot is **sequential composition**.

Question

Is the collection of axioms sound and complete for $(\mathbb{P}, +, \cdot, 0, 1)$?

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + 0 = x$$

$$x \cdot y = y \cdot x$$

$$x \cdot 1 = x$$

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

Let \mathbb{P} be a set of processes, $0 \in \mathbb{P}$ is the **deadlocked process**, $1 \in \mathbb{P}$ is the **(successfully) terminated** process, + is **nondeterministic choice** and \cdot is **sequential composition**.

Question

Is the collection of axioms sound and complete for $(\mathbb{P}, +, \cdot, 0, 1)$?

Answer

Most likely not, but first tell me a bit more about $(\mathbb{P}, +, \cdot, 0, 1)!_{I}$

1. syntax: $P ::= 0 | 1 | a \cdot P | P \cdot P | P + P$.

Recipe for a concrete process algebra (1)

- **1. syntax:** $P ::= 0 | 1 | a \cdot P | P \cdot P | P + P$.
- 2. operational semantics:

4/7

- **1. syntax:** $P ::= 0 | 1 | a \cdot P | P \cdot P | P + P$.
- 2. operational semantics:

3. **behavioural equivalence**: Δ is the largest equivalence relation on the syntax such that, whenever $P \Delta Q$,

• if
$$P \xrightarrow{a} P'$$
, then $Q \xrightarrow{a} Q'$ and $P' \leftrightarrow Q'$;

• if $P \downarrow$, then $Q \downarrow$.

4/7

- **1. syntax:** $P ::= 0 | 1 | a \cdot P | P \cdot P | P + P$.
- 2. operational semantics:

- 3. **behavioural equivalence**: Δ is the largest equivalence relation on the syntax such that, whenever $P \Delta Q$,
 - if $P \xrightarrow{a} P'$, then $Q \xrightarrow{a} Q'$ and $P' \leftrightarrow Q'$;
 - if $P \downarrow$, then $Q \downarrow$.
- 4. Define \mathbb{P} as the set of \pm -classes of expressions.

Recipe for a concrete process algebra (2)

Recall that ℙ consists of equivalence classes of expressions.

Recall that \mathbb{P} consists of equivalence classes of expressions. Convenient notation: $[P] = \{Q \mid Q \Leftrightarrow P\}.$

Recall that \mathbb{P} consists of equivalence classes of expressions. Convenient notation: $[P] = \{Q \mid Q \Leftrightarrow P\}.$

Suggested definition of $+, \cdot, 0$ and 1:

$$\begin{split} [P] + [Q] &= [P + Q] \\ [P] \cdot [Q] &= [P \cdot Q] \end{split} \qquad \begin{array}{l} 0 &= [0] \\ 1 &= [1] \end{array}$$

Recall that \mathbb{P} consists of equivalence classes of expressions. Convenient notation: $[P] = \{Q \mid Q \leftrightarrow P\}.$

Suggested definition of $+, \cdot, 0$ and 1:

[P] + [Q] = [P + Q]	0 = [0]
$[P] \cdot [Q] = [P \cdot Q]$	1 = [1]

5. Check whether the behavioural equivalence is compatible with the syntax, i.e.,

 $\begin{array}{l} \text{if } P_1 \stackrel{\mbox{$\stackrel{$\leftrightarrow$}$}}{\to} Q_1 \text{ and } P_2 \stackrel{\mbox{\hookrightarrow}}{\to} Q_2, \\ \\ \text{then } P_1 + P_2 \stackrel{\mbox{\leftarrow}$}{\to} Q_1 + Q_2 \text{ and } P_1 \cdot P_2 \stackrel{\mbox{\leftarrow}$}{\to} Q_1 \cdot Q_2. \end{array}$

(A syntax-compatible equivalence is called a congruence.)

Recall that \mathbb{P} consists of equivalence classes of expressions. Convenient notation: $[P] = \{Q \mid Q \leftrightarrow P\}.$

Suggested definition of $+, \cdot, 0$ and 1:

[P] + [Q] = [P + Q]	0 = [0]
$[P] \cdot [Q] = [P \cdot Q]$	1 = [1]

5. Check whether the behavioural equivalence is compatible with the syntax, i.e.,

 $\begin{array}{l} \text{if } P_1 \leftrightarrows Q_1 \text{ and } P_2 \leftrightarrows Q_2, \\ \\ \text{then } P_1 + P_2 \leftrightarrows Q_1 + Q_2 \text{ and } P_1 \cdot P_2 \leftrightarrows Q_1 \cdot Q_2. \end{array}$

(A syntax-compatible equivalence is called a congruence.)

6. Define $+, \cdot, 0$ and 1 as suggested above.

Prove that *rooted divergence-preserving branching bisimilarity* is a congruence for a syntax with $+, \cdot, \ldots$

Possible follow-up graduation projects:

- find a collection of axioms and prove that it is sound and complete;
- find SOS format ensuring that rooted divergence-preserving branching bisimilarity is comptabile with all syntactic constructions (i.e., is a congruence).

Back to the axioms

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x + x = x$$

$$(x + y) \cdot z = x \cdot z + y \cdot z$$

$$x + 0 = x$$

$$x \cdot 1 = x$$

$$1 \cdot x = x$$

Theorem

This collection of axioms is sound and complete for $(\mathbb{P}, +, \cdot, 0, 1)$.

There are many variations possible with respect to:

- the behavioural equivalence used to define \mathbb{P} ;
- ► the operations defined on P.

Assignment: extend one of the results in [CFLN08] with sequential composition.