
Theorems used by proofs generated by TORPA

H. Zantema

Department of Computer Science, TU Eindhoven

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

e-mail h.zantema@tue.nl

This document lists all theorems used by proofs generated by TORPA version
1.6, prepared for the Termination Competition 2006. They are identified by
letters in square brackets; the output of TORPA 1.6 uses the same identification.

[A] Monotone Algebras

Theorem. Let R, S, R′ and S ′ be SRSs satisfying

• R ∪ S = R′ ∪ S ′ and R ∩ S = R′ ∩ S ′ = ∅, and

• SN(R′/S ′) and SN((R ∩ S ′)/(S ∩ S ′)).

Then SN(R/S).

Proof: [3], Theorem 1. 2

Theorem. Let A be a non-empty set and let > be a well-founded order on A.
Let fa : A → A be strictly monotone for every a ∈ Σ, i.e., fa(x) > fa(y) for
every x, y ∈ A satisfying x > y.

Let R and S be disjoint SRSs over Σ such that f`(x) > fr(x) for all x ∈ A
and ` → r ∈ R, and f`(x) ≥ fr(x) for all x ∈ A and ` → r ∈ S.

Then SN(R/S).

Proof: [3], Theorem 4. 2

These theorems are applied as follows: if SN(R/S) has to be proved then an
interpretation is chosen for which f`(x) ≥ fr(x) for all x ∈ A and ` → r ∈ R∪ S.
Then R′ is defined to consist of the rules ` → r of R ∪ S satisfying f`(x) > fr(x)
for all x ∈ A, and S ′ = (R ∪ S) \ R′.

Then SN(R′/S ′) holds by the second theorem, and by the first theorem the
remaining proof obligation is SN((R ∩ S ′)/(S ∩ S ′)).

1

[B] Recursive Path Order

For an order > on the finite set Σ the order >rpo has the following defining
property: s >rpo t if and only if s can be written as s = as′ for a ∈ Σ, and either

• s′ = t or s′ >rpo t, or

• t can be written as t = bt′ for b ∈ Σ, and either

– a > b and s >rpo t′, or

– a = b and s′ >rpo t′.

Theorem. If ` >rpo r for all rules ` → r of an SRS R, then R is terminating.

Proof: [1], Theorem 6.4.3. 2

[C] Reverse

For a string s write srev for its reverse. For an SRS R write

Rrev = { `rev → rrev | ` → r ∈ R }.

Theorem. Let R and S be disjoint SRSs. Then SN(R/S) if and only if
SN(Rrev/Srev).

Proof: This follows from the observation that if s →R t for any SRS R then
srev →Rrev trev. 2

This is Lemma 2 in [3].

[D] RFC-match-bounds

For an SRS R over an alphabet Σ we define the infinite SRS match(R) over
Σ × N to consist of all rules (a1, n1) · · · (ap, np) → (b1, m1) · · · (bq, mq) for which
a1 · · ·ap → b1 · · · bq ∈ R and mi = 1 + minj=1,...,p nj for all i = 1, . . . , q.

For an SRS R over an alphabet Σ we define the SRS R# over Σ ∪ {#} by

R# = R ∪ { `1# → r | ` → r ∈ R ∧ ` = `1`2 ∧ `1 6= ε 6= `2 }.

Theorem. Let R be an SRS and let N ∈ N such that for all rhs’s b1 · · · bq of R
and all k ∈ N and all reductions

(b1, 0) · · · (bq, 0)(#, 0)k →∗

match(R#) (c1, n1) · · · (cr, nr)

it holds that ni ≤ N for all i = 1, . . . , r. Then R is terminating.

2

Proof: [3], Theorem 14. 2

In TORPA termination of an SRS is proved by RFC-match-bounds by the
construction of a finite automaton M over the alphabet (Σ∪ {#})×N, where Σ
is the alphabet of R, satisfying:

• for every rhs b1 · · · bq of R and every k ∈ N the automaton M accepts
(b1, 0) · · · (bq, 0)(#, 0)k, and

• M is closed under match(R#), i.e., if M accepts v and v →match(R#) u then
M accepts u too.

Such an automaton is called compatible. The pair (a, k) ∈ (Σ ∪ {#}) × N is
shortly written as ak, and the number k is called the label of this pair. It is easy
to see that if a (finite) compatible automaton M has been found then for N being
the biggest label occurring in M the condition of the theorem holds.

[E] Semantic Labelling

Fix a non-empty set A and maps fa : A → A for all a ∈ Σ for some alphabet Σ.
Let fs for s ∈ Σ∗ be defined as before. Let Σ be the alphabet consisting of the
symbols ax for a ∈ Σ and x ∈ A. The labelling function lab : Σ∗ × A → Σ

∗

is
defined inductively as follows:

lab(ε, x) = ε for x ∈ A,

lab(sa, x) = lab(s, fa(x))ax for s ∈ Σ∗, a ∈ Σ, x ∈ A.

For an SRS R over Σ define

lab(R) = { lab(l, x) → lab(r, x) | l → r ∈ R, x ∈ A }.

Theorem. Let R and S be two disjoint SRSs over an alphabet Σ. Let > be
a well-founded order on a non-empty set A. Let fa : A → A be defined for all
a ∈ Σ such that

• fa(x) ≥ fa(y) for all a ∈ Σ, x, y ∈ A satisfying x > y, and

• f`(x) ≥ fr(x) for all ` → r ∈ R ∪ S, x ∈ A.

Let Dec be the SRS over Σ consisting of the rules ax → ay for all a ∈ Σ, x, y ∈ A
satisfying x > y.

Then SN(R/S) if and only if SN(lab(R)/(lab(S) ∪ Dec)).

Proof: [3], Theorem 15. 2

In TORPA this is only applied for A = {0, 1}. In case the relation > is empty
the set A together with the functions fa for a ∈ Σ is called a model for the SRS,

3

otherwise it is called a quasi-model. It is called a model since then for every rule
` → r the interpretation f` of ` is equal to the interpretation fr of r. Note that
Dec = ∅ in case of a model.

If TORPA applies [E] Semantic Labelling, then the ’if’-part of this theorem
is used.

[F] Removal of Labels

Here the same theorem [E] Semantic Labelling is used, but then the ’only if’-part.

[G] Dependency Pairs

Write Σ# = Σ ∪ {a# | a ∈ ΣD}. The SRS DP (R) over Σ# is defined to consist
of all rules of the shape

a#`′ → b#r′′

for which a`′ = ` and r = r′br′′ for some rule ` → r in R and a, b ∈ ΣD. Rules of
DP (R) are called dependency pairs.
Theorem. Let R be an SRS in which all lhs’s are non-empty. Then

SN(R) if and only if SN(DP (R)/R).

Proof: [3], Theorem 6. 2

[H] Looping

If u →+
R vuw then an infinite reduction of the following shape exists:

u →+
R vuw →+

R vvuww →+
R vvvuwww →+

R · · · ,

proving non-termination. Such a reduction is called looping. The way TORPA
searches for looping reductions is described in [3], Section 9.

[I] Dummy Elimination

A dummy symbol is a symbol occurring in a rhs but in no lhs. Now for a dummy
symbol a in an SRS R we define

DE′

a(R) = {` → u | u = cap′

a(r) ∨ u ∈ dec′a(r) for a rule ` → r ∈ R},

4

where

cap′

a(λ) = λ
cap′

a(fs) = fcap′

a(s) for all symbols f with f 6= a and all strings s
cap′

a(as) = a$

dec′a(λ) = ∅
dec′a(fs) = dec′a(s) for all symbols f with f 6= a and all strings s
dec′a(as) = dec′a(s) ∪ {$a(cap′

a(s)}.

Theorem. Let R be an SRS having a dummy symbol a. Then R is terminating
if and only if DE′

a(R) is terminating.

Proof: [2], Theorem 11. 2

[J] Reducing Right Hand Sides

Theorem. Let R be a TRS for which a rhs is not in normal form, i.e., R
contains a rule ` → r and a rule of the shape `′ → C[`σ]. Assume that

• ` → r is left-linear,

• ` → r is non-erasing,

• WCR({` → r}), and

• there is no overlap between ` and the lhs of any rule of R \ {` → r}.

Let R′ be obtained from R by replacing the rule `′ → C[`σ] by `′ → C[rσ]. Then
R is terminating if and only if R′ is terminating.

Proof: [2], Theorem 4. 2

[K] Strip First/Last Symbol

Theorem. Let R′ be an SRS obtained from an SRS R by replacing a rule of the
shape a` → ar by ` → r (strip first symbol), or by replacing a rule of the shape
`a → ra by ` → r (strip last symbol). If R′ is terminating then R is terminating.

Proof: Obvious since every →R-step is an →R′-step too. 2

5

References

[1] H. Zantema. Termination. In Term Rewriting Systems, by Terese, pages
181–259. Cambridge University Press, 2003.

[2] H. Zantema. Reducing right-hand sides for termination. In A. Middeldorp,
V. van Oostrom, F. van Raamsdonk, and R. de Vrijer, editors, Processes,
Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan
Willem Klop on the Occasion of His 60th Birthday, volume 3838 of Lecture
Notes in Computer Science, pages 173–197, Berlin, 2005. Springer-Verlag.

[3] H. Zantema. Termination of string rewriting proved automatically. Journal
of Automated Reasoning, 34:105–139, 2005.

6

