Theorems used by proofs generated by TORPA

H. Zantema

Department of Computer Science, TU Eindhoven P.O. Box 513, 5600 MB, Eindhoven, The Netherlands e-mail h.zantema@tue.nl

This document lists all theorems used by proofs generated by TORPA version 1.6, prepared for the Termination Competition 2006. They are identified by letters in square brackets; the output of TORPA 1.6 uses the same identification.

[A] Monotone Algebras

Theorem. Let R, S, R' and S' be SRSs satisfying

- $R \cup S = R' \cup S'$ and $R \cap S = R' \cap S' = \emptyset$, and
- SN(R'/S') and $SN((R \cap S')/(S \cap S'))$.

Then SN(R/S).

Proof: [3], Theorem 1.

Theorem. Let A be a non-empty set and let > be a well-founded order on A. Let $f_a : A \to A$ be strictly monotone for every $a \in \Sigma$, i.e., $f_a(x) > f_a(y)$ for every $x, y \in A$ satisfying x > y.

Let R and S be disjoint SRSs over Σ such that $f_{\ell}(x) > f_r(x)$ for all $x \in A$ and $\ell \to r \in R$, and $f_{\ell}(x) \ge f_r(x)$ for all $x \in A$ and $\ell \to r \in S$. Then $\mathsf{SN}(R/S)$.

Proof: [3], Theorem 4.

These theorems are applied as follows: if $\mathsf{SN}(R/S)$ has to be proved then an interpretation is chosen for which $f_{\ell}(x) \ge f_r(x)$ for all $x \in A$ and $\ell \to r \in R \cup S$. Then R' is defined to consist of the rules $\ell \to r$ of $R \cup S$ satisfying $f_{\ell}(x) > f_r(x)$ for all $x \in A$, and $S' = (R \cup S) \setminus R'$.

Then $\mathsf{SN}(R'/S')$ holds by the second theorem, and by the first theorem the remaining proof obligation is $\mathsf{SN}((R \cap S')/(S \cap S'))$.

[B] Recursive Path Order

For an order > on the finite set Σ the order >_{rpo} has the following defining property: $s >_{rpo} t$ if and only if s can be written as s = as' for $a \in \Sigma$, and either

- s' = t or $s' >_{rpo} t$, or
- t can be written as t = bt' for $b \in \Sigma$, and either

$$-a > b$$
 and $s >_{rpo} t'$, or

-a = b and $s' >_{rpo} t'$.

Theorem. If $\ell >_{rpo} r$ for all rules $\ell \to r$ of an SRS R, then R is terminating. **Proof:** [1], Theorem 6.4.3.

[C] Reverse

For a string s write s^{rev} for its reverse. For an SRS R write

$$R^{\mathsf{rev}} = \{ \ \ell^{\mathsf{rev}} \to r^{\mathsf{rev}} \mid \ell \to r \in R \}.$$

Let R and S be disjoint SRSs. Then SN(R/S) if and only if Theorem. $SN(R^{rev}/S^{rev}).$

Proof: This follows from the observation that if $s \to_R t$ for any SRS R then $s^{\mathsf{rev}} \to_{R^{\mathsf{rev}}} t^{\mathsf{rev}}.$

This is Lemma 2 in [3].

[D] RFC-match-bounds

For an SRS R over an alphabet Σ we define the infinite SRS match(R) over $\Sigma \times \mathbf{N}$ to consist of all rules $(a_1, n_1) \cdots (a_p, n_p) \to (b_1, m_1) \cdots (b_q, m_q)$ for which $a_1 \cdots a_p \to b_1 \cdots b_q \in R$ and $m_i = 1 + \min_{j=1,\dots,p} n_j$ for all $i = 1, \dots, q$.

For an SRS R over an alphabet Σ we define the SRS $R_{\#}$ over $\Sigma \cup \{\#\}$ by

$$R_{\#} = R \cup \{ \ell_1 \# \to r \mid \ell \to r \in R \land \ell = \ell_1 \ell_2 \land \ell_1 \neq \epsilon \neq \ell_2 \}.$$

Theorem. Let R be an SRS and let $N \in \mathbf{N}$ such that for all rhs's $b_1 \cdots b_q$ of R and all $k \in \mathbf{N}$ and all reductions

$$(b_1, 0) \cdots (b_q, 0) (\#, 0)^k \rightarrow^*_{\mathsf{match}(R_\#)} (c_1, n_1) \cdots (c_r, n_r)$$

it holds that $n_i \leq N$ for all i = 1, ..., r. Then R is terminating.

Proof: [3], Theorem 14.

In TORPA termination of an SRS is proved by RFC-match-bounds by the construction of a finite automaton M over the alphabet $(\Sigma \cup \{\#\}) \times \mathbf{N}$, where Σ is the alphabet of R, satisfying:

- for every rhs $b_1 \cdots b_q$ of R and every $k \in \mathbf{N}$ the automaton M accepts $(b_1, 0) \cdots (b_q, 0) (\#, 0)^k$, and
- *M* is closed under $match(R_{\#})$, i.e., if *M* accepts *v* and $v \rightarrow_{match(R_{\#})} u$ then *M* accepts *u* too.

Such an automaton is called *compatible*. The pair $(a, k) \in (\Sigma \cup \{\#\}) \times \mathbf{N}$ is shortly written as a_k , and the number k is called the *label* of this pair. It is easy to see that if a (finite) compatible automaton M has been found then for N being the biggest label occurring in M the condition of the theorem holds.

[E] Semantic Labelling

Fix a non-empty set A and maps $f_a : A \to A$ for all $a \in \Sigma$ for some alphabet Σ . Let f_s for $s \in \Sigma^*$ be defined as before. Let $\overline{\Sigma}$ be the alphabet consisting of the symbols a_x for $a \in \Sigma$ and $x \in A$. The *labelling function* $lab : \Sigma^* \times A \to \overline{\Sigma}^*$ is defined inductively as follows:

$$\mathsf{lab}(\epsilon, x) = \epsilon \quad \text{for } x \in A,$$
$$\mathsf{lab}(sa, x) = \mathsf{lab}(s, f_a(x))a_x \quad \text{for } s \in \Sigma^*, a \in \Sigma, x \in A$$

For an SRS R over Σ define

$$\mathsf{lab}(R) = \{ \mathsf{lab}(l, x) \to \mathsf{lab}(r, x) \mid l \to r \in R, x \in A \}.$$

Theorem. Let R and S be two disjoint SRSs over an alphabet Σ . Let > be a well-founded order on a non-empty set A. Let $f_a : A \to A$ be defined for all $a \in \Sigma$ such that

- $f_a(x) \ge f_a(y)$ for all $a \in \Sigma, x, y \in A$ satisfying x > y, and
- $f_{\ell}(x) \ge f_r(x)$ for all $\ell \to r \in R \cup S, x \in A$.

Let Dec be the SRS over $\overline{\Sigma}$ consisting of the rules $a_x \to a_y$ for all $a \in \Sigma, x, y \in A$ satisfying x > y.

Then SN(R/S) if and only if $SN(lab(R)/(lab(S) \cup Dec))$.

Proof: [3], Theorem 15.

In TORPA this is only applied for $A = \{0, 1\}$. In case the relation > is empty the set A together with the functions f_a for $a \in \Sigma$ is called a *model* for the SRS,

otherwise it is called a *quasi-model*. It is called a model since then for every rule $\ell \to r$ the interpretation f_{ℓ} of ℓ is equal to the interpretation f_r of r. Note that $\mathsf{Dec} = \emptyset$ in case of a model.

If TORPA applies [E] Semantic Labelling, then the 'if'-part of this theorem is used.

[F] Removal of Labels

Here the same theorem [E] Semantic Labelling is used, but then the 'only if'-part.

[G] Dependency Pairs

Write $\Sigma^{\#} = \Sigma \cup \{a^{\#} \mid a \in \Sigma_D\}$. The SRS DP(R) over $\Sigma^{\#}$ is defined to consist of all rules of the shape

$$a^{\#}\ell' \rightarrow b^{\#}r''$$

for which $a\ell' = \ell$ and r = r'br'' for some rule $\ell \to r$ in R and $a, b \in \Sigma_D$. Rules of DP(R) are called *dependency pairs*.

Theorem. Let R be an SRS in which all lhs's are non-empty. Then SN(R) if and only if SN(DP(R)/R).

Proof: [3], Theorem 6.

[H] Looping

If $u \to_R^+ vuw$ then an infinite reduction of the following shape exists:

 $u \to_R^+ vuw \to_R^+ vvuww \to_R^+ vvvuwww \to_R^+ \cdots,$

proving non-termination. Such a reduction is called *looping*. The way TORPA searches for looping reductions is described in [3], Section 9.

[I] Dummy Elimination

A dummy symbol is a symbol occurring in a rhs but in no lhs. Now for a dummy symbol a in an SRS R we define

$$\mathsf{DE}'_a(R) = \{\ell \to u \mid u = \mathsf{cap}'_a(r) \lor u \in \mathsf{dec}'_a(r) \text{ for a rule } \ell \to r \in R\},\$$

where

 $\begin{aligned} \mathsf{cap}'_a(\lambda) &= \lambda \\ \mathsf{cap}'_a(fs) &= f\mathsf{cap}'_a(s) & \text{for all symbols } f \text{ with } f \neq a \text{ and all strings } s \\ \mathsf{cap}'_a(as) &= a_{\$} \\ \mathsf{dec}'_a(\lambda) &= \emptyset \\ \mathsf{dec}'_a(fs) &= \mathsf{dec}'_a(s) & \text{for all symbols } f \text{ with } f \neq a \text{ and all strings } s \\ \mathsf{dec}'_a(as) &= \mathsf{dec}'_a(s) \cup \{\$a(\mathsf{cap}'_a(s)\}. \end{aligned}$

Theorem. Let R be an SRS having a dummy symbol a. Then R is terminating if and only if $\mathsf{DE}'_a(R)$ is terminating.

Proof: [2], Theorem 11.

[J] Reducing Right Hand Sides

Theorem. Let R be a TRS for which a rhs is not in normal form, i.e., R contains a rule $\ell \to r$ and a rule of the shape $\ell' \to C[\ell\sigma]$. Assume that

- $\ell \to r$ is left-linear,
- $\ell \rightarrow r$ is non-erasing,
- WCR($\{\ell \rightarrow r\}$), and
- there is no overlap between ℓ and the lhs of any rule of $R \setminus \{\ell \to r\}$.

Let R' be obtained from R by replacing the rule $\ell' \to C[\ell\sigma]$ by $\ell' \to C[r\sigma]$. Then R is terminating if and only if R' is terminating.

Proof: [2], Theorem 4.

[K] Strip First/Last Symbol

Theorem. Let R' be an SRS obtained from an SRS R by replacing a rule of the shape $a\ell \rightarrow ar$ by $\ell \rightarrow r$ (strip first symbol), or by replacing a rule of the shape $\ell a \rightarrow ra$ by $\ell \rightarrow r$ (strip last symbol). If R' is terminating then R is terminating.

Proof: Obvious since every \rightarrow_R -step is an $\rightarrow_{R'}$ -step too.

References

- H. Zantema. Termination. In *Term Rewriting Systems, by Terese*, pages 181–259. Cambridge University Press, 2003.
- [2] H. Zantema. Reducing right-hand sides for termination. In A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and R. de Vrijer, editors, *Processes, Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the Occasion of His 60th Birthday*, volume 3838 of *Lecture Notes in Computer Science*, pages 173–197, Berlin, 2005. Springer-Verlag.
- [3] H. Zantema. Termination of string rewriting proved automatically. *Journal of Automated Reasoning*, 34:105–139, 2005.