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This document lists all theorems used by proofs generated by TORPA version
1.6, prepared for the Termination Competition 2006. They are identified by
letters in square brackets; the output of TORPA 1.6 uses the same identification.

[A] Monotone Algebras

Theorem. Let R, S, R’ and S’ be SRSs satisfying
e RUS=RUS and RNS=R'NS" =0, and
e SN(R'/S") and SN((RNS")/(SNS")).
Then SN(R/S).
Proof: [3], Theorem 1. O

Theorem. Let A be a non-empty set and let > be a well-founded order on A.
Let f, : A — A be strictly monotone for every a € X, i.e., f,(x) > fu(y) for
every x,y € A satisfying x > .

Let R and S be disjoint SRSs over ¥ such that f,(x) > f.(z) for allz € A
and { —r € R, and fo(x) > f.(z) forallz € A and ¢ —r € S.

Then SN(R/S).

Proof: [3], Theorem 4. O

These theorems are applied as follows: if SN(R/S) has to be proved then an
interpretation is chosen for which fy,(z) > f.(x) forallz € Aand ¢ — r € RUS.
Then R’ is defined to consist of the rules ¢ — r of RU S satisfying fy(z) > f,(x)
forallz € A, and ' = (RUS)\ R'.

Then SN(R'/S’) holds by the second theorem, and by the first theorem the
remaining proof obligation is SN((RN S") /(SN .S")).



[B] Recursive Path Order

For an order > on the finite set ¥ the order >,,, has the following defining
property: s >, t if and only if s can be written as s = as’ for a € ¥, and either

o s'=tors >t or
e t can be written as t = bt’ for b € X, and either

—a>band s >, t, or

—a="band s >, t.
Theorem. If{ >,,, r for all rules { — r of an SRS R, then R is terminating.
Proof: [1], Theorem 6.4.3. O

[C] Reverse

For a string s write s™" for its reverse. For an SRS R write
Rrev:{grevﬁrrev‘gﬁr c R}

Theorem. Let R and S be disjoint SRSs. Then SN(R/S) if and only if
SN(Rrev/Srev)‘

Proof: This follows from the observation that if s —x t for any SRS R then

LN Rrev trev. O

This is Lemma 2 in [3].

[D] RFC-match-bounds

For an SRS R over an alphabet ¥ we define the infinite SRS match(R) over
¥ x N to consist of all rules (ay,ny) - (ap,n,) — (by,my) - - (by, my) for which
ap---ap —by---bg € Rand m; =1+ min;—;_,n; foralle=1,...,q.

For an SRS R over an alphabet ¥ we define the SRS Ry over ¥ U {#} by
R# = R U {fl#HT‘KHTER A 626162 A 617&67&62}.

Theorem. Let R be an SRS and let N € N such that for all ths’s by ---by of R
and all k € N and all reductions

(bb 0) U (bqv O)(#? O>k _>:natch(R#) (Clv nl) T (Cru TL,«)

it holds that n; < N for alli=1,...,r. Then R is terminating.
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Proof: [3], Theorem 14. O

In TORPA termination of an SRS is proved by RFC-match-bounds by the
construction of a finite automaton M over the alphabet (XU {#}) x N, where X
is the alphabet of R, satisfying:

o for every rhs b;---b, of R and every k£ € N the automaton M accepts
(b1,0) -+ (by, 0)(#,0)*, and

e M is closed under match(Ry), i.e., if M accepts v and v —match(Ry) U then
M accepts u too.

Such an automaton is called compatible. The pair (a,k) € (X U {#}) x N is
shortly written as ag, and the number k is called the label of this pair. It is easy
to see that if a (finite) compatible automaton M has been found then for N being
the biggest label occurring in M the condition of the theorem holds.

[E] Semantic Labelling

Fix a non-empty set A and maps f, : A — A for all a € ¥ for some alphabet >.
Let f, for s € ¥* be defined as before. Let ¥ be the alphabet consisting of the
symbols a, for a € ¥ and # € A. The labelling function lab : * x A — X is
defined inductively as follows:

lab(e, z) =€ for xz € A,
lab(sa, x) = lab(s, fo(x))a, fors e ¥* a€ X x € A.
For an SRS R over ¥ define
lab(R) = { lab(l,z) — lab(r,z) |l = r€ R,x € A }.

Theorem. Let R and S be two disjoint SRSs over an alphabet 3. Let > be
a well-founded order on a mon-empty set A. Let f, : A — A be defined for all
a € Y such that

o fu(x) > fu(y) for alla € ¥, z,y € A satisfying x >y, and
o fi(x) > fr(z) foralll —re RUS, x € A.

Let Dec be the SRS over S consisting of the rules a, — a, for alla € ¥, z,y € A
satisfying © > .
Then SN(R/S) if and only if SN(lab(R)/(lab(S) U Dec)).

Proof: [3], Theorem 15. O

In TORPA this is only applied for A = {0,1}. In case the relation > is empty
the set A together with the functions f, for a € X is called a model for the SRS,
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otherwise it is called a quasi-model. 1t is called a model since then for every rule
¢ — r the interpretation f, of £ is equal to the interpretation f, of r. Note that
Dec = () in case of a model.

If TORPA applies [E] Semantic Labelling, then the ’if-part of this theorem
is used.

[F] Removal of Labels

Here the same theorem [E] Semantic Labelling is used, but then the ’only if’-part.

[G] Dependency Pairs

Write X# = X U {a” | a € ¥p}. The SRS DP(R) over X# is defined to consist
of all rules of the shape
att — bty

for which a¢’ = ¢ and r = r’br” for some rule / — r in R and a,b € Xp. Rules of
DP(R) are called dependency pairs.
Theorem. Let R be an SRS in which all [hs’s are non-empty. Then

SN(R) if and only if SN(DP(R)/R).

Proof: [3], Theorem 6. O

[H] Looping
If w —% vuw then an infinite reduction of the following shape exists:

+ + + +
U —p VUW — p VVUWW — p VVVUWWW —p ",

proving non-termination. Such a reduction is called looping. The way TORPA
searches for looping reductions is described in [3], Section 9.
[I] Dummy Elimination

A dummy symbol is a symbol occurring in a rhs but in no lhs. Now for a dummy
symbol a in an SRS R we define

DE,(R) = {{ — u | u = cap,(r) V u € dec,(r) for arule { — r € R},



capy(A) = A

cap/(fs) = fcapl(s) for all symbols f with f # a and all strings s
capy(as) = as

dec,(\) = 0

dec/(fs) = dec,(s) for all symbols f with f # a and all strings s
dec/ (as) = dec,(s)U {sa(cap,(s)}.

Theorem. Let R be an SRS having a dummy symbol a. Then R is terminating
if and only if DE.(R) is terminating.

Proof: [2], Theorem 11. O

[J] Reducing Right Hand Sides

Theorem. Let R be a TRS for which a rhs is not in normal form, i.e., R
contains a rule { — r and a rule of the shape ¢! — Cllo]. Assume that

o ( — r s left-linear,

e ([ — r is non-erasing,

e WCR({¢ — r}), and

e there is no overlap between ¢ and the lhs of any rule of R\ {¢ — r}.

Let R' be obtained from R by replacing the rule ' — C|lo] by ¢! — C[ro|. Then
R is terminating if and only if R’ is terminating.

Proof: [2], Theorem 4. O

[K] Strip First/Last Symbol

Theorem. Let R’ be an SRS obtained from an SRS R by replacing a rule of the
shape al — ar by ¢ — r (strip first symbol), or by replacing a rule of the shape
la — ra by L — r (strip last symbol). If R’ is terminating then R is terminating.

Proof: Obvious since every — g-step is an — gri-step too. a
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