
Université de Nice - Sophia Antipolis UFR Sciences
École Doctorale STIC

THESE

Presentée pour obtenir le titre de

Docteur en Sciences de l’Université de Nice - Sophia Antipolis

Specialite: INFORMATIQUE

par

Natalia OSIPOVA

Équipe d’accueil : MAESTRO INRIA Sophia Antipolis

IMPROVING RESOURCE SHARING

IN COMPUTER NETWORKS
WITH STOCHASTIC SCHEDULING

Soutenance a l’TNBIA Ic 27 March 2009 a xxx heures devant Ic jury compose de

Président : Prenom NOM Université Affiliation
Directeur : Prenom N0M Universite Affiliation

Rapporteurs : Prenom NOM Universite Affiliation
Prenom N0M Université Affiliation
Prenom N0M Universite Affiliation

Examinateurs : Prenom NOM Université Affiliation
Prenom N0M Universite Affiliation

THESE

L’AMELIORATION DU PARTAGE DES RESSOURCES
DANS LES RESEAUX DE COMMUNICATION PAR

L’ORDONNANCEMENT STOCHASTIQUE

IMPROVING RESOURCE SHARING

IN COMPUTER NETWORKS
WITH STOCHASTIC SCHEDULING

NATALIA OSIPOVA
Mars 2009

CONTENTS

Figures vii

Tables

1 Introduction 3

1.1 Thestateoftheart . . 4
1.1.1 Computer networks . . 4
1.1.2 Computer network architecture . . 5

1.1.3 The Internet traffic structure . . 6
1.1.4 Traffic control in computer networks . . 8
1.1.5 TCP IP protocols . . 9

1.2 Computer networks problems and proposed solutions . . 10

1.2.1 Traffic control schemes advantages and disadvantages . . 10
1.2.2 Computer network modelling with stochastic scheduling . . . 12

1.3 Thesis contribution and organization . . . 14

2 Batch Processor Sharing with Hyper-Exponential Service Time 17
2.1 Summary . . 17

2.2 Introduction . . 18
2.3 The analysis of the Batch Arrival Processor Sharing model . . . 19

2.4 The analysis of the Two Level Processor Sharing model . . 23
2.5 Conclusion . . 25
2.6 Appendix . . 25

3 Optimal choice of threshold in Two Level Processor Sharing 29
3.1 Summary . . 29
3.2 Introduction . . 30

3.3 Model description . . 31
3.3.1 Main definitions . . 31
3.3.2 The expected sojourn time in the TLPS system . . 33

U’

iv CONTENTS

3.4 Hyper-exponential job size distribution with two phases 34

3.4.1 Notation and motivation 34
3.4.2 Explicit form for the expected sojourn time 35
3.4.3 Optimal threshold approximation 36

3.4.4 Numerical results 39
3.4.5 Simulation results 40

3.5 Hyper-exponential job size distribution with more than two phases 41
3.5.1 Notation and motivation 41
3.5.2 Linear system based solution 42

3.5.3 Operator series form for the expected sojourn time 44
3.5.4 Upper bound for the expected sojourn time 45

3.5.5 Numerical results 47
3.6 Conclusion . . 48
3.7 Appendix: Proof of Lemma 3.2 50

4 Comparison of the Discriminatory Processor Sharing Policies 53

4.1 Summary 53
4.2 Introduction 54
4.3 Previous results and problem formulation 55
4.4 Expected sojourn time monotonicity 56

4.5 Numerical results 60
4.6 Conclusion 61

4.7 Appendix 61

5 Optimal policy for multi-class scheduling in a single server queue 69

5.1 Summary 69
5.2 Introduction 70

5.3 Gittins polic in multi- Ia s IVI C 1 queue 71
5.4 Two Pareto lasses 74

5.4.1 Model description 74
5.4.2 Optimal policy 75
5.4.3 Mean conditional sojourn times . . 76

5.4.4 Properties of the optimal policy 78
5.4.5 Two Pareto classes with intersecting hazard rate functions 80

5.4.6 Numerical results 81
5.4.7 Simulation results 82
5.4.8 Multiple Pareto classes 84

5.5 Hyper-exponential and exponential classes 86

CONTENTS

5.5.1 Optimal policy . . 88
5.5.2 Expected sojourn times 88

5.5.3 Numerical results . . 89
5.5.4 Pareto and exponential classes . . 90

5.6 Conclusions . . 90
5.7 Appendix: Proof of Theorem 2 91

5.7.1 Generating function calculation . . 93

6 Improving TCP Fairness with the MarkMax Policy 99
6.1 Summary . . 99
6.2 Introduction . . 100

6.3 The MarkMax algorithm . . 101
6.4 Fluid model . . 103

6.4.1 Guideline bounds . . 105
6.5 Simulation results . . 108

6.5.1 Fluid model . . 109
6.5.2 Scenario I . . . 109

6.5.3 Scenario 2 . . 110
6.5.4 Scenario 3 . . 111

6.6 Conclusion and future work . . 111

7 Conclusions and perspectives 115

SLM4INOD

FIGURES

3.1 T(O) solid line, TPS - dash dot line, T(8~1,1) - dash line 39
3.2 g(p) - solid line, g~(p) - dash line, g~(p) - dash dot line 39

3.3 Mean waiting time in the system (s): TLPS - solid line with stars, DropTail -

dash line, LAS - dash dot line 41
3.4 The expected sojourn time T(O) and its upper bound T(8) for N 10 100, 500,

1000 48

3.5 The relative error ~(8) for N — 10, 100, 500, 1000. . . 48

—DPS —PS —opt .

4.1 T (g(x)), T , T functions, condition satisfied. . . 61
—DPS —Ps —opt .

4.2 T (g(x)), T , T functions, condition not satisfied 61

5.1 Two Pareto classes, hazard rates 75
5.2 Two Pareto classes, policy scheme 75

5.3 Two Pareto extension classes, hazard rates 80
5.4 Two Pareto extension classes, g(z) function behavior 80

5.5 Two Pareto classes, mean sojourn times comparison, V1 81
5.6 Two Pareto classes, mean sojourn times comparison, V2 81
5.7 NS-2 simulation scheme 83
5.8 N Pareto classes, hazard rates 85
5.9 N Pareto classes, policy scheme 85
5.10 Exponential and HE classes, hazard rates 87
5.11 Exponential and HE classes, policy description 87
5.12 Exponential and HE classes, mean sojourn time 90

6.1 Some of the possible trajectories in the state space 104
6.2 Scenarios 1 and 2 109

6.3 Scenario 3 109

S2HROLI

TABLES

3.1 Simulation parameters . 41
3.2 Increasing the number of phases . 48

5.1 Two Pareto classes, parameters . 82

5.2 Two Pareto classes, simulation parameters . 84
5.3 Mean sojourn times . 84
5.4 Exponential and HE classes, simulation parameters . 89

6.1 Fluid Model: Jam’s index, utilization . 109
6.2 Scenario 1: Jam’s index, utilization . 110
6.3 Scenario 1: average queue size and delay . 110
6.4 Scenario 2: Jam’s index, utilization and average queue size . 111

6.5 Scenario 3: Jam’s index, utilization and average queue size and delay . 111

C
CII
Cl)

CHAPTER 1

INTRODUCTION

In the early 1970s, networks that interconnected computers and terminals began to appear.

These networks were developed to share computer resources and to interchange data between

computers. Since then the task of minimization of the transmission costs and times and maxi

mization of the amount of transmitted data was one of the most important tasks in computer

networks. While with the technical progress the capacities of the computers grow, the need of

quick, efficient and safe data transmission grows as well.

The Internet is the largest computer network which connects more than one billion of users

all over the world. The size of the Internet grows very fast, though the network resources have

to be shared between a very large number of users. An incorrect resource allocation may imply

server inaccessibility, long delays and other problems in the networks, which lead to the users’

dissatisfaction with the provided service. Even though until today a lot of work was done to

achieve optimal resource sharing, high performance and low delays, Internet behavior is far from

ideal and there are still a lot of problems that have to be solved.

In the present thesis we are dealing with the problem of the resource sharing in computer

networks. We consider several scheduling algorithms and their application to flow scheduling

in the Internet routers. As the waiting time in the network is one of the most important

characteristics for the common users, we concentrate on the problem of mean waiting time

minimization. Taking into account the Internet traffic structure we study several size-based

differentiation algorithms which give priority to the short flows and can significantly decrease

the mean waiting time in the network. We introduce a new flow-aware packet dropping scheme

for the Internet routers which improv performance in the network and fairness between the

flows.
3

4 Introduction

1.1 The state of the art

1.1.1 Computer networks

A computer network is a set of several computers or terminals, which are interconnected by
a communication network. Even if computer networks are widely presented in literature, see

ITan96, StaO3j, in this introduction we describe some computer network basics to explain the
motivation for the provided analytical results.

Before talking about computer networks in detail, let us first answer the question: “Why are
people interested in computer networks, what can they be used for?”. Globally we can classify
the computer networks users in two groups, companies and common users. The companies use
the computer networks mainly to achieve resource sharing (all programs, equipment and data
availability to the workers of the company), high reliability (possibility to continue to work in

case of hardware failure problems), saving money (high cost of big computers in comparison
with several small ones), scalability (possibility to add new working places in the network and

to increase system performance by adding new processors without global change of the system
structure), communication between workers of the company (reports, work discussion). For the
common computer and Internet users the most important aims are: access to remote information
(bank accounts check, shopping, newspapers, magazines, journals, on-line digital libraries), per
sonal communication (mail, virtual meetings, videoconferences), entertainment (video, movie,
television, radio, music, game playing). So, computer networks take a big part of everyday

peoples life and can help us in many different areas.

Now that we pointed why we need the computer networks, let us return to our subject, how
computer networks work. The main goal of computer networks is the possibility to interchange
data between computers. In its simplest form data communication takes place between two
devices that are connected directly. Often, however, it is not practical for two devices to be
point-to-point connected. It is the case when the devices are situated very far from each other.
An example is the telephone network of the world, or all the computers of a single organization.
Then the solution is to connect each device to a communication network. Later in this work
we refer to the devices which communicate either as stations or as nodes. The stations may be
computers, telephones or other communication devices.

Communication networks may be categorized based on the architecture and techniques used
to transfer data. Globally there are broadcast and switched (point-to-point) networks. In
the broadcast networks the transmission from one station is broadcast and received by all

other stations. In the switched networks data is transferred from source to destination through
intermediate nodes. The purpose of every node is to move data from node to node until it

reaches its destination. Switched networks are divided into circuit-switched networks and packet
switched networks. In circuit-switched networks, the path between a sender and a destination

1.1 The state of the art 5

is set in advance and then the data is transmitted using this channel.

In packet-switched networks, data is sent in a sequence of small chunks, called packets. Each
packet passes through the network from one node to another along some path leading from source
to destination. At each intermediate node, called router, the packet is received, stored briefly,
and then transmitted to the next node. The router takes decision where to transmit the packet.
Packet-switched networks are commonly used for computer-to-computer communications.

The computer networks are also classified according to their size as Local Area Networks
(LAN), which cover a campus under a few kilometers in size, Metropolitan Area Networks
(MAN), which cover a group of offices or a city, and Wide Area Networks (WAN), which cover
a large geographical network. LAN and MAN usually do not use the packet switching, because
of their limited sizes. The examples of LAN are Ethernet, IBM Token ring and the most known
MAN are Distributed Queue Dual Bus (DQDB), etc. The most famous and the largest WAN
is the Internet, which connects more then one billion of users and allows to interchange data

between them. The WAN networks usually use the packet switching technology. In particular,
the Internet is based on the packet switching technology.

In the present work, we study problems related to packet-switched networks and in particular,
to the Internet.

1.1.2 Computer network architecture

Nowadays the communication between computers in the Internet is mostly based on the
Open System Interconnection model (051) which consists of seven layers, see [8ta94J. The layer
structure is used to decompose a complex problem of communication between computers into
several smaller problems, the layers are autonomous and do not depend on each other. Every
layer is responsible for certain functionalities, it uses the functions of the lower layer and gives
functionality to the upper layer. The layers are based on the concept of the protocol, a set of
rules which serves to organize data transfer. The 051 layers are: Physical, Data Link, Network,

Transport, Session, Presentation and Application.

We do not give a full description of all layers and their functionalities here, but we restrict
ourselves to the Transport and Network layers of the OSI system, as they correspond to the
data transfer and provide error recovery and flow control.

The Network layer accepts packets from the Transport layer and delivers them from source
to destination in the network. The Network layer is based on the Internet Protocol (IP). The
IP technology does not check if the packets were delivered, so the error recovery has to be done
by the Transport or other higher level protocols. The Network layer provides unreliable delivery
service in the networks.

The Transport layer accepts data from the Session layer, splits it into packets and transmits
packets to the Network layer. The Transport layer checks the delivery of the packets to the

6 Introduction

destination, it provides a reliable transport mechanism, see jSta94]. The two main Internet
protocols of the Transport layer are Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). Both of them use IP protocol of the Network layer, that’s why we are usually
talking about TCP IP protocols.

UDP protocol is rarely used in the Internet because of its unreliability. UDP does not provide
a reliable delivery of the packets and is used by the applications which provide their own flow
control and check packet arrivals. Also UDP can be used when some loss of transferred data

can be tolerated, as in the Internet telephony.
The most used protocol in computer networks and in the Internet is TCP. TCP is a reliable

connection-oriented protocol which allows to deliver the information from one machine in the
network to another without errors. It is designed to provide maximum throughput and reliable
transfer over an unreliable and unknown network. Different parts of the WAN can have different

topologies, bandwidths, delays, packets sizes and other parameters. Also all these parameters
can change. TCP dynamically adapts to properties of the network and is robust in the face
of many kinds of failures. TCP provides flow control to make sure that a fast sender does not
overflow a slow receiver or intermediate nodes with more information than they can handle.

Using the Congestion Control mechanism, TCP reduces its sending rate when a loss occurs in
the network, and so adapts its sending rate according to the parameters of the receiver and the
network. We give more full description of TCP protocol work in Subsection 1.1.5.

The applications that are nowadays IStaO3I the most used in the Internet and computer
networks and which use the TCP IP protocol are: Telnet (virtual terminal), File Transfer
Protocol (FTP) is used for file transfers between systems with different properties and structures,
electronic mail protocol (SMTP) is used to transfer the electronic mail messages, Multipurpose
Internet Mail Extension (MIME) makes it possible to include pictures and other multimedia in
the message, Domain Name System (DNS) is used to find the relation between the host names
and their network addresses, Hypertext Transfer Protocol (HTTP) is used to transfer web pages
in the Internet, Session Initiation Protocol (SIP) is the application level protocol for sessions
control in the networks.

1.1.3 The Internet traffic structure

Let us point out the most important characteristics of the traffic structure in computer
networks and in the Internet, which we need in the following analysis.

In the flow-level modelling framework, flow is the basic unit of the data traffic. The flow
is defined as an interruptive stream of packets sent from the source to destination. We can
model as a flow one TCP connection which opens, sends one or more files and then closes, or
we can define every file sent by the application as a separate flow. In the current work we

consider that the flow corresponds to the sending of one file. In the current work we use terms

1.1 The state of the art 7

“flow connection file session” interchangeably, in stochastic scheduling we use the term “job”.

A flow is basically characterized by its duration, size and sending rate.

The Internet traffic structure was widely studied in the literature. In [CB97, TMW97,
NMM98, SAM99], authors analyze the real data traffic on the selected web servers during
sufficiently long period of time and describe traffic characteristics. In IFML~031, authors propose
a monitoring system which is designed to analyze traffic measurement and also provide results
they got with the proposed system. In FWiIO1I, the author describes traffic measurements
and characteristics. In [BGGO3], authors provide traffic collection and analysis between several
important servers in France. In IBFOBRO2I, authors study the admission control in the Internet

in application to elastic and streaming flows. In more recent work ICCOSI, authors propose a
new characteristic, the Quality of Experience, to measure how the users perceive the network
performance and provide We real traffic measurements results.

In the Internet traffic is divided in elastic and streaming flows. Elastic flows are transferred
files, HTTP pages, etc. Streaming flows are created by video and audio applications. Elastic
flows are still dominant in the Internet even though audio and video applications are more and
more used, see IBFOBRO2I. In the current work we study elastic flows simulation, considering
that streaming flows take some limited share of the bandwidth.

The traffic transferred with the TCP IP protocol represents 90% of all Internet traffic, see

[CCO8, FML~03, BFOBRO2I.

The interarrival times between the files in the Internet are exponentially distributed and the
flow arrivals to the network can be modelled with a Poisson process. The important character

istic of the Poisson process is Poisson Arrivals See Time Averages (PASTA) property jWol89j,
which plays an important role in mathematical analysis of the network modelling.

Most flows (90 — 95%) transferred in the Internet are very small, but most of the traffic
is created by the long flows, which are not numerous (remaining 5 — 10%), see [WilOl, All00,

FMLtO3I and others. According to [CCO8I, 80% of the traffic is created by the flows larger than
1 MB and 50% by the flows of size larger than 10 MB. This is caused by the fact that the most

frequent flows are created by e mail and web page transfers, which have small sizes and the long
flows are generated by file transfers, peer-to-peer applications, etc., and are much rarer. The

short flows are then called “mice”, long flows “elephants” and this phenomena in the Internet is
called “mice-elephant” effect.

It was found that the file size distributions in the Internet are well modelled by long-tailed
and heavy-tailed distributions and also have a Decreasing Hazard Rate (DHR). In [NMM98],
with the real data analysis, authors confirm that the file size distribution in the Internet can

be modelled with heavy-tailed Pareto distributions. In 1CB971, authors provide network traffic
analysis from a web server and found that the file size distribution is heavy tailed. In jRobolj,
the author shows that the streaming flows durations are also heavy-tail distributed.

S Introduction

In contrast to the flow arrivals, the packet arrivals are generally not Poisson. Because of the
DropTail router policy, which creates global synchronization in the network, and also because
of the TCP algorithm, (we discuss this later in Subsection 1.1.5), the packets have the tendency
to arrive in groups, which are called batches. Such arrivals are also called bursty arrivals.

Packet sizes in the Internet vary from Maximum Transmit Unit (MTU), to the acknowledge
ment (ACK) sizes (40 bytes). According to [WilOl, FMLtO3I, the large packets represent 50%
of all packets in the network, ACKs represent 40% and the rest of the packets have sizes which
are randomly distributed between these values.

The traffic on the link is usually bidirectional, but not symmetric.

L1.4 Traffic control in computer networks

One of the main problems associated with the computer networks is traffic control, see
[Sta941, which is in regulating the amount of traffic which enters the network so that the network
performance is high. Traffic control can be separated on flow control, congestion control and
deadlock avoidance.

The deadlock is a situation when the router cannot send a packet because all the buffers are

full. The deadlock avoidance techniques are designed to avoid such a situation.
Flow control is needed to prevent the sender from transmitting information with a rate

which is higher than the possible receiving rate of the destination. Flow control regulates data
transmission rate between two nodes.

Congestion is a situation when the data arrival rate is higher than the network transmission
capacity. In this case the router can not serve all the incoming packets, which are then collected

in the router buffer and wait in the queue to be served. If the arrival rate does not decrease,
the queue size increases dramatically, there is no place for more packets, and the new arriving
packets are dropped and later retransmitted. The congestion in the networks is responsible for
the most important part of delays. Congestion control techniques try to prevent the congestion
situation before it happens, or at least, react on it properly, i.e., decrease data arrival rates.
The efficient congestion control algorithm has to avoid buffer overflow and at the same time try
to keep the queue not empty, to achieve higher throughput.

To provide efficient traffic control the sender needs to know the situation on the router and
in the network, which is not always easy and even more, usually impossible to realize. On the
other side, the router neither does not have a direct access to the data senders to control their

sending rates.
In the Internet the traffic control is realized with the combination of the DropTail policy on

the router and TCP IP protocols.
The DropTail policy is the simplest and the most commonly used algorithm for the buffer size

management in TCP IP networks. With the DropTail algorithm the router drops the arriving

1.1 The state of the art 9

packets from the tail of the queue if the buffer is full. The enqueued packets are served according
to the First Come First Served (FCFS) policy. The buffer size of the router is limited. Even it
is technically possible to make the buffer size very large, it is not used, because the large queue
size creates large queuing delay. The selection of the router buffer size is an important problem,
which is not yet solved. More on this topic one can find in IAANBO2, AKMO4, BGG~O8], etc.

The current TCP implementation provides flow and congestion control. We give more detail
description of TCP algorithms in the following Subsection 1.1.5.

1.1.5 TCP/IP protocols

TCP IP protocols are now widely used in the Internet and play an important role in de
termining the network performance. The formal TCP description is given in [Pos8lj. The idea
of the dynamic congestion window size is proposed in fJacS8]. Later changes and extensions
are given in [BraS9, JBB92, Ste97, APS99I. Also the description of TCP can be found in such

books as jStaO3, Tan96, Wi1981 or in reviews, see [KriOO].

TCP is based on the end-to-end argument idea, which is that the sending rate of data flow
is controlled by the receiver. To realize data transmission between two nodes, TCP has to
be installed on both of them, the sender and the receiver. When TCP sends a data file, it
breaks it into packets (or segments) of the given size and sends each of them separately in the
data stream. When packets arrive to the destination, they are given to the TCP entity, which
reconstructs the original file. As the IP protocol does not give guarantee of packet arrivals, it is
up to TCP to find which packets were lost and retransmit them. For that purpose every time
the destination TCP receives a packet, it sends back to the sender a packet of small size, which
is called acknowledgement (ACK) which contains information about the received packet. The
receiver acknowledges the last packet of the received continuous stream of packets. If there is a
packet which arrives out of order, TCP sends the ACK for the last packet which was received
in order. In this case the sender receives several times the same ACK, which is called duplicate
ACK, knows that the packet of the stream was lost and can retransmit it. The time between

sending a packet and receiving an ACK for it is round-trip-time (RTT) which is an important
notion related to TCP.

The congestion control scheme in TCP is realized with congestion window (cwnd) which
controls the amount of data which can be sent without being acknowledged and in fact controls
the rate of transmission. The algorithms which are used in TCP congestion control are: Slow
Start, Congestion Avoidance, Fast Retransmit and Fast Recovery.

The Slow Start algorithm is used in the beginning of the file transfer to determine the capacity
of the network. During Slow Start TCP increments its congestion window by one packet for
each received ACK. Slow Start ends when the congestion window reaches some given threshold.
After Slow Start algorithm, the Congestion Avoidance algorithm is used. During Congestion

10 Introduction

Avoidance, congestion window is incremented by one packet per RTT or by one packet when the

data which corresponds to the current size of congestion window is acknowledged. Congestion
Avoidance is continued until congestion is detected. The Slow Start algorithm makes it possible
for the TCP connection to increase its sending rate quickly in the beginning of the file transfer,
while during the Congestion Avoidance the rate increases slowly to avoid the network overload.

To detect a congestion and a packet loss TCP uses a timer. To retransmit the lost packet
faster than the timer expires the Fast Retransmit algorithm is used, which is that if TCP receives
three duplicate ACK, the packet is considered to be lost. The Fast Recovery mechanism is that

the congestion window is reduced in half in the case of packet loss detection. It helps TCP to
restore congestion window more quickly than if it was reduced to one packet and so help to
achieve higher throughput.

The Tahoe implementation of TCP includes Slow Start, Congestion Avoidance and Fast Re
covery. Reno includes Tahoe properties plus Fast Retransmit. NewReno is a slight modification
of the Reno version that improves performance during Fast Recovery and Fast Retransmission.
In our studies and simulations we consider NewReno version of TCP.

1.2 Computer networks problems and proposed solutions

1.2.1 Traffic control schemes advantages and disadvantages

TCP is the most used data transmission protocol in the Internet as it is flexible and provides

a reliable data transfer and traffic control. On the flow level TCP tries to provide a fair share of
the bottleneck capacity between all flows currently present in the queue. As the routers generally

do not use discriminating or priority policies, the share of the bottleneck capacity depends only
on the sending rates of every flow. Then, if the sending rates of every flow are kept equal, the
bandwidth share is equal as well.

The advantage of the DropTail policy is its simplicity. There is no need to set various
parameters and keep the additional information about the flows and the state of the queue.

However, there are many disadvantages of the currently used combination of DropTail pol

icy and TCP IP protocols. They are packet retransmissions, global synchronization, unfair
bandwidth sharing, absence of Quality of Service.

With the DropTail policy packets are dropped when the buffer is full, TCP reduces its
sending rate only after a packet loss is detected, which creates multiple packet retransmissions
in the network. DropTail policy does not make differentiation between flows and so there is no
Quality of Service.

When several TCP connections share the same bottleneck link, the bottleneck bandwidth

is shared unfairly and the flows with small RTTh have an advantage in’ respect to the flows
with large RTTs. This happens because during the congestion moments all connections which

1.2 Computer networks problems and proposed solutions 11

share the bottleneck link decrease their sending rates, but for connection with high RTT it takes
longer to restore its sending rate than for connection with small RTT. Then the final transferred
amount of data for the slow connection is much smaller than for the fast connection. Also the
fact that all connections currently using the bottleneck link reduce their rates nearly at the

same time creates global synchronization in the network, which in turn leads to the network
underutilization.

There were many proposals to increase performance of the Network and Transport layers
of the Internet. Between them are Network Pricing, Explicit Congestion Notification (ECN),
Active Queue Management (AQM) algorithms and scheduling algorithms.

Network Pricing is a category of congestion control, where the cost of transmission is used.
Making the transmissions of TCP payable may avoid congestion as the senders will be forced to
minimize the generated amount of traffic. More on this topic can be found in [Bre96, SCEH96,
FRO1, FRO4, FORR9S].

ECN is a flag which is used to warn the TCP sender about the congestion situation in the
network, see [F1o95, RF99, RFBO1]. When the congestion occurs, the router marks packets with
ECN flag instead of dropping them. The packet marked with ECN flag comes to the destination
and the receiver sends back the ACIK with ECN flag. When the ACI< with ECN flag is received

by the sender, it reduces in half its congestion window as if a packet loss was detected. So,
if in the router instead of dropping the packets, they are marked with ECN flags, the TCP
congestion window is reduced, but there is no need to retransmit the packets again.

To avoid unfair resource sharing in the Internet several AQM schemes were proposed. AQM
is a family of packet dropping algorithms for FCFS queues which manage the length of packet

queues dropping the packets when necessary. AQM algorithms inform the sender about the
possibility of the congestion before a buffer overflow happens. Among AQM algorithms are
RED [FJ931, GREEN [WZO2], BLUE [FSKSO2], MLC(1) [SSO7I, CHOKe [PPPOO~, etc. None
of them was widely implemented in the networks because of their complexity and nontrivial
parameters selection.

Fi~om the user point of view the most important characteristic in computer networks is the
waitin time, the time which passes between the mouse click and the page appearance on the
screen. The delay in the networks consists of the transfer delay, propagation delay, processing
delay and queueing delay. In the networks the queueing delay and delay which is caused by

the packet drops and retransmissions give the largest part of the waiting time. The queueing
‘I’delays in the network can be reduced with the efficient scheduling algorithms. While AQM

scheme finds the packet which has to be dropped to avoid congestion in the network, scheduling
algorithms find the packet which have to be next served and are used to reduce queueing delay
and to manage bandwidth share between flows.

To develop an efficient scheduling algorithm one has to take into account the specific problems

12 Introduction

of its application domain. In ufl’e~ case of computer networks, these problems are: large number
of connections sharing the bottleneck link, the traffic characteristics, the changes of the sending
rates, the possible changes of the network topology and properties and so on. Even though
there exist a lot of different scheduling algorithms, it is not evident to find one which is efficient,
scalable, easy to implement, does not need knowledge of specific system parameters.

In the following subsection we give a short review of the scheduling algorithms which were
proposed to be applied in computer networks and in the Internet.

1.2.2 Computer network modelling with stochastic scheduling

From the stochastic scheduling theory, it is known that, applying different scheduling policies

to a queue, it is possible to influence the system characteristics a lot. The goal of stochastic
scheduling is to find an algorithm which improves system performance and at the same time
which is simple to implement.

It is quite difficult to model the network on the packet level, as the packet arrivals are bursty
and are not Poisson distributed as flow arrivals, see Subsection 1.1.3. Thus networks are often
modelled on the flow level. Every file sent by TCP connection is presented as a job and every

router as a queue.
When we talk about a job size, we consider the time that the job is served in the queue if

there is no more jobs in the system. Though later in this work we use the terms “job size” and
“service time” interchangeably.

As we discussed in Subsection 1.2.1, the bandwidth share on the bottleneck link of the TCP
flows in the case when their RTTs are of the same order is well modelled by the Processor

Sharing (PS) discipline, see [HLN97, NMM98, MROO, FBP~O1, CJ071. Under the PS policy
every job present in the system receives an equal share of the processor capacity. The PS

discipline is easy to analyze, Kleinrock in his book IKle76a, Sec. 4.4] obtained the expression of
mean conditional and mean sojourn time in the M/G/1 system scheduled with PS discipline.
However, PS disciple does not minimize the mean sojourn time in the system.

It is known that the Shortest Remaining Processing Time (SRPT), see jKle76a, Ch. 3],

policy minimizes the mean sojourn time in the system, see also ISch6Sl. The SRPT discipline
requires knowledge about the job sizes, which is not always possible, as the router does not have
information about the size of the file which was send.

Kleinrock in his book [K1e76b, K1e76a] gives an overview of policies, which do not use in
formation about the job sizes and are called non-anticipating. In the last years these policies
received a significant attention because of their possible application to resource sharing in com

puter networks.
It is shown in [Yas87j that the Least Attained Service (LAS) or Foreground-Background

(FB) policy, see [Kle76a, Sec. 4.6], minimizes the mean waiting time in the system among all

1.2 Computer networks problems and proposed solutions 13

non-anticipating scheduling policies when the job size distribution function has a decreasing
hazard rate (DHR). As this is the case for the job size distribution in the Internet, LAS received
alot of attention, it was studied in [RS89, FMO3b, RUKBO3, RUKVBO4, RBUKO5j. The survey
on LAS is presented in FNWO8]. However, LAS has some disadvantages, for example, it can be
very unfair for the long flows in some cases and it increases a lot the service time for the long
flows, see [FMO3b. Also the mean waiting time in the system under LAS highly depends on the
job size distribution, [RUKBO3j. If there is a long flow in the system which is almost finished
to be served and there is another long flow which arrives, then the first flow has to wait all
the service time of the second flow before quitting the system. The problem of LAS unfairness
with the large jobs was studied in jRUKBO3, WHBO3I. Regarding this problem, in [BroO6l it
was shown that when the second moment of the job size distribution is infinite, LAS always has
smaller expected conditional sojourn time than PS.

Both, SRPT and LAS policies give priority to the short flows and though minimize mean
waiting time in the system. The file size distribution in the Internet is heavy-tailed and most
of the flows have short sizes, see Subsection 1.1.3. Then it seems logical to give priority to

the short flows in the network. The differentiation between short and long flows in the Internet
was widely studied, see [OMOI, NTO2, GMO2a, GMO2b, RUKBO2, RUKBO3, FMO3b, WBHBO4,

AANOO4, AABNO4].

Among flow differentiating policies is the Multi Level Processor Sharing (MLPS) discipline
which was introduced and described by Kleinrock, see [K1e76a, Sec. 4.71. He shows that the

mean sojourn time in the MLPS system can be sufficiently reduced in comparison with the PS
system. When the MLPS discipline is applied, the jobs are served according to their attained
service up to the given number of thresholds. In [AANOO4, AANOO5I authors show that when

the job size distribution has a DHR, MLPS decreases the mean waiting time in the system with
respect to the PS discipline. In [AAO6] authors show that with MLPS the mean delay in the
system can be very close to optimal when the job size distribution has a DHR.

A TdI~ particular case of MLPS, Two Level Processor haring (TLPS) and its application to
resource sharing in computer networks was studied in IAANOO4, AABNO4J. In IAABNO4I based

W on the TLPS model authors develop the RuN2C algorithm and show that it reduces significantly
the mean waiting time in the system in comparison with the standard DropTail policy. The
mean waiting time in the TLPS model significantly depends on the threshold selection, which
was not yet studied analytically.

The main idea behind LAS and TLPS policies is to give priority to the short jobs, but they
do not give possibility to give preference to some selected flows. In contrast, Discriminatory
Processor Sharing (DPS) policy allows to introduce the Quality of Service in the network. DPS
provides a natural approach to model the resource sharing of the TCP flows with different RTTs
or weighted round-robin algorithm, which is used in operating systems. Also the DPS discipline

14 Introduction

can be used to model the pricing policies on server, when the different services are provided
according to the paid rates. DPS was first introduced by Kleinrock [Kle671. Under DPS jobs
are organized in classes and are served according to the vector of weights, so each class has its
priority in the system. The DPS policy was studied in fFMI8O, RS94, RS96, CMO2b, AJKO4,
KNQBO4, KNQBO5, AABNQO5]. Most of the results obtained for the DPS queue were collected

together in the survey paper [AAAO6I. However, weight vector selection in DPS is not a trivial
task because of the system complexity.

The problem of finding an optimal policy between all non-anticipating scheduling policies in
the M/G/1 queue was solved by Cittins in [Git891. He showed that in the M/G/1 queue the
policy which gives service to the job in the system with the highest Gittins index function of the
attained service minimizes the mean waiting time in the system between all non-anticipating
scheduling policies. The well known results of LAS optimality for the DHR job size distribution
can be derived as a corollary of the general optimality of the Gittins policy. However, this
optimality result did not receive much attention and so was not fully exploited.

1.3 Thesis contribution and organization

In the current Thesis we study the problem of resource sharing in computer networks. We
study several scheduling algorithms from the stochastic scheduling theory and their application

to the computer networks. In Chapters 2 - 5 we study the problem of the mean waiting time
minimization in the system with various scheduling algorithms. In Chapter 6 we study the

congestion control problem in the networks and propose a new flow-aware algorithm to improve
the fair resource sharing of the bottleneck capacity.

In Chapter 2 we study the Batch Processor Sharing (BPS) model with hyper-exponential
service time distribution. For this distribution we solve JKleinrock’s integral equation for the

expected conditional response time function and prove the concavity of the solution with respect
to the job size. We apply the found result to find the analytical expressions of the mean
conditional and unconditional times for the TLPS model in the following Chapter 3. We also
use the batch queue analysis in the derivation of the mean conditional sojourn time in Chapter 5.
The results of this chapter are published in [OsiOSa].

In Chapter 3 we analyze the TLPS scheduling discipline with the hyper-exponential job size
distribution and with the Poisson arrival process. In the first part of the chapter we study the

case when the job size distribution has two phases. The choice of two-phase job size distribution
is motivated with the “mice-elephant” effect of the file size in the Internet, see Subsection 1.1.3.

In the case of the hyper-exponential job size distribution with two phases, we find a closed
form analytic expression for the expected sojourn time and an approximation for the optimal
value of the threshold that minimizes the expected sojourn time. With the numerical results

1.3 Thesis contribution and organization 15

we show that the mean waiting time in the TLPS system is very close to optimal with the
found approximated threshold value. With the simulation results with NS-2 simulator we show
that~.nalytically found threshold approximation minimizes the mean waiting time in the TLPS
system between other threshold values and gives significant relative gain in comparison with the
DropTail policy.

In the second part of Chapter 3 we study the TLPS system when the job size distribution
is hyper-exponential with many phases. For this case we derive a tight upper bound for the
expected sojourn time conditioned on the job size. We show that when the variance of the job
size distribution increases the gain in system performance increases and the sensitivity to the
choice of the threshold near its optimal value decreases. This work is published in [ABOO7].

In Chapter 4 we study the comparison of two DPS policies with different weight vectors.

We show the monotonicity of the expected sojourn time of the system depending on the weight
vector under certain condition on the system. The restrictions on the system are such that

the result is true for systems for which the values of the job size distribution means are very
different from each other. The restriction can be overcome by setting the same weights for the
classes, which have similar means. The condition on means is a sufficient, but not a necessary
condition. It becomes less strict when the system is less loaded. The results of this chapter can
be found in jOsiOSb].

In Chapter 5 we obtain the optimal policy for multi-class scheduling in a single server queue.

We apply the results of Cittins jCit89j, where he found the optimal policy which minimizes the
mean waiting time in the system in a single class M/G 1 queue between all non-anticipating
policies. In this chapter we show that a straightforward extension of Gittins’ results allows

us to characterize the optimal scheduling discipline in a multi-class M/G/1 queue. We apply
the general result to several cases of practical interest where the service time distributions have
DHRS, like Pareto or hyper-exponential. We show that in the multi-class case the optimal policy

is a priority discipline, where jobs of the various classes depending on their attained service are
classified into several priority levels. Using a tagged-job approach we obtain, for every class, the

mean conditional sojourn time. This allows us to compare numerically the mean sojourn time in
the system between the Gittins optimal and popular policies like PS, FCFS and LAS. As in the
Internet the file size is heavy-tailed and has a DHR, see Subsection 1.1.3, the obtained optimal
Gittins policy can be applied in the Internet routers, where packets generated by different
applications must be served. Typically a router does not have access to the exact required
service time (in packets) of the TCP connections, but it may have access to the attained service
of each connection. Thus we implement the Gittins’ optimal algorithm in NS-2 and we perform
numerical experiments to evaluate the achievable performance gain.

In Chapter 6 we introduce MarkMax, a new flow-aware AQM algorithm for Additive Increase
Multiplicative Decreases protocols (like TCP). The main idea behind MarkMax is to identify

16 Introduction

which connection should reduce its sending rate instead of which packets should be dropped.
In contrast with several previously proposed AQM schemes, MarkMax uses the differentiation
between flows currently presented in the system and cuts the sending rate of the flows with the
biggest sending rate. MarkMax sends a congestion signal to a selected connection whenever the

total backlog reaches a given threshold. The selection mechanism is based on the state of large
flows. Using a fluid model we derive some bounds that can be used to analyze the behavior of
MarkMax and we compute the per-flow backlog. We provide the simulation results, using NS-2,

compare MarkMax with Drop Tail and show how MarkMax improves both the fairness and
link utilization when connections have significantly different RTTs. We specify the algorithm,
perform its theoretical analysis and provide simulation results which illustrate the performance
of MarkMax. The work is published in FOBAO8I.

We give the conclusion and future work in Chapter 7.

CHAPTER 2

BATCH PROCESSOR SHARING WITH

HYPER-EXPONENTIAL SERVICE TIME

2.1 Summary

One of the main goals to study BPS is the possibility of its application to age based schedul
ing and the possibility to take into account the burstiness of the arrival process. Bursty arrivals
often occur in modern systems such as web servers. Age-based scheduling is used in differenti
ation of short and long flows in the Internet.

We study the BPS model with the hyper-exponential service time distribution. For this
distribution we solve Kleinrock’s, integral equation for the expected conditional response time
function and prove the concavity of the solution with respect to the job size. We note that the

concavity of the expected conditional sojourn time for the BPS with the hyper-exponential job
size distribution was proven using another method in 11<1<081.

We apply the obtained results to find the mean conditional sojourn time in the Two Level
Processor Sharing (TEPS) system when the job size distribution is hyper-exponential. We prove
that in the TLPS system the mean conditional sojourn time is not a concave function.

The results of this chapter are published in [OsiO8al.

18 Chapter 2: Batch Processor Sharing with Hyper-Exponential Service Time

2.2 Introduction

The Processor Sharing (PS) queueing systems are now often used to model communication
and computer systems. The PS systems were first introduced by Kleinrock (see jKleT6al and
references therein). Under the PS policy each job receives an equal share of the processor.

PS with batch arrivals (BPS) is not yet characterized fully. ICleinrock et at. [KMR71I
first studied BPS. They found that the derivative of the expected response time satisfies an
integral equation and found the analytical solution in the case when the job size (service time)
distribution function has the form F(x) — 1 — p(x)e_PX where p(x) is a polynomial.

Bansal fBanO3], using Kleinrock’s integral equation, obtained the solution for the Laplace
transform of the expected conditional service time as a solution of the system of linear equations,
when the job size distribution is a hyper-exponential distribution. Also he considers distributions

with a rational Laplace transform. Rege and Sengupta IRS93I obtained the expression for the
response time in condition upon the number of customers in the system. Feng and Mishra
[FMO3a] provided bounds for the expected conditional response time, the bounds depend on the
second moment of the service time distribution. Avrachenkov et a?. [AABO5J proved existence
and uniqueness of the solution of Kleinrock’s integral equation and provided asymptotic analysis
and bounds on the expected conditional response time.

We study the BPS model with the hyper-exponential service time distribution. For this
distribution we solve Kleinrock’s integral equation for the expected conditional response time
function and prove the concavity of the solution with respect to the job size. We note that the
concavity of the expected conditional sojourn time for the BPS with the hyper-exponential job
size distribution was proven using another method in [1KK08].

One of the main goals to study BPS is the possibility of its application to age-based schedul
ing and the possibility to take into account the burstiness of the arrival process. Bursty arrivals
often occur in modern systems such as web servers. Age-based scheduling is used in differ
entiation of short and long flows in the Internet. A quite general set of age-based scheduling
mechanisms was introduced by Kleinrock and termed as Multi Level PS (MLPS). In MLPS jobs
are classified into different classes depending on their attained amount of service. Jobs within
the same class are served according to FCFS, PS or FB policy. The classes themselves are served
according to the FB policy, so that the priority is given to the jobs with small sizes.

We study the Two Level PS (TLPS) scheduling mechanism, a particular case of age-based
scheduling. It is based on the differentiation of jobs according to some threshold and gives
priority to jobs with small sizes. The TLPS scheduling mechanism can be used to model size
based differentiation in TCP IP networks and Web server request differentiation, see [AAO6,
AABNO4].

It is known that many probability distributions associated with network traffic and, in

2.3 The analysis of the Batch Arrival Processor Sharing model 19

particular, the file size distribution in the Internet are often modelled with heavy-tailed distri
butions. In fBMO6, FW9SI it is shown that a heavy-tailed distribution can be approximated
with a hyper-exponential distribution with a significant number of phases. We study the TLPS
model with the hyper-exponential service time distribution. We apply the results of the BPS
queueing model to the TLPS model with the hyper-exponential service time distribution, find
an expression for expected conditional sojourn time function and prove that it is not a concave
function with respect to the job sizes.

The Chapter is organized as follows. In Section 2.3 the BPS scheduling mechanism with the
hyper-exponential service time distribution is considered. In Section 2.4 the results obtained

for the BPS model are applied to the TLPS model, where the job size distribution is also
hyper-exponential. We put some technical proofs in the Appendix.

This results of this chapter were published in [OsiO8a], Chapter 3 of the current Thesis, more
detailed proofs can be found in Research Report [OsiO7l. The analysis of the queue with batch
arrivals is also used in Chapter 5.

2.3 The analysis of the Batch Arrival Processor Sharing model

Let us consider an M/G/1 system with batch arrivals and PS queueing discipline. The

batches arrive according to a Poisson process with arrival rate A. Let ~i > 0 be the average
size of a batch. Let b > 0 be the average number of jobs that arrive with (and in addition to
an arbitrary job which is tagged upon arrival. Let B(x) be the required job size (service time
distribution and ~R(x) = I — B(x) be its complementary distribution function. The load is given

by p = AiIm, with m = f~°° xdB(x). We assume that the system is stable, p < 1.

It is known that many important probability distributions associated with network traffic
are heavy-tailed. In particular, file size distributions observed in the Internet are often heavy-
tailed. The heavy-tailed distributions are not only important and prevalent, but also difficult

to analyze. In [BMO6, FW981 it was shown that it is possible to approximate a heavy-tailed
distribution by a hyper-exponential distribution with a significant number of phases. Thus, in

our work we use the hyper-exponential function to represent the job size distribution function

B(x)=1_Zp~e~l’”, 1<N≤oo, (2.1

p~ >0, ~ >0, i 1,... ,N, ~ = 1. Without loss of generality, we can assume that

O<IAN<MN 1<...</42<[L1<CO. (2.2

By ~ and H, we mean ~ and fl71. By ~ or ~ we mean ~ ~,i≠j and

20 Chapter 2: Batch Processor Sharing with Hyper-Exponential Service Time

Let a(x) be the expected conditional response time in the BPS system for a job with service

time x and a’(x) be its derivative. Kleinrock showed in [K1e76a, Sec. 4.7] that a’(x) satisfies

the following integro-differential equation

= + y)dy + Anf a’(y)W(x — y)dy + b~(x) + 1. (2.3

Before presenting our main result let us prove auxiliary lemmas. Let us define

w(s)_1_Anz:z. (2.4)

Lemma 2.1 The zeros b~, i = 1,.. . , N of the rational function (2.4) are all real, distinct,

positive and satisfy the following inequalities:

0<bpq</i~, jt,÷1<b~<p~, i=1,...,N—1. (2.5)

Proof. Following the approach of [FMISO], the equation ‘P(s) = 0 has Ni roots b, i — 1,..., N1,

where N1 is the number of distinct elements within Iji. We have N1 — N because of (2.2). All
b~, i = 1,..., N are real, distinct, negative and satisfy the following inequalities: 0 > —b,v > 14N,

I~i+1 > —b, > —ii,, i = 1,..., N — 1. With this we prove the statement of Lemma 2.1. I

Lemma 2.2 The solution of the following system of linear equations:

=1, q—1,...,N, (2.6

is unique and is given by

n j2 j~2
IIq1 Nk#q Uk

Xk ~ ‘b2b2’ , Ic 1,...,N. (2.7
llqØk\ q ki

Proof. The proof is given in the appendix. I

Corollary 2.1 The solution of equation (2.6) is positive. Namely, xk > 0 for Ic — 1,. . . , N.

Proof. It follows from (2.2) and (2.5). I

Now we can prove our main result.

2.3 The analysis of the Batch Arrival Processor Sharing model 21

Theorem 2.1 The expected conditional response time in the BPS queue with the hyper-exponential

job size distribution function as in (2.1) is given by:

a(x) = cçjx — ~ ~e_6~ + L cr(0) = 0, (2.8

1 , (2.9

i—p
b / FIq(u~~%)

ck = ~ çb~. ~9≠~ (b~ b~) (2.10)

where bk, k = 1,. . , N are the solutions of the equation ‘P s) = 0 and are all positive, distinct,
real and satisfy inequalities (2.5).

Proof. Let us denote by La’(s) the Laplace transform of &(x) and L1 = L0’(1.t~), i — 1,..., N.
Ftom (2.1), (2.3):

a’(x) = tnZp€L~ + Anf a’(y)~(x — y)dy + b~(x) + 1.

Taking the Laplace transform of the above equation and using the convolution property, we

have

L&(s)’I’(s)=A~nE”~’ +bE Pt +

Using the results of Lemma 2.1 we get:

La(s) — AnEPiLi’~~ b) +~+ ~qk~ (2.11

Hence there exist c0 and Ck, k = 1,. . . , N such that:

Lat(s) = C0 + ~ C/g (2.12

Then, taking the inversion of the Laplace transform and using a(0) — 0, we get (2.8). From

(2.11) and (2.12)

go = L&(s)s18o = (2.13

From (2.4) we have

~r

22 Chapter 2: Batch Processor Sharing with Hyper-Exponential Service Time

So, then for c0 we have (2.9). Let us find ck, k = 1,..., N. We denote:

L~,(s) = ~ s+b~’ (2.14)

and L = L~,(u~), j = 1,..., N. Using (2.11), (2.12) and (2.14), we can write

L~,(s)~j~~ =~z:~L +bZ P11

Multiplying the above equation by (s + jig), setting s = ~Pq, q 1,.. . , N and using (2.14) we
get

Z bj /Aq fJ() = A~iPq ~ b~ ~#q bp~, q = 1,... ,N. 2.15

Let us notice that from (2.4) we have the following

fl,(b, ~uq) = ~(s)(s + #q)I8—pq = Anpq, q 1,..., N.

FIz~q(Pz /Aq)
Then, using (2.15), we get

‘ç-~ c3b3 — b 1 N 216
L.s~2_b~ n—, q—q 3

So, cj~, k = 1,..., N are solutions of the linear system (2.16 . If we denote

Ckbk
Xk —,

b/(2.\n)

then the system (2.16) will take the form (2.6) and by Lemma 2.2 for ek we have the statement
2.10). This completes the proof of Theorem 2.1. I

Corollary 2.2 The expected conditional sojourn time function in the BPS system with the

hyper-exponential job size distribution as in (2.1) is a strictly concave function.

Proof. The function (2.8) is a strictly concave function if ct”(x) = — E,~ ckbke bkx < 0. This
is true, as cIi, >0, bk >0, k = 1,..., N, which follows from b>0, ii> 0, Corollary 2.1 and
Lemma 2.1. I

The result of Corollary 2.2 was also proven using another method in [KKO8J.

Remark 2.1 Let us denote by n(x) an average density of jobs still in the system which have

received an amount of service equal to x . Then n(x)dx is the average number of jobs still in

7~°’~ I - ~~ / :~‘)

2.4 The analysis of the Two Level Processor Sharing model 23

the system which received an amount of service between x and x + dx. From /Klel6a, Ch. 4J,
we have

n(x)dx = A~(x)ct’(x)dx.

As cE’(x) and R(x are positive decreasing functions, n(x)dx is also a positive decreasing func

tion. Then the average number of jobs which are still in the system and received an amount of

service around x is decreasing with respect to the received amount of service. This property is

not trite for all queuing systems. In particular, as we will see later, it is not true for the TLPS

system with the hyper-exponential job size distribution.

—BPS ~, —Let us denote the expected sojourn time in the BPS system as T = a (x)B(x)dx.

Let us prove the following theorem.

Theorem 2.2 The expected sojourn time in the BPS system with the hyper-exponentiat

job size distribution as in (2.1) is given by

TBPS m +‘c— 17,cj
~

BPS.Proof. As the expected sojourn time T is given by

TBPS = fcx’(xY~(x)dx~

then using (2.8) we receive the statement of the Corollary. I

2.4 The analysis of the Two Level Processor Sharing model

Let us study the TLPS scheduling discipline with the hyper-exponential job size distribution
F(s). Let x) — 1 F(s). The jobs arrive to the system according to a Poisson process with

rate A. We give a detailed TLPS model description in the Section 3.3 of the later Chapter 3. Let
9 > 0 be a given threshold. There are two queues in the system, low and high priority queues.

Both queues are served with the PS discipline. In the high priority queue jobs are served until
they receive 9 of service, if after the job received 6 amount of service it is still in the system,
it waits in the low priority queue to be served. The low priority queue is served only when the
high priority queue is empty, thus, we can consider the low priority queue as a queue with batch
arrivals, see also [K1e76a, Sec. 4.71.

Let us denote by TT~~~s(X) the expected conditional sojourn time in the TLPS system for
a job of size x and by T(9) the expected sojourn time of the system. According to [Kle7Ga, Sec.

24 Chapter 2: Batch Processor Sharing with Hyper-Exponential Service Time

471 the expected conditional sojourn time of the system is given by:

(X , x€[O,Oj,
—TLPS 1
T (x)=~ W(9)+8+a(x—9)

i 1

Here we use the following notations. Let us denote by — J’ny”_’P(y)dy the n-th moment
for the distribution truncated at 8 and pg = AX0’ the/utilization factor. According to [K1e76a,
Sec. ~71 the average batch size is ñ = P(8)/(i — p4), the average number of jobs that arrive
to the low priority queue in addition to the tagged job is 6 — 2AF(8)(W(8) + 8)/(1 — po) and
a(x — 8)7(1 — pg) is the time spent by thejob in1the low priority queue. Here W(8) = AXj/(2(1 —

Using the result of Theorem 2.1 Section 9~3 we obtain the following result, which is used in

FABOO7] and in Chapter 3. .~ //

Theorem 2.3 In the TLPS prwrity 7~ue with the hyper-exponential job size distribution:

a~x) = co(8)x ~ sc~) e_bk(O)x + Z ~ff~
a(O) = 0,

co(8)=

fl (p~—b~(8))
8b q—1 N

ck(~ - 2A?2 bk(8 fl (b~(8) - b~(8))

~‘(~ q~k

—

~‘~vhere b~(8), i = 1,. .. , N are the roots of the rational function 1 — = 0, and satisfy

the following inequalities: 0 < bN(8) < UN, ~~j+1 < b~(8) < p,, = 1,. . , N — 1. Here F~ =

= 1,..., N. The coefficients ck(O), k = 1,. . . N are strictly positive for positive 8. The func

tion a(x) is a strictly concave function with respect to the job size for positive 8.

—TLPSCorollary 2.3 The expected conditzonal sojourn time T (x) in the TLPS queue with the

hypes-exponential job size distribution is a strictly concave function for x > 8, linear for x < 8

and is not a concave function on the interval (0, cc) with respect to the job sizes for positive

values of 8.

—TLPS . —TLPSProof. The concavity of T (x) for x > 8 follows from Theorem 2.3. The function T (x)

is linear for x <8, this follows from the standard PS model. As T_TLADs(x) is not continuous at
the point x —8, it is also not concave on the interval (0,co). I

From Theorem 2.3 it follows that 1 <a’(O) and then _TT~’~~(x) o a < TTL~~st(x)I~e+o.

Then for the TLPS system the average number of jobs which are still in the system and received

/

1~’

.1~

2.5 Conclusion 25

an amount of service around x is not a decreasing and not even monotone function with respect

to the received amount of service.

Now let us give the expression of the mean sojourn time in the TLPS system, which we use

in Chapter 3 of the current Thesis.

Theorem 2.4 The expected sojourn time ~(9) in the TLPS system with the hyper-exponential

distribution function is given by the following equation:

~(6) = X9 + W(6)P(6) + (m X~)
‘—pg 1 p

+ (W(8)+6)~- flq(u~—b~(8)) 217
1— pg ‘~‘ b3(9)&z, + b,(O)) Hq03 (b~(9) —

where b~(8), i — 1,. . . , N are defined as in Theorem 22.

Proof. According to [K1e76a, Sec. 4.7]

= ?J+W(8)P(8) + ‘

1P0 1P9

Then using the result of Theorem 2.3 we get the statement of the current Theorem. I

2.5 Conclusion

We study the BPS queueing model, when the job size distribution is hyper exponential, and

we find an analytical expression of the expected conditional response time and for the expected

sojourn time. We show that the function of the expected conditional sojourn time in the BPS

system with hyper-exponential job size distribution is a concave function with respect to job

sizes. We apply the results obtained for the BPS model to the TLPS scheduling mechanism

with the hyper-exponential job size distribution and we find the expressions of the expected

conditional response time and expected response time for the TLPS model.

2.6 Appendix

Lemma 2.2: The solution of the system of linear equations (2.6 is unique and is given by

(2.7).

Proof. Let x, ~ be two vectors of size N and D be the matrix of size N x N.

x = [xi,x2,. . . ,XNj~, 1 ~ lxN

D= N

26 Chapter 2: Batch Processor Sharing with Hyper-Exponential Service Time

Then, system (2.6) can be rewritten as

Dx =1.

Applying Cramer’s rule LKur721 we obtain:

detDk
Xk = detD ‘ (2.18)

= [D1 ,. . . D~_1~, 1, D k+1 ,. . D~j.

As D is a Cauchy matrix, its determinant is known fKur72l:

2 2 b2 b2
A fl — j<k≤N ((iz3 — Pk)(k —

fl (2 b2
I 1y,k1~...,N \#j k

Under the product sign by 1 ≤ j <k ≤ N we mean that we take all the combinations (j, k) such
as 1 ≤j <N, 1< k≤ N and j < Ic. By j,k= 1,...,N we mean that we take all the pairs

(j, k) such as 1 <j < N, 1 <Ic < N.
Due to (2.5), detD>O and we can use Cramer’s rule to calculate Xk. Let us find detDk.

det D,, = det [D i,.. D[k_~}, 1, D[k÷lj, . . . DEN])
= (_i)k_1 det [i~ Dpj,. . . D~_1 ,D(k÷Lj, . . .

To simplify the ensuing computations let us introduce the following notations:

flj=—b~..1, i—2,...,k, ,3~=—b?, i=k+1,...,N.

Let us notice that here fl~, i = 1,. . ,N depend on the index Ic. As at this point the index k is
fixed we do not represent this dependency in the notation of /3g.

Then, we have

detDk = (l)k_1~ .~

NyN

Under the sign of determinant we subtract the first line from all the other lines.

o _____________ ‘4 ‘4
det Dk — (_l)kl (p~+P2) uj+~32 (p~+~3&) p2

2 2
o ~1 ~N “1 RN

(p~+i32 ‘4+ 2 (;4;+PkHui+dk) NxN

I i\k—1 t 2 2
tI’i /-‘k

k 2 N
detDk= —

~‘N k (N—I) x (N—I)

2.6 Appendix 27

So, as the above matrix under the sign of determinant is a Cauchy matrix of size N — 1, the
following equation holds:

(_flk~—l [~J(u? it2) [I ((i4 — —

det Dk q=2 N 2<j<q<N H (~4 + /3q)

n(~’ +flq) j,q—2 N
q=2,... N

Let us recall that /3 ~ ~, i — 2,...,k and /3, ii?, i — k+ 1,... ,N, then

fJ (i4 p~) [I (b~—b4)
15j<q5N 1~3<q Nj,qØk

detDk
fl (it~ b~)

j,q 1,. ,N,qØk

H (~—uIb~—b~) Hit~ b~)
1~j<q<N

HCp~—b~.) ~ (b~ b~)
j,q=1 N q—1~

Finally, from (2.18) and (2.19), we have expression (2.7) for Xk, which proves Lemma 2.2. I

LItcc rr~

28 Chapter 2: Batch Processor Sharing with Hyper-Exponential Service Time

CHAPTER 3

OPTIMAL CHOICE OF THRESHOLD IN

Two LEVEL PROCESSOR SHARING

3.1 Summary

We analyze the TLPS scheduling discipline with the hyper-exponential job size distribution
and with the Poisson arrival process. TLPS is a convenient model to study the benefit of the
file size based differentiation in TCP IP networks. In the case of the hyper-exponential job size
distribution with two phases, we find a closed form analytic expression for the expected sojourn

time and an ~p~~imatiop~ for the optimal value of the threshold that minimizes the expected
\J sojourn time. Usin NS-2 simulator we implement the TLPS algorithm in the router queue and
W provide simulation results for the case of two phase hyper-exponential job size distribution. We

show that the found optimal threshold approximation value minimizes mean waiting time in the

\yO TLPS system between other threshold values. We show that with the TLPS policy the relativeK ~~./ gain in mean waiting time in comparison with the DropTail policy is very near to the relative

gain which can be reached using the optimal LAS policy and goes up to 367.
In the case of the hyper-exponential job size distribution with more than two phases, we

derive a tight upper bound for the expected sojourn time conditioned on the job size. We show
that when the variance of the job size distribution increases, the gain in system performance
increases and the sensitivity to the choice of the threshold near its optimal value decreases.

The results of this chapter are published in jABOO7.

V
~‘Afi’’

30 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

3.2 Introduction

The Two Level Processor Sharing (TLPS) scheduling discipline was first introduced by Klein-
rock, see jKle76a, Sec. 471~ It uses the differentiation of jobs according to a threshold on the
attained service and gives priority to the jobs with small sizes. The TLPS scheduling mechanism
can be applied in file size based differentiation in TCP IP networks [AANOO4, AABNO4, FMO3bJ

and Web server request differentiation jGMO2a, HBSBAO3I. A detail description of the TLPS
discipline is presented in the ensuing chapter. Of course, TLPS provides a sub-optimal mech
anism in comparison with SRPT, which minimizes the expected sojourn time, see [Sch68j.
Nevertheless, as was shown in FAAO6I, when the job size distribution has a decreasing hazard
rate, the performance of TLPS with appropriate choice of threshold is very close to optimal.

‘~ In the present chapter we characterize the optimal value of the threshold when the service

time is hyper-exponential. The motivation to study TLPS with the hyper-exponential service
b time is as follows. The distribution of file sizes in the Internet often can be modelled with

a heavy-tailed distribution. It is known that heavy-tailed distributions can be approximated
with hyper-exponential distributions with a significant number of phases [BMO6, FW9SI. Also in

IKSHO3J, it was shown that a hyper-exponential distribution models well the file size distribution
in the Internet. In [KSHO3I authors propose an efficient algorithm to approximate heavy-tailed
distributions with hyper-exponential distributions with many phases.

The chapter organization and main results are as follows. In Section 3.3 we provide the
model formulation, main definitions and equations. In Section 3.4 we study the TLPS discipline
in the case of the hyper-exponential job size distribution with two phases. It is known that the

3’ Internet connections belong to two distinct classes with very different sizes of transfer. The first

‘.~/ c/ ‘i ~ class is composed of short HTTP connections and P2P signaling connections. The second class
~‘ L corresponds to downloads (PDF files, MP3 files, MPEG files, etc.), see Subsection 1.1.3. This

fact provides motivation to consider first the hyper-exponential job size distribution with two
phases.

We find an analytic expression for the expected sojourn time in the TLPS system. Then,
we present the approximation of the optimal threshold which minimizes the expected sojourn

~ time. We show that the approximated value of the threshold tends to the optimal threshold
when the second moment of the job size distribution function goes to infinity.

We show that the ratio between the expected sojourn time of the TLPS system and the
V expected sojourn time of the standard PS system can be arbitrary small for very high loads.

For realistic loads this ratio can reach 1 2. We also show that the system performance is not
too sensitive to the choice of the threshold around its optimal value.

In jAABNO4J authors provide the scheduling algorithm, RuN2C, which is based on the
TLPS policy and uses packets sequence numbers to schedule packets. Using NS-2 simulator

3.3 Model description 31

we implement the TLPS algorithm in the router queue, which schedules packets according to
the attained service of every connection presented in the system. For that we keep the trace
of the connection’s attained service until there are no more packets from the connection in the

queue. We provide the simulation results for the different values of the threshold and show that
analytically found threshold approximation minimizes mean waiting time in the TLPS system.

We compare the mean waiting time in the system when the bottleneck queue is scheduled with
TLPS, LAS and DropTail policies. We found that the relative gain of the TLPS policy with
the approximated value of the optimal threshold can achieve up to 36% in comparison with the
DropTail policy and is very close to the relative gain achieved with the optimal LAS policy in
comparison with the DropTail policy.

In Section 3.5 we analyze the TLPS discipline when the job size distribution is hyper
exponential with many phases. We provide an expression of the expected conditional sojourn
time as the solution of a system of linear equations. Also we apply an iteration method to find
the expression of the expected conditional sojourn time and using the resulting expression obtain
an explicit and tight upper bound for the expected sojourn time function. In the experimental
results we show that the relative error of the latter upper bound with respect to the expected

sojourn time function is 6-7%.
We study the properties of the expected sojourn time function when the parameters of the

job size distribution function are selected in such a way that with the increasing number of
phases the variance increases. We show numerically that with the increasing number of phases

the relative error of the found upper bound decreases. We also show that when the variance of
the job size distribution increases the gain in system performance increases and the sensitivity
of the system to the selection of the approximate optimal threshold value decreases.

We put some technical proofs in the Appendix.

3.3 Model description

3.3.1 Main definitions

We study the TLPS scheduling discipline with the hyper-exponential job size distribution.

The jobs arrive to the system according to a Poisson process with rate A. We measure the job

size in time units. Specifically, as the job size we define the time which would be spent by the

server to treat the job if there were no other jobs in the system.

Let S > 0 be a given threshold. When a new job arrives to the system, it goes to the high
priority queue, where it is served until it receives the amount of service S. If the job is still in the

system and needs more service than 0, the rest of the job, which is not yet served, goes to the low

priority queue. So, the jobs which attain an amount of service more th 6 are accumulated in

the low priority queue. The low priority queue is served when the high priority queue is empty.

32 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

Both queues are served according to the PS discipline, namely, the server equally divides its
capacity among all jobs present in the queue. When the high priority queue is empty, the jobs
which are accumulated in the low priority queue arrive to the server in a batch. Thus, we can
consider the low priority queue as a queue with batch arrivals, see also [Kle7Ga, Sec. 4.7j.

Let us denote the job size distribution by F(z). By x) — 1 — F(x) we denote the comple
mentary distribution function. The mean job size is given by rn = f00° zdF(x) and the system
load is p = Am. We assume that the system is stable (p < 1) and is in steady state.

It is known that many important probability distributions associated with network traffic
are heavy-tailed. In particular, the file size distribution in the Internet is heavy-tailed. A

distribution function has a heavy tail if e~(1 — F(x)) —00 as x — ~, Ve >0. The heavy
tailed distributions are not only important and prevalent, but also difficult to analyze. Often
it is helpful to have the Laplace transform of the job size distribution. However, there is
evidently no convenient analytic expression for the Laplace transforms of the Pareto and Weibull

distributions, the most common examples of heavy-tailed distributions. In [BMO6, FW9S],

FFW9SI, it was shown that it is possible to approximate heavy-tailed distributions by hyper
exponential distributions with a significant number of phases. A hyper-exponential distribution

FN(x) is a convex combination of N exponents, 1 ≤ N < cc, namely,
N N

FN@)=1_Zpje~P~, ~i>O, m≥O, i=1,...,N, and ~p~—1. (3.1

In particular, we can construct a sequence of hyper-exponential distributions such that it con
verges to a heavy-tailed distribution [BMO6I. For instance, if we select

~ ~‘j72’ i=1,...,N,

7i>1, ~‘<72<11 1,

Let us denote

~=p~e1~i9, i=1,...,N. (3.3)

We note that t7~ F~ = P(8). The hyper-exponential distribution has a simple Laplace trans
form:

Lp(~)(s) = E

~tt~ 17

Ji 2

where v—i Z 1.

distribution is finite, but the
second moments rn and d for

= v/rn E~=1 N j72~l then the first moment of the job size

second moment goes to infinity when N —* cc. The first and the
the hyper-exponential distribution are given by:

N N

rn=fxdF(x)=EP~i~ d=fx2dF(x)=2Z4. (3.2

3.3 Model description 33

We would like to note that the hyper-exponential distribution has a decreasing hazard rate. In

jAAO6] it was shown that when a job size distribution has a decreasing hazard rate, then with

an appropriate selection of the threshold the expected sojourn time of the TLPS system can be

made close to optimal. Thus, in our work we use hyper-exponential distributions to represent

job size distribution functions. In the first part of the current chapter we look at the case of the

hyper-exponential job size distribution with two phases and in the second part of the chapter

we study the case of more than two phases.

3.3.2 The expected sojourn time in the TLPS system

Let us denote by the expected conditional sojourn time in the TLPS system for a
job of size x. Of course, TT~~os(x) also depends on 6, but for expected conditional sojourn time
we only emphasize the dependence on the job size. On the other hand, we denote by T(6) the
overall expected sojourn time in the TLPS system. Here we emphasize the dependence on 8 as

later we shall optimize the overall expected sojourn time with respect to the threshold value.
To calculate the expected sojourn time in the TLPS system we need to calculate the time

spent by a job of size x in the high priority queue and in the low priority queue. For the jobs with
size x ≤ 6 the system will behave as the standard PS system where the service time distribution
is truncated at 8. Let us denote by

tO tO

— J yThdF(y) + 8”P(8) — j ny~’P(y)dy0 0

the n-th moment of the distribution truncated at 6. The distribution truncated at 8 equals to

to F(x) for x 8 and equals to 1 when x > 6. In the following sections we will need

NFZ N N~ N~
X~-m->-~,~ 3A

i—I i=1 i=1 i=1

The utilization factor for the truncated distribution is

PS —AX~= p—AZ-’. 3.5
Pt

Then, the expected conditional response time is given by

I a; ,
—TLPS j L— Ps
T (x)=~ W(8)+8+a(x—6)

1 1 , ze(6,c’o).

Here W(6) is the mean workload in the system for the jobs of size less then 8 and according to

the Pollaczek-Khinchin formula equals to

‘i y2
we—

2(1 —

34 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

According to fKle76a, Sec.4.7], 97(1 pg) expresses the time spent in the high priority queue,
where the flow is served up to the threshold 0 and W(9)/(i — pe) is the time spent waiting for

the high priority queue to empty. The remaining term a(x — 9)/(1 — pg) is the time spent in
the low priority queue. According to Kleinrock jKle76a, Sec.4.71 the low priority queue can be
interpreted as an interrupted PS queue with batch arrivals. Then, &(x) = dcx dx is the solution

of the following integral equation

— + y)dy + Mif &(y)~(x — y)dy + b~(x) + 1. (3.6)

Here ti is the average batch size, B(x) is the complementary truncated distribution and b = b(9)
is the average number of jobs that arrive to the low priority queue in addition to the tagged job.
The expressions for parameters fi, b(6) are explicitly explained in [K1e76a, Sec.4.71 and equal to

P(9+x)

F(S)
- F(S)
Ti—

(‘—p9)

b’S’ — 2AF(S)(W(S) + S“I (1)

The expected sojourn time in the system is given by the following equations:

T(9) = x)dF(x),

= X9+W(0)FI:S) 1 TBPS(S) 3.7
i—pg 1 pg

TBPS(O) = f ct(x S)dF x cr’(x)F(x + S)dx. (3.8)

3.4 Hyper-exponential job size distribution with two phases

3.4.1 Notation and motivation

In the first part of our work we consider the hyper-exponential job size distribution with
two phases. In particular, the application of the hyper-exponential job size distribution with
two phases is motivated by the fact that in the Internet TCP connections belong to two distinct

classes with very different sizes of transfer. The first class is composed of short HTTP connec
tions and P2P signaling connections. The second class corresponds to downloads (PDF files,
MP3 files, MPEG files, etc.). We discuss this problem more in the Introduction of the present
Thesis, see Section 1.1.3.

According to (3.1) the cumulative distribution function F(s) for N = 2 is given by

F(s) = 1 — pje_uu1X —

3.4 Hyper-exponential job size distribution with two phases 35

where Pi + p2 = 1 and P1, P2 > 0. The mean job size m, the second moment d, the parameters
F~, X4, X~ and pg are defined as in Section 3.3.1 and Section 3.3.2 by formulas (3.2), (3.3),
(3.4), (3.5) with N = 2.

Let us define

/~i•

We note that the system has four free parameters. In particular, if we fix pi, e, m, and p, the
other parameters #2, Pi, p2 and A will be functions of the former parameters.

3.4.2 Explicit form for the expected sojourn time

To find the expression of T(O) we use the result we obtained in the previous Chapter 2,
Section 2.4, Theorem 2.4 and so prove the following Theorem.

Theorem 3.1 The expected sojourn time in the TLPS system with the hyper exponential job

size distribution with two phases is given by

~ — 4 + W(8)P(8) m 4 b(S) (P1P2(m — X4)2 + o~(9)P2(O))+ 1~p + 2(1—p)P(O)(pl+p2—7(9)P(9)) (.)

where 6~(9) — 1 7(9)(m — 3(j) = (1 — p)/(1 — p~) and 7(9) = A/(1 — pg)

Proof. As we found in the previous Chapter 2, Section 2.4, Theorem 2.4,

T(9) = Xe4 + W(8)P(o) + (m — 3(j)
1—ps i—p

+ (~°~~°)v’ flqCU~~b.~(6)) 310
i-ps frbj(9)(p+bj(9))flq0j(b~(8)_b~(9fl’ (.

where b,(9) are the roots of the rational function ‘F(s) = 1 — j-4~ Z~ — 0. Let us define
= (1 — p)/(1 — pg) and -y(O) = A/(1 — pg). Then for the case of two phase job size

distribution function ‘F(s) equals to

— ~2 ~ s(p~ + #2 — 7(9)F(9)) + pip~Sp(S)
S — (s+p1)(s+p2)

and has two roots, b1 (9) and —b2(O), which are the solutions of the square equation ~2 s #1

#2 — 7(O)F(9)) + P1P2ÔP(O) = 0. Then we know that

bi(9) + b2(6) = pi +#2 -y(O)P(9), (3.11)

bi(O)b2(O) P1P26p(9). (3.12)

36 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

Simplifying expression (3.10) and using (3.11) and (3.12) we get expression (3.9) and so prove
the statement of the Theorem.

The same result can be obtained using the Laplace transform based method described in

[DanO3l.

3.4.3 Optimal threshold approximation

We are interested in the minimization of the expected sojourn time function T(9) with
respect to 9. Of course, one can differentiate the exact analytic expression provided in Theo

rem 3.1 and set the result of the differentiation to zero. However, this will give a transcendental
equation for the optimal value of the threshold. In order to find an approximate solution of

= dT(9)/dO = 0, we approximate the derivative T’(9) by some function T’(6) and obtain

a solution for T’(80~~ 0.
Since in the Internet connections belong to two distinct classes with very different sizes of

~{ transfer (see Section 3.3.1 , then to find the approximation of ~(9) we consider a particular
r case when #2 << ~i1. Let us introduce a small parameter e such that
ci V

E(tfl/2j—1) e(miti—1)
P26/21, Pi—l— 1—c i e

We note that when e —. 0 the second moment of the job size distribution goes to infinity.

Lemma 3.1 The following inequality holds: ptip> A.
-n

Proof. Since Pi > 0 and P2 > 0, then mm > 1 and m> ~jj-. Taking into account that Am —

we get ~ > ~. Consequently, we have that bLip> A. I

Proposition 3.1 The derivative of T(9) can be approximated by the following function:

= —e’~°u1cj +

where

p(m~i — 1) pm(m#i — 1)
c1= , c2= 2 3.13

— p)(l — p) (mul — p)

Namely,

- ~9) = O(#2/#1).

Proof. Using the analytic expression for both T’(8) and ~‘(9), we get the Taylor series for
— T’(O) with respect to e, which shows that indeed

3.4 Hyper-exponentiai job size distribution with two phases 37

I

Thus we have found an approximation of the derivative of T(9). Now we can find an

approximation of the optimal threshold by solving the equation T’(8) = 0.

Theorem 3.2 Let 6opt denote the optimal value of the threshold. Namely, 6~ = arg minT U

The value O~ given by

~opt= 1 in(’~~’~ (3.14)
I’i—122 \/‘2(i—P)J

approximates 0opt so that ~‘(O0~~) = oCu2/u1).

Proof. Solving the equation

= 0,

we get an analytic expression for the approximation of the optimal threshold:

1 (~(1—p)”~ 1 ((121—A)
ln~(1)

Let us show that the above threshold approximation is greater than zero. We have to show that

> 1. Since/Li >/22 and/Lip> A (see Lemma 3.1), we have

/21 > #2

— fL1(1—p)>122(1—p)

A<P1P</Lr/L2(1—p)

Expanding T’(9~~) as a power series with respect to c gives:

= e2 (consto + const1 Inc + const2 In2 c),

where comst~, i = 1,2 are some constant values1 with respect to a Thus,

= o(c) — 0(122 ui),

which completes the proof. I

From formula (3.14) we can see that 8opt is of the same order as 1/ui in (1/c). As a con

sequence 8~ goes to infinity when c — 0. Also formula 3.14) indicates that the value of the

threshold should be chosen between 1/pi and 1/122.

In the next proposition we characterize the limiting behavior of T(&,,,1) and T(~O~~) as c —~ 0.

In particular, we show that T(U0~~) tends to the exact minimum of T(8) when c —+ 0.

‘The expressions for the constants coast, are cumbersome and can be found nsing Maple command series”.

38 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

Proposition 3.2

1L~T(6ojt) =hn~T(O0~t) = 1~p c~

where c1 is given by (8.18).

t Proof. We find the following limit as e 0:

lin~T(O)=j2~——ci+e1e ~“°

where c1 is given by (3.13). Since lim~_0 T(O) is a decreasing function, the optimal threshold
for it is 6opt = ~ Thus,

- . . - rn
limT(80~t) hm limT(6) = — c1.

i — p

On the other hand, we obtain

lirnT(80~j)= rn_ci

which proves the proposition. I

Let us denote by g(p) = the relative gain of the TLPS system with the optimal
threshold approximation (3.14) with respect to the PS system. In the next proposition we study
the limiting behavior of g(p) when e — 0 and when the load of the system p — 1.

Proposition 3.3 The gain of the TLPS system with the value of the threshold as in (8.14)

according to the standard PS system has the following properties:

PS . —

— T hm~...,o T(9~~) — p(m~i — 1)
limg(p) —

rnji1 (rn#i — p)

limlimg p —

p—’l t*O

The limit lim~_0 g(p is an increasing function of p.

Proof. Follows from the previous derivations. I

One can see that the limit lim.0 g(p) can be made arbitrarily close to one by choosing j~i

sufficiently close to 1/rn and the load sufficiently close to one. This in turn implies that the
—— —PSratio llme..o T(80~~) T can be made as close to zero as one wants.

This is a striking result as it shows that the performance of the TLPS system can be ar
bitrarily better than the performance of the PS system for some selection of the parameters.
However, in the next session with the numerical results we show that this set of parameters is
very small and for real~tic parameters the gain is in the order of 50%.

a,

3.4 Hyper exponential job size distribution with two phases

46

g(p)
g1(p)

35 g2(p)

3.3

25

‘5

3,,

05

5 10 40 °0 1 0.2 0.3 04 0.5 06 7 0.6 0.5 I

e p

Figure 3.1: T(O) - solid line, - dash dot line, Figure 3.2: g(p) - solid line, g’ p - dash line,
- dash line. - dash dot line.

3.4.4 Numerical results

For plots in Figures 3.1-3.2 we use the following parameters: p = 0.909, m 1.818, p~ = 1,
= O.1,so A = 0.5 and ~ = p2/ui = 0.1. Then, p’ = 0.909 and P2 = 0.0909.

In Figure 3.1 we plot T(8), T~ and T@0~~). We note that the expected sojourn time in
the standard PS system TPS is equal to T(o). We observe that T(80~~) corresponds well to the

optimum even though e = 1/10 is not too small. (. ¶~c4)

Let us now study the gain that we obtain using TLPS, by setting S = ~ in comparison

with the standard PS. To this end, we plot the ratio g(p) in Figure 3.2. The gain
in the system performance with TLPS in comparison with PS strongly depends on p, the load
of the system. One can see that the gain of the TLPS system with respect to the standard PS

system goes up to 45% when the load of the system increases.

V To study the sensitivity of the TLPS s5ystem with respect to 8, we plot in Figure 3.2 theV ratios g~ (~) = r~ ~pt) and 92(P) — T” ftö~~t)~ Thus, even with the 509’ error of the ö,pt

value, the system performance is close to optimal.

One can see that it is beneficial to use TLPS instead of PS in the case of heavy and moderately
heavy loads. We also observe that the TLPS system is not too sensitive to the choice of the
threshold near its optimal value, when the job size distribution is hyper-exponential with two
phases. Nevertheless, it is better to choose larger rather than smaller values of the threshold.

40 Chapter 3: Optimal choice of threshold in Th’o Level Processor Sharing

3.4.5 Simulation results

Using NS 2 simulator we implemented the algorithm based on the TLPS scheduling scheme
and provide experimental results for the case of two phase hyper-exponential job size distribu
tion. The a gorithm is implemented in the router queue. In the router we keep the trace of the
attained service of a 1 flows in the system. The trace is kept during some time after which the
router does not receive more packets from this flow. Every time to dequeue the packet from the
bottleneck router, the router checks, if the first packet in the queue belongs to the flow which
already received S amount of service. If the flow did not receive S amount of service, then the
packet is served, else, the next packet is considered. If in the queue there are no packets which

belong to the flows which did not yet received S amount of service, the first packet in the queue
is served.

In [AABNO4] authors provide RuN2C, the scheduling algorithm based on the TLPS scheme.
RuN2C takes the decision of the packet service according to the packet sequence number. In
the current work we do not use the packets sequence numbers to take the scheduling decision,

but we keep the track of the attained service for every flow in the system.

The simulation topology is the following. The files are generated by the FTP sources which
are connected to the TCP senders. All TOP senders send files to the TOP destination nodes
using the same bottleneck link. Every FTP source belongs to one of two sending classes in
the system. Each class i, i = 1,2 sends files with Poisson process with rate A and has the
exponential file size distribution with mean m~. We consider that all connection have the same

propagation delays. The bottleneck capacity is p. We apply the TLPS scheduling algorithm to
schedule the packets in the queue of the bottleneck link.

The proposed scheme is equivalent to the case of hyper-exponential job size distribution with
two phases, where pi = A1/A, P2 = A2 A, 1/jti = mj/j.L, 1/p2 = m2/p, p = A(pi /Aj +732 p2).

Then we can use the approximated value of the optimal threshold given by (3.14)

- 1 ((rn—A)
Inj

P1 — P2 \P2(l — p)

After we found the approximated value of the optimal threshold for the analytical model, we
have to multiply S~ by the bottleneck capacity to get the real threshold value we use in the
simulations, o~,’p~’ —

For the simulations we select the following system parameters. The bottleneck capacity

p 100 Mbit s. All the connections have a Maximum Segment Size (MSS) of 540 B. The
propagation delay of every link equals to 2 ms. The duration of every simulation is 2000 5.

Other system parameters and the approximated value of the optimal threshold are given in
Table 3.1. In the current simulation model the short flows take p~ = 0.25 and the long flows

P2 = 0.61 of the total bottleneck capacity. The total load in the system is p 0.86.

3.5 Hyper-exponential job size distribution with more than two phases - 41

~simut I
~ m~ AiIA2~pilp2~p~ vapt I

1157 MSS 11574 MSS 5.0 11.22 0.25 0.61 0.86 7638 M~~J

Table 3.1: Simulation parameters

We compare the mean waiting time in the system under TLPS, LAS and DropTail policies.

For the TLPS policy we provide the simulation results for different values of 6, which is varied

from 1157 MSS to 80000 MSS. The results are presented in Figure 3.3. As one can see the

found approximated value of the optimal threshold 9~,TUL 7.6x103 MSS minimizes the mean

waiting time in the TLPS system between other threshold values. The mean waiting time in

the TLPS system is very close to the optimal value of the mean waiting time achieved with

the LAS policy. The maximal achieved relative gain with the TLPS policy when S — in

comparison with the DropTail policy equals to 35.7%, while the relative gain with the optimal

LAS policy in comparison with the DropTail policy is 36.7%.

1.4
DropTall

1.3

1.2

1.1

TLPS

OS ~ LAS

S.C
1.6 7.6 14 20 34 46 70 xlD~

S MSS

Figure 3.3: Mean waiting time in the system (s): TLPS - solid line with stars, DropTail - dash line,
LAS dash dot line.

3.5 Hyper-exponential job size distribution with more than two

phases

3.5.1 Notation and motivation

In the second part of the present work we analyze the TLPS discipline with the hyper
exponential job size distribution with more than two phases. Using hyper-exponential distri
bution with more than two phases we obtain a more realistic representation of the file size

42 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

distribution in the Internet. In particular it was shown in [BMO6, KSHO3, FW981 that the
hyper-exponential distribution with a significant number of phases models well the file size
distribution in the Internet. Thus, we will use

F(x)=l_Zpje~tx, ~pj=” p~>O,p~≥O, i1,...,N, 1<N≤~.

It appears that in ~ case of many phases finding an explicit expression for the optimal
threshold value is quite a challenging problem. In order to deal with a general hyper-exponential
distribution we proceed with the derivation of a tight upper bound on the expected sojourn time
function. The upper bound has a simple expression in terms of the system parameters and can
lend itself to efficient numerical optimization.

In the following we write simply E, instead of E~L1.
The mean job size m, the second moment d, the parameters F~, 3(4, Xj and P0 are defined

as in Section 3.3.1 and Section 3.3.2 by formulas (3.2), (3.3), (3.4), (3.5) for any 1 ≤ N ≤ oo.
The formulas presented in Section 3.3.2 can still be used to calculate b(s), ~R(z), W(6), 7(6),

—TLPS —

S~(O), T (x), T(6). We also need the following operator notations:

— 7(6) f $(y)P(x + y + 6)dy + 7(6)f /3(y)F(x — y + 6)dy,

~2(fl(Z f ~(y)F y 6)dy,
0

for any function fflx). In particular, for some given constant c, we have

— c7(6)(m — X4) = cq, (3.15

F2(c) =c(m—X4), (3.16)

where
q=7(6)(m_Xh)=mx9)=P Pe <1. (317)

I—Pg i—pg
The integral equation (3.6) can now be rewritten in the form

ci’(x) = ~l(a’(Yfl+)F(x + 6) + 1 (3.18)

—BPSand equation (3.8) for T (6) takes form

T~°s(O) = ‘I’2(a’(x)). (3.19)

3.5.2 Linear system based solution

Using the Laplace transform based method described in [BanO3J we prove the following
proposition.

3.5 Hyper exponential job size distribution with more than two phases

Proposition 3.4 The following formula holds:

_TBPS(O) =

with

1__,

where the L,t, i = 1,..., N are the solution of the linear system

r,; (i —7(°)> =~Cs~~ ~‘04~ + :~1Y~ F6 p 1,...,N. (3.21

Proof. To find T~°s(O) we need to solve the integral equation (3.6). Let us recall that

7(0) = A/U — P6), then we can rewrite 3.6 in the following way

a’(x) = -y(O) f’~~@ ~y + O)dy 7(0 f ct’(y flx — y + 0)dy + b(0)~(x) + 1,

a’(x) = -y(&) ZF~e~~x f a’(y)e”9dy + 7(0)f a’(y)P(x — y + 8)dy b(0)~(x) + 1.

We note that in the latter equation j~’° a’(y)r”~~dy, i = 1,..., N are the Laplace transforms of

a’(y) evaluated at p~, i = 1,..., N. Denote by La’(s) = f0°° &(x)es2~dx the Laplace transform

of cr’(x) and let L2 L0’(p~), i = 1,... ,N. Then, we have

— 7(0) ZF~Le_P~E + 7(0) — y + 0)dy + b(0)E(x) + 1.

Now taking the Laplace transform of the above equation and using the convolution property,

we get

L&(s) =-~(0)~ ~‘ +7(o)z GaO + p(0)>: + +

L&(s) (1_7(6)~~) =7(°)~~,~ +~.

Then, we substitute into the above equation s p~, i = 1,..., N and get L~, i 1,... ,N as a

solution of the linear system

LP(1_i(0)~~)_7(0)EF6t+~J)Z2+i, p=1,...,N.

44 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

If now we set L~ L + 6~(°)#p p = 1,..., N, then L are the solutions of the linear system
—BPS3.21). Next we need to calculate T (9).

TBPS 8) = L+8)~ = J &(x)Z e~dx = ZF~LZ.

Finally, we have (3.20).

Unfortunately, the system (3.21) does not seem to have a tractable finite form analytic
solution. Therefore, in the ensuing subsections we propose an alternative solution based on an

operator series and construct a tight upper bound.

3.5.3 Operator series form for the expected sojourn time
4’

Since the operator P~ is a contraction [AABNO4, AABO5], we can iterate equation (3.18)
y~.. starting from some initial point c4,. The initial point can be simply a constant. As shown in

FAABNO4, AABOS] the iterations converge to the unique solution of (3.18). Specifically, we
make iterations in the following way:

c~~1(x) = ~i(c4(x)) + + 8) + 1, n = 0,1,2 (3.22

At every iteration step we construct the following approximation of TBPS (8) according to (3.19

—BPS
T~÷1 (8) = ‘~‘2(a~~1(x)). (3.23

Using (3.22) and (3.23), we construct the operator series expression for the expected sojourn
time in the TLPS system.

Theorem 3.3 The expected sojourn time T(8) in the TLPS system with the hyper-exponential

job size distribution is given by

T(o) = 3(4 +W(8)r(8) + + P(8)1;~i°~-) (f (~ (P(x + 8)))). (3.24

Proof. From (3.22) we have

c~

and then from (3.23 and (3.15) it follows that

TnBJ~(9)=(m_4) (q~mab+~qi) ~~(9) (~2 (~‘~(P(x+e~)).

3.5 Hyper-exponential job size distribution with more than two phases 45

Using the facts (see (3.17)):

1. q <p < 1 q~’ —‘0 as n — cc,

2. ~qi= Jq = ‘iZ~’

we conclude that

T~(O) = 1• _T~S(8) = (m -4) Cz;) + ~4 ~ (~L(x+ 8)))).

Finally, using (3.7) we obtain (3.24).

The resulting formula (3.24) is still difficult to analyze. Therefore, in the next subsection
using (3.24) we find an approximation, which is also an upper bound, of the expected sojourn
time function in a more explicit form.

3.5.4 Upper bound for the expected sojourn time

Let us start with auxiliary results.

Lemma 3.2 For any function fl(z) ≥ 0 with 13j = J~’° fi(x)e~~”dx,

if d($,p,) ~ 0, it follows that ‘t’2 41(fl(x))) ≤ q4’~ x)
u/h

Proof. See Appendix.

Lemma 3.3 For the TLPS system with the hyper-exponential job size distribution the following

statement holds:

~2 (‘Fi(a’(x))) ≤ qcI~ (a’(x)) . (3.25

Proof. We define ctf~ = f0°°ct’(x)e_Pi”dx, j = 1, . . . , N. As was shown in [OsiOSal, a’(x) has
the following structure:

a’x)=ao+Eake~”~, ao≥0,ak≥0,bk>0, k=1,...,N.

Then, we have that a’(z) ≥ 0 and

+~

d(:’~) ~bk±/h, ~~(bk±pj)2 ~(bk±~3)2 ≥0, j 1 N,

as ak ≥ 0, b~ >0, k = 1,... ,N. So, then, according to Lemma 3.2 we have (3.25).

Let us state the following Theorem:

46 Chapter 3: Optimal choice of threshold in Two Level Processor Sharing

Theorem 3.4 An upper bound for the expected sojourn time function i~(8) in the TLPS system

with the hyper-exponential job size distribution function with many phases is given by Y(8):

Proof. According to the recursion (3.22), we consider a’(x) as a candidate for the approxima

tion of cV(x). Namely, &‘(x) satisfies the following equation:

= &‘(x)cIj(l) +~+ 8) + 1.
F(s)

Then, using (3.15), we can find the analytic expression for &‘(x):

— q&’(x) + PL~~F(x + 8) + 1,F(s)

~\F(8)
—BPSWe take 1a°s (8) — ct~2(&’(x)) as an approximation for T (8) = ‘L’2(a’(z)). Then

yBPS(g) = ~2@(X)) - (m-X~)

1 —q
b(s) (m—X4)

+fl8)4’2(F(X+S))= 1—q
b(S) ~N

+ F(e)Z ~ + ,~

Let us prove that

or equivalently

Let us look at

≤

~BPS(5) — yBPS (8) = ~2(a’(x)) — ~2(d(x)) ≤ 0.

~2(Q(X)) — P2(a(x))

4’2QF1(O’(X))) + ‘~½ (~~j~r(x + 8) + i) - + 4~ +8)+i))

— q12(ct’(x)) + q (ct2(ci≤’(x)) — 42(a’(X)))

- ~2(Q’(X)) = ~ (~2(~1(a’(x))) - q~2(a’(xfl)

T(6) < T(8) =
4 + W(8)F(8)

1—pg
+

m-X~ b(s) ~~FF

Ip F(8)(1—p)4-’~,+jij
(3.26)

1
=~? &‘(x) —

1 —q

Now from Lemma 3.3 and formula (3.7) we conclude that (3.26) is true. I

3.5 Hyper exponential job size distribution with more than two phases 47

In this subsection we found the analytic expression of the upper bound of the expected
sojourn time in the case when the job size distribution is a hyper-exponential function with
many phases. In the experimental results of the following subsection we show that the obtained

upper bound is also a close approximation. The analytic expression of the upper bound which
we obtained is more clear and easier to analyze than the expression 3.26) for the expected

sojourn time. It can be used in efficient numerical optimization of the TLPS p~I~Th1ance~ ~ ?4)

3.5.5 Numerical results

We calculate T(9) and ‘f(s) for different numbers of phases N of the job size distribution
function. We take N = 10, 100, 500, 1000. To calculate ~(9) we find the numerical solution
of the system of linear equations (3.21) using the Gauss method. Then using the result of
Proposition 3.4 we find T(9). For ‘f(s) we use equation (3.26).

As was mentioned in Subsection 3.3.1, by using the hyper-exponential distribution with
many phases, one can approximate a heavy-tailed distribution. In our numerical experiments
we fix p, m, and select p~ and /i~ in such a way that by increasing the number of phases we let
the second moment d (see (3.2)) increase as well. Here we take

p=O.9O9, m=1.818, IN=, ,~j=-~%, i—1,...,N.

In particular, we have u~ ~
—1 — ~_ 1 t.~-t £J~ ~lisp, — ‘ —

— 13

In Figure 3.4 one can see the plots of the expected sojourn time and its upper bound as
functions of S when N equals to 10, 100 , 500 and 1000. In Figure 3.5 we plot the relative error
of the upper bound

AS Y(9)—T(o) 4(4) ~ø C’fl

when N equals to 10, 100 , 500 and 1000. As one can see, the upper bound (3.26) is very tight.

We find the maximum gain of the expected sojourn time of the TLPS p’stem with respect
to the standard PS system. As previously we denote the gain by g(9) = T yPS where T
is the expected sojourn time in the standard PS system. The data and results are summarized
in Table 3.2.

We can make the following conclusions when increasing number of phases:

1. the maximum gain max~ g(O) in expected sojourn time in comparison with PS increases;

LI

48 Chapter 3: Optimal choice of threshold in TWo Level Processor Sharing

- - Ips
- - fle)
— TfO)

o 50 80 70 00 90

8

~49) ~4

jD’P)
—V

Figure 3.4: The expected sojourn time T(6) and
its upper bound T 6 for N = 10, 100, 500, 1000.

Figure 3.5: The relative
100, 500, 1000.

error ~(O) for N = 10,

2. the relative error ~(6) of the upper bound according to the expected sojourn time decreases

after the number of phases becomes sufficiently large; ? (JLUPA c’& 7 ..~

3. the sensitivity of the system performance with respect to the selection of the sub-optimal

threshold value decreases.

Thus the TLPS system produces better and more robust performance as the variance of the

job size distribution increases.

3.6 Conclusion

We analyze the TLPS scheduling mechanism with the hyper-exponential job size distribution

function.

In Section 3.4 we analyze the system when the job size distribution function has two phases

and find the analytic expressions of the expected conditional sojourn time and the expected

sojourn time of the TLPS system.

N ‘i d 6opt max9g(6) maxoA(9)

10 0.95 7.20 5 32.98% 0.0640

100 1.26 32.28 12 45.75% 0.0807

500 1.40 113.31 21 49.26% 0.0766

1000 1.44 200.04 26 50.12% 0.0743

24

Table 3.2: Increasing the number of phases

185

N10

N500

1%

“6

“6

“6

H. 1000 ~QQ N1000

0 50 00 70
0

3.6 Conclusion 49

Connections in the Internet belong to two distinct classes: short HTTP and P2P signaling
connections and long downloads such as PDF, MP3, and so on. Thus, according to this observa
tion, we consider a special selection of the parameters of the job size distribution function with
two phases and find the approximation of the optimal threshold, when the variance of the job
size distribution goes to infinity. We show that the approximated value of the threshold tends

to the optimal threshold, when the second moment of the distribution function goes to infinity.

We found that the ratio between the expected sojourn time of the TLPS system and the
expected sojourn time of the standard PS system can be arbitrary small for very high loads.
For realistic loads this ratio can reach 1/2. Also we show the system is not too sensitive to the

selection of the optimal value of the threshold.

With NS-2 simulator we implement TLPS scheduling scheme in the router of the bottle
neck link. We show that the analytically found approximation of the optimal threshold value
minimizes the mean waiting time in the TLPS system between other threshold values. With
the simulation results we show that TLPS with the found approximated value of the optimal

threshold can give up to 35% gain in comparison with the DropTail policy and almost the same
gain as the optimal LAS policy.

In Section 3.5 we study the TLPS model when the job size distribution is a hyper-exponential
function with many phases. We provide an expression of the expected conditional sojourn time
as a solution of a system of linear equations. Also we apply the iteration method to find the
expression of the expected conditional sojourn time in the form of operator series and using the
obtained expression we provide an upper bound for the expected sojourn time function. With

the experimental results we show that the upper bound is very tight and can be used as an
approximation of the expected sojourn time function. We show numerically that the relative

error between the upper bound and the expected sojourn time function decreases when the
yariation of the job size distribution aciI~iim~rea~s. The obtained upper bound can be used

çP ~ to identify an approximation of the optimal threshold value for the TLPS system when the job
size distribution is heavy-tailed.

We study the properties of the expected sojourn time function, when the parameters of the
job size distribution function are selected in such a way that it approximates a heavy-tailed
distribution as the number of phases of the job size distribution increases. As the number of
phases increases the gain of the TLPS system compared with the standard PS system increases
and the sensitivity of the system with respect to the selection of the optimal threshold decreases.

50 Chapter 3: Optimal choice of threshold in Th’o Level Processor Sharing

3.7 Appendix: Proof of Lemma 3.2

Let us consider any function /3(x) ~ 0 and define /3~j = f3C~/3(x)e_h2Pdx, j = 1,. . . , N. Let
us show for /3(x) ≥ 0 that if

≥ 0, then it follows that ~2 (~i(fflx))) ≤ ~ (5(x)).
“eEL,

As

— y + Ofr(x + 6)dydx = jf5(y)P(xi + 6)P(xi + y + 9)dxidy

and

~2(~1(5(x~) = 7(6) (y)r(x + y + 9)P(x + 6)dydx

+ 7(e)f f ffly)P(x — y + 6)P(x + 6)dydx,
CO

then

~2(~I(5(xfl) = 27(6) ff5(x)P(x + 9)F(x + y + 9)dydx =

= 27(9)f 5(x)>: ‘~e~~dx = 27(6)>:

Also for ~2 (/3(x)), taking into account that q = y(6) E~ ~4, we obtain

02(5(x)) — 7(~)Z ~Z4f 5(x)e~dx = ~(°)Z .02.
jP2. 0

Thus, a sufficient condition for the inequality ‘F2 (4’i(S(x))) ≤ 02(0(x)) to be satisfied is
that for every pair i,j:

2 5,+ 2 5i≤15~+15, —~ —(5~p~—5ip~)(p~—pt)≤0.
[~i [‘j

The inequality is indeed satisfied when f3~p, is an increasing function of Pj• We conclude
that ‘F2 (‘Fi(5(xfl) ≤ q’F2 (5(x)), which proves Lemma 3.2.

3.7 Appendix: Proof of Lemma 3.2

Chapter 3: Optimal choice of threshold in Th’o Level Processor Sharing

CHAPTER 4

COMPARISON OF THE DISCRIMINATORY

PROCESSOR SHARING POLICIES

4.1 Summary

The DPS policy was introduced by Kleinrock. Under the DPS policy jobs are organized in
classes, which share a single server. The capacity that each class obtains depends on the number
of jobs currently presented in all classes and is controlled by the vector of weights. Varying DPS
weights it is possible to give priority to different classes at the expense of others, control their
instantaneous service rates and optimize different system characteristics as mean sojourn time
and so on. So, the proper weight selection is an important task, which is not easy to solve
because of the model’s complexity.

We study the comparison of two DPS olicies with different wei ht vectors. We show the
monotonicity of the expected sojourn time of the system depending on the weight vector under
certain condition on the system. The restrictions on the system are such that the result is true
for systems for which the values of the job size distribution means are very different from each
other. The restriction can be overcome by setting the same weights for the classes, which have

similar means. The condition on means is a sufficient, but not a necessary condition. It becomes
less strict when the system is less loaded.

The results of the current work can be found in jOsiO8bj.

54 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

4.2 Introduction

The Discriminatory Processor Sharing (DPS) policy was introduced by Kleinrock [Kle67].
Under the DPS policy jobs are organized in classes, which share a single server. The capacity
that each class obtains depends on the number of jobs currently presented in all classes. All
jobs present in the system are served simultaneously at rates controlled by the vector of weights

g~ > 0, k = 1,. . . , M}, where M is the number of classes. If there are N~ jobs in class j, then
each job of this class is served with the rate g~/~~L1 gkNk. When all weights are equal, DPS
system is equivalent to the standard PS policy.

The DPS policy model has recently received a lot of attention due to its wide range of
application. For example, DPS could be applied to model flow level sharing of TCP flows
with different flow characteristics such as different RTTs and packet loss probabilities. DPS

also provides a natural approach to model the weighted round-robin discipline, which is used
in operating systems for task scheduling. In the Internet one can imagine the situation that
servers provide different service according to the payment rates. For more applications of DPS
in communication networks see [AJKO4], BTO1], ICvdBB 05], [GMO2b], jHT05j.

Varying DPS weights it is possible to give priority to different classes at the expense of
others, control their instantaneous service rates and optimize different system characteristics as

mean sojourn time and so on. So, the proper weight selection is an important task, which is not
easy to solve because of the model’s complexity.

The previously obtained results on DPS model are the following. Kleinrock in [Kle67J was
first studying DPS. Then the paper of Fayolle et al. [FMISO] provided results for the DPS model.
For the exponentially distributed required service times the authors obtained the expression of
the expected sojourn time as a solution of a system of linear equations. The authors show that
independently of the weights the slowdown for the expected conditional response time under
the DPS policy tends to the constant slowdown of the PS policy as the service requirements
increase to infinity.

Rege and Sengupta in [RS94I proved a decomposition theorem for the conditional sojourn
time. For exponential service time distributions in [RS96] they obtained higher moments of “

,A t-a.~q.the queue length distribution as the solutions of linear equati ns s stem and also provided a r
theorem for the heavy-traffic regime. Van Kessel et al. in [KNQBO5j, [KNQBO4] study the
performance of DPS in an asymptotic regime using time scaling. For general distributions of
the required service times the approximation analysis was carried out by Guo and Matta in
jGMO2b]. Altman et al. jAJKO4] study the behavior of the DPS policy in overload. Most of

the results obtained for the DPS queue were collected together in the survey paper of Altman
et al. [AAAO6].

Avrachenkov et al. in [AABNQO5] proved that the mean unconditional response time of

4.3 Previous results and problem Formulation 55

each class is finite under the usual stability condition. They determine the asymptote of the
conditional sojourn time for each class assuming finite service time distribution with finite
variance.

The problem of weights selection in the DPS policy when the job size distributions are
exponential was studied by Avrachenkov et al. in [AABNQO5] and by Kim and Kim in [KKO6].
In [KKO6] it was shown that the OPS policy reduces the expected sojourn time in comparison

with PS policy when the weights increase in the opposite order with the means of job classes.
Also in FKKO6I the authors formulate a conjecture about the monotonicity of the expected
sojourn time of the DPS policy. The idea of conjecture is that comparing two DPS policies,
one which has a weight vector closer to the optimal policy, provided by cp-rule, see [Rig94], has
smaller expected sojourn time. Using the method described in [KKO6I in the present chapter we
prove this conjecture with some restrictions on the system parameters. The restrictions on the

system are such that the result is true for systems for which the values of the job size distribution
means are very different from each other. The restriction can be overcome by setting the same
weights for the classes, which have similar means. The condition on means is a sufficient, but
not a necessary condition. It becomes less strict when the system is less loaded.

The chapter is organized as follows. In Section 4.3 we give general definitions of the DPS
policy and formulate the problem of expected sojourn time minimization. In Section 4.4 we
formulate the main Theorem and prove it. In Section 4.5 we give the numerical results. Some
technical proofs can be found in the Appendix.

4.3 Previous results and problem formulation

We consider the DPS model. All jobs are organized in M classes and share a single server.
Jobs of class k 1,. . . , M arrive with a Poisson process with rate Ak and have required service
time distribution Fk(X) = 1 — e_1tkt with mean 1 /2k The load of the system is p = pk

1 ~ and pk — Ak 12k, k = 1,..., M. We consider that the system is stable, p < 1. Let us denote

The state of the system is controlled by a vector of weights g = (ga,. . . , YM), which denotes
the priority for the job classes. If in the class k there are currently Nk jobs, then each job of
class k is served with the rate equal to gj/ E~LI gkNk, which depends on the current system
state, or on the number of jobs in each class.

—DPS .

Let T be the expected sojourn time of the DPS system. We have

j~DPS f
where Tk are expected sojourn times for class k. The expressions for the expected sojourn times

56 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

G={gIgl≥g2≥..≥gM}

i-pt

Tk, k 1,. M can be found as a solution of the system of linear equations, see IFMISOI,

Tk — ~ — = ~ (4.1)
~ .1pjgj+#kgkj .1pcjgj+ukgk Uk

k — 1,..., M. Let us notice that for the standard Processor Sharing system TSDS — RRI

One of the problems when studying DPS is to minimize the expected sojourn time TDPS

with some weight selection. Namely, find g* such as

—DPS * . —DPS
T (g) = minT (g).

9

This is a general problem and to simplify it the following subcase is considered. To find a set G
such that

~ ~PS Vg* € G. (4.2)

For the case when job size distributions are exponential the solution of (4.2) is given by Kim and
Kim in [KKO6I and is as follows. If the means of the classes are such as ILl ≥ p~ ... ≥ I1M,

then C consists of all such vectors which satisfy

Using the approach of IKKO6I we solve more general problem about the monotonicity of the
expected sojourn time in the DPS system, which we formulate in the following section as The
orem 4.1.

4.4 Expected sojourn time monotonicity

Let us formulate and prove the following Theorem.

Theorem 4.1 Let the job size distribution for every class be exponential with mean 1 p
i 1,... M and we enumerate them in the following way

Let us consider two different weight policies for the DPS system, which we denote as a and

Leta, C or

a1 ≥ a2 > . . . > aM,

fll>fl2>...>$M.

4.4 Expected sojourn time monotonicity 57

The expected sojourn time of the DPS policies with weight vectors a and /3 satisfies

7~DPS(a) <T’~~(/3), (4.3)

if the weights a and /3 are such that:

(4.4)
a1

and the following restriction is satisfied:

(4.5)
I’j

for everyj—1,...,M.

Remark 4.1 If for some classes j and j + 1 condition (4.5) is not satisfied, then by choosing
the weights of these classes to be equal, we can still use Theorem 4.1. Namely, for classes j and

j + 1 such as 1 — p, if we set a~ i = a~ and ~ /3j, then still the statement (4.3) of

Theorem 4.1 holds.

Remark 4.2 Theorem 4.1 shows that the expected sojourn time TTh~(g) is monotonous ac

cording to the selection of weight vector g. The closer is the weight vector to the optimal policy,

provided by cp-rule, the smaller is the expected sojourn time. This is shown by the condition

(4.4), which shows that vector a is closer to the optimal c~t rule policy than vector /3.
Theorem 4.1 is proved with restriction (4.5). This restriction is a sufficient and not a

necessary condition on system parameters. It shows that the means of the job classes have

to be quite different from each other. This restriction can be overcome, giving the same weights

to the job classes, which mean values are similar. Condition (4.5) becomes less strict as the

system becomes less loaded.

To prove Theorem 4.1 let us first give some notations and prove additional Lemmas. Let
us rewrite linear system (4.1) in the matrix form. Let T~’ = ~ . ,~j~)]T be the vector of

k = 1,..., M. Here by T we mean transpose sign, so [1T is a vector. By [j(9) we note

that this element depends on the weight vector selection g C C. Let us consider that later in
the chapter vectors g, a, /3 C C, if the opposite is not noticed.

Let us give the following notations.

gj
“

Using the notation of let us define matrices ~ and D ~ in the following way.

(4.6

~ f ~ i,j=1,...,M, i=j, (47U — ~ o, i,j=1,...,M, i$j.

58 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

Then linear system (4.1) becomes

(F — D° = [I±]~. (4.8)
LU’ UMJ

Let us denote

= A~°~~ Vg.

We need to find the expected sojourn time of the DPS system T~1~(g). According to the

definition of T~’~(g) and equation (4.8) we have

jIDPS(g) = A1[A1,.. .,A41]~°~ .1,Y i...

= A’[Al,...,AMI(E—B(9)Y’ [±,...,±]T.

Let us consider the case when A~ = 1 for I = 1,. . . , M. This results can be extended for the
case when ~ are different. We prove it following the approach of [1<1<06] in Proposition 4.1 at
the end of the current Section. Then the previous equation becomes ~ ;~‘—- I

= A’i’(F— B~~~)-’ [p,,...,pM]T. (4.9 ~.‘/

Let us show some properties of u~. From the definition of it follows

=

~ 1
~—‘~-- + ~a = —, (4.10)
Ui Ui UiUj

i,j=l,...,M. Also we prove Lemma4.1.

Lemma 4.1 If a and ~ satisfy (4.4), then

c ~ ≤i, (4.11)

≥ a4f~, I ≥ j. (4.12)

Proof. If a and fi satisfy (4.4), then for i = 1,... ,M — 1 ~ 5 ~ I S j. From here
aj4ujf3~ S i3jii~a€, I 5 j. Adding to both parts a~#~f3~ and dividing both parts by (Ui$j + #,~,)
we get (4.11). We prove (4.12) in a similar way. I

Lemma 4.2 If a, ~ satisfy (4.4), then

when the elements of vector y — 1’ F are such that Yi > 1/2 > ... > yM~

La 4~”-%.~. tta~~.

~4~ ,.~-.eW q_, ~

(0, /LJ1 ‘7 F

4.4 Expected sojourn time monotonicity 59

Proof. Using expression (4.9) for g = a, $ we get the following.

j:1DPS DPS
(a) — T C8) =)c’i’((E — B(a))_l — (E — Bt0~) 1) (... TP1, ,PM]

T
= ?r’~’((E — B(a))_l(B(a) — B~°~)(E — B~)’)[pi ,PM

Let us denote M as a diagonal matrix M = diag(1u1,. . . ,pj~j) and

1’ = 1’(E — B~°~)’M. (4.13)

Then

—DPS DPS
T (a) T C8) — —~ —

—

= E(& +a~’_ (~~+&o~f))~51”
iuj

I ‘(a) (0)

~—-J~+
I 1°3i Zn (a

2,3 ~ ~ ~(eii — C:,)) ~
As(410’ ~ E.L~ =a,$jhen

P. PiP U

—DPS DPS Y
T (a) ~r __1. ((a) (0)” + .~.(~ca) (5)(#i —c~) 23 — ~)) T5’~

1~—
—

ILi J
2,3

/ (a) (5)Using Lemma 4.1 we get that expression — c~j) (y~ — y~) ≤ 0, i,j = 1,..., M when

yi ≥ 1,2 ≥ .. ≥ ~jftj. This proves the statement of Lemma 4.2.

Lemma 4.3 Vector y given by (4.13) satisfies

Y1≥Y2≥.~≥YM,

if the following is true:

≤ 1—
it-Li

for everyi=1,...,M.

Proof. The proof c tI≤1 be found in the appendix.

60 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

Remark 4,3 For the job classes such as > 1 — p we prove that it is sufficient to give this

classes the same weights, a~+i = aj to keep yi ≥ y2 ≥ . ≥ lAM, The proof cpd≤1 be found

in the Appendix.

Combining the results of Lemmas 4.1, 4.2 and 4.3 we prove the statement of Theorem 4.1.

Remark 4.3 gives Remark 4.1 after Theorem 4.1. Now in Proposition 4.1 we prove the extension

of Theorem 4.1 9n the case when A, 0 1.

Proposition 4.1 The result of Theorem 4.1 is extended to the case when Aj 0 1.

Proof. Let us first consider the case when all)tj = q, i = 1,..., Al. It can be shown that for

this case the proof of Theorem 4.1 is equivalent to the proof of the same Theorem but for the

new system with A — 1, /4 = q~i, i — 1,.. . , M. For this new system the results of Theorem 4.1

is evidently true and restriction (4.5) is not changed. Then, Theorem 4.1 is true for the initial

system as well.

If A~ are rational, then they could be written in A~ — ~, where p~ and q are positive integers.

Then each class can be presented as p~ classes with equal means l/~j and intensity 1/q. So,

the DPS system can be considered as the DPS system with Pi + . . . +pjc classes with the same

arrival rates 1 q. The result of Theorem 4.1 is extended 9K’this case.

If A,, i = 1,..., Al are positive and real we apply the previous case of rational A~ and use

continuity.

In the following section we give numerical results on Theorem 4.1. We consider two cases,

when condition (4.5 is satisfied and when it is not satisfied. We show that condition (4.5) is a

sufficient and not a necessary condition on the system parameters.

4.5 Numerical results

Let us consider a DPS system with 3 classes. Let us consider the set of normalized weigh

vectors g(x) = (gl(x),g2(x),g3(x)) E? ‘gj(x) = 1, gj(x) ~xi), x > 1. Every

point x > 1 denotes a weight vector. Vectors g(x), g(y) satisfy property (4.4) when 1 < y <

namely gj~i(x)/gj(x) ≤ g~+i(y)/g~(y), I = 1,2, 1 < y ≤ x. On Figures 4.1, 4.2 we plot

with weights vectors g(x) as a function of x, the expected sojourn times TPS for

the PS policy and TOPt for the optimal cu-rule policy.

On Figure 4.1 we plot the expected sojourn time for the case when condition (4.5) is satisfied

for three classes. The parameters are: A~ — 1, i 1 2,3, ~ti = 160, #2 14, p~ = 1.2, then

p = 0.911. On Figure 4.2 we plot the expected sojourn time for the case when condition (4.5)

is not satisfied for three classes. The parameters are: = 1, i = 1,2,3, #1 35, #2 3.2,

4.6 Conclusion

i.E .

3 .88

TOPt

3.15

1 2 3 4 5 6 7 B 9 10 1 2 3 4 B 2.

—DPS —PS —opt . . —DPS —PS —opt
Figure 4.1: T (g(z)), T , T functions, Figure 4.2: T (g(x)), T , T functions,
condition satisfied. condition not satisfied

—DPS
= 3.1, then p — 0.92. One can see that T (g(z)) ≤ 2’ (g(y)), 1 < y ≤ x even when

the restriction (4.5) is not satisfied.

4.6 Conclusion

We study the DPS policy with exponential job size distribution. One of the main problems

studying DI’S is the expected sojourn time minimization according to the weights selection.

In the present work we compare two DPS policies with different weights. We show that the

expected sojourn time is smaller for the policy with the weigh vector closer to the optimal

policy vector, provided by cp-rule. So, we prove the monotonicity of the expected sojourn time

for the DPS policy according to the weight vector selection.

The result is proved with some restrictions on system parameters. The found restrictions

on the system parameters are such that the result is true for systems such as the mean values

of the job class size distributions are very different from each other. We found, that to prove

the main result it is sufficient to give the same weights to the classes with similar means. The

found restriction is a sufficient and not a necessary condition on a system parameters. When

the load of the system decreases, the condition becomes less strict.

4.7 Appendix

In the following proof we do not use the dependency of the parameters on g to simplify the

notations. We consider that vector g € G, or g~ > g~... > gb,. To simplify the notations let us

62 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

use YZk instead of ~

Lemma 4.3. Vector y = 1’(E — B)’M satisfies Yi ≥ Y2 ≥ ... ≥ YM, if ~ ≤ 1 p, for every

Proof. Using the results of the following Lemmas 4.4, 4.5, 4.6, 4.7, 4.8 we prove the statement

of Lemma 4.3 and give the proof for Remark 4.3. I

Let us give the following notations

— — D)~, (4.14)

A — M’AM(E — D)’. (4.15)

We define f(z) Zk and notice that 1 — Ek ~jk = 1 p + f(p,g,). Then

(E_D)E’ = 1 = 1 >0,
33 1—Ekujk 1—p+f(~t~g,)

(E—D)~’ = 0, iØj,

A 1 [Ljgj E‘3 —

u3gj >0
~~(pjg~ + ~t~g~)(1 — p + f(/~LJgj))

i,j = 1,. . . M. Let us prove additional Lemma.

Lemma 4.4 Matrix A = M’AM(E — D)’ is a positive contraction.

Proof. Matrix A is a positive operator as its elements A,, are positive. Let 12 = {XIxj ≥
0, i = 1,..., M}. If X € 12, then Ax 12. Then to prove that matrix A is a contraction it is

enough to show that

Bq, 0<q< 1 Ax <q X VXc12. (4.16)

As X €12, then we can take X 1’X — ‘ix,. Then

z‘Ax = __________

— f jz,g,)
— 2_,X31 p+f(ji,g,)

LX, (1 1 p±fcpgD

= _______

4.7 Appendix 63

Let us denote A0 — ~‘~ Then I’AX = x3 (1 — (1 — p)Ao).
We need to find the value of q, which satisfies the following

i’AX < q]~’X,

Lx,(1 —(1— p)Ao) ≤ q~x,,

1—(1 p)/ào≤q.

As f(p5g~) > 0, then 0 < 1 —(1— p)Ao < 1. We define S = I—p+ma~~,~ Let us notice that
max~ f(p~g~) always exists as the values of uygj, j = 1,. , M are finite. As S < Ao, then if

we select q = 1 — (1 — p)S, then the found q is 0 < q < 1 and satisfies condition (4.16). This
completes the proof. I

Lemma 4.5 If

~4O) = [0,... ,Oj, (4.17)

y(fl) = ~ + y0’1~A, n = 1,2,..., (4.18)

then y y, when n —* co.

Proof. Let us recall that y = liE — B)’M and B = E — A — D, then

yM~(E - D — A) =

yM’(E—D)=yM’A+i,

y = yM’A(E — D)’M + liE — D)tAL

As matrices D and M are diagonal, the MD = DM and then

v = #T(E — D)’ + yM’AM(E —

where p = [p’ I.LMJ. According to notations (4.14) and (4.15) we have the following

y—~+yA.
(n) (n) (n) (0Let us denote y = [yl , , Yi , n — 0,1,2,... and let define Yi andy by (4.17) and

4.18). According to Lemma 4.4 operator A is a positive refiexion and is a contraction. Also
j2~ are positive. Then y(Th) y, when n —~ ~ and we prove the statement of Lemma 4.5. I

Lemma 4.6 Let y(”), ii = 0,1,2,... an defined as in Lemma 4.5, then

~ n=1,2,... (4.19)

if~’≤1 pforeveryi=1,...,M 1.

64 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

Proof. We prove the statement (4.19) by induction. For ~(°) the statement (4.19) is true. Let
(n—i) > (n—i) > (n—i)us assume that (4.19) is true for the (ii — 1) step, Yi — — ≥ ~ . To prove the

(n) (n)induction statement we have to show that y~’~ ≥ y2 ≥ ... ≥ y~4 , when aai ≤ 1 — p for every
P1

(n) (n)i=1,...,M—1. Letusconsidery~ fly,, ,j’<p. As

M
(n)

Lii =1~+Zyh°AiJ,
i= i

then

Al
(n)

~‘ (n—I)y~ —y~ = ~ (4—4,).
i= 1

In Lemma4.7weshow that ii~ ≥Pi~,j≤p,when aai ≤ 1—pforeveryi—1,...,M—1. Let
RI

Al (n—i)us regroup the sum nj—I y~ (4 — A,~) in the following way

Al Al Al—i
(n—i) fl

= YM ~(Akj -4) + ~ n i - y,~’ ~ Z(Akj - Akp).
i=i k—i i=i k—i

(n—i) (n 1As y~ ≥ , i = 1,..., M — 1, according to the induction step, then to show that

z~L1 y~h1~(A A1~) ≥ 0, j < p it is enough to show that~ — A,,,) ≥ 0, j ≤ p,‘2

r = 1,. . . Al. We show this in Lemma 4.8. Using the previous discussion we prove the induction

step and so prove Lemma 4.6.

Now let us prove L mmas 4.7 and 4.8.

Lemma 4.7

zf~~’<1 pforeveryi=1,...,M 1.
Pt —

Proof. We consider i~j — ji,,, j <p. Let us recall that gi ≥ g~.

_____ ~ and

Let us denote f2(z) = E ~ then P~ i—f2(p191)k x+p~g~’

— — Pp — (i-tjf2(it,,g~) — upf2Cu~gj))
#2 — — (1— f2(pjgjfl(1 f2(p,,g~))

Let us denote ~i — — — (p~f~(p,,g,,) — #pf2(PJg~)). As 0 < f2(x) <p, then

~
~i > ~ P 1

4.7 Appendix 65

when

≤ 1— p.

,Lj

So, ~tj — ~ ≥ 0, j <p if < 1 — p.
Let us consider ~j when pj > ~z,, and gj = gp• In this case

A’!

— v— gk(g,p,+Iip)+ukgk)
— (Mi — ~ (~pgj + Pkgk)(Ppgj + MkYk)

We can show that

~ <~!~ k=1 M
(/ijgj + pkgk)(p,g, + Pk~k) #k

Then

~i > (~j — jt~) (i — ~ = (p~ — Mp)(l — P) > 0.

In the case when p3 = p~ and gj = gp, then [zj — = 0.

Then we have proved the following:

If gj=gp/sj=pp, then /ty=/p,

If gj=gp/~Lj>/4p, then fhj>/Ap,

If gj≥gppj≥pp, ~≤1—p, then fLi≥btp.

Setting p — j 1 and recalling that Mi ... ≥ MM, we get that ~ãi ≥ pa... ≥ PM is true when

~‘ ≤ 1 — p for every i = 1,..., M — 1. That proves the statement of Lemma 4.7.
Returning back to the main Theorem 4.1, Lemma 4.7 gives condition (4.5) as a restriction

on system parameters.

Let us notice that if for the job classes i and i + 1 < 1 — p, then setting the weights

for these classes equal, still ~tj ≥ ~ This condition gives us as a result Remark 4.3 and

Remark 4.1.

Lemma 4.8

Ai1≥A2>...>ZA,~, r—1,...,M.

Proof. Let us recall A = M’AM(E D) 1 and let us fix r in the following proof. Let us

define
x

f ~ — L.1i1 p,(x+iz,g,) — hi(x)~

66 Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

> 0. Then ~ A~j =where hi(x) = E~Z~ > 0, and h2(x) = Ej=r+i pj(x+~3gj)

faUtjg~). To prove the statement of the Theorem it is enough to show that the function f3(x)
is increasing in x. For that it is enough to show that > 0. Let us consider

dx -

dfa(x) — h~(x)(1 p
dx — 1—p+hi(x h2(x))2

We can show that

r liii ~2 (PIth —

≥ 0,hI(x)h2(x) — hi(x)h~(x) = E ~ + pjgj)2(x + Pkgk)2JLkILi

1=1 k=r+1

as pjgj ≥ /Apgp, j ≤ p. Since h(x) > 0 and i—p > 0, then 5~1~ ≥ 0, f3(x) is an increasing

function of x and we prove the statement of Lemma 4.8.

XrPUacRIV 2 fr

Chapter 4: Comparison of the Discriminatory Processor Sharing Policies

CHAPTER 5

OPTIMAL POLICY FOR MULTI-CLASS

SCHEDULING IN A SINGLE SERVER QUEUE

5.1 Summary

In this chapter we apply the Gittins optimality result to characterize the optimai scheduling
discipline in a ~~ti classM G 1 queue. We apply the general result to several cases of practical
interest where the s rvice time distributions belong to the set of DHR distributions, like Pareto
or hyper-exponential. When there is only one class it is known that in this case the LAS policy

is optimal. We show that in the multi-class case the optimal policy is a priority discipline, where
jobs of the various classes depending on their attained service are classified into several priority
levels. Using a tagged-job approach we obtain, for every class, the mean conditional sojourn

time. This allows us to compare numerically the mean sojourn time in the system between the
Gittins optimal and popular policies like PS, FCFS and LAS.

Our results may be applicable for instance in an Internet router, where packets generated

by different applications must be served or service is non-preemptive. Typically a router does
not have access to the exact required service time (in packets) of the TCP connections, but it
may have access to the attained service of each connection. Thus we implement the Gittins’
optimal algorithm in NS-2 and we perform numerical experiments to evaluate the achievable
performance gain.

70 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

5.2 Introduction

We are interested to schedule the jobs in the M C 1 queue with the aim to minimize the
mean sojourn time in the system as well as the mean number of jobs in the system. In our

study we restrict ourselves to the non-anticipating scheduling policies. Let us recall that the
policy in non-anticipating if it does not use information about the size of the arriving jobs. In

jGit89l Gittins considered an M/G/1 queue and proved that the so-called Gittins index rule
minimizes the mean delay. At every moment of time the Gittins rule calculates, depending

on the service times of jobs, which job should be served. Gittins derived this result as a
byproduct of his groundbreaking results on the multi-armed bandit problem. The literature
on multi-armed bandit related papers that build on Gittins’ result is huge (see for example
[VWBS5, WhiS8, Web92, Tsi93, DGNM96, FW99, BNMOO]). However, the optimality result of
the Gittins index in the context of the M/G/1 queue has not been fully exploited, and it has
not received the attention it deserves.

In the present work we generalize the Gittins index approach to the scheduling of the multi-
class M/G/1 queue. We emphasize that Gittins’ optimality in a multi-class queue holds under
much more general conditions than the condition required for the optimality of the well-known

cu-rule. We recall that the cp-rule is the discipline that gives strict priority in descending or
der of ck4uk, where ck and ~ refer to a cost and the inverse of the mean service requirement,
respectively, of class k. Indeed it is known (see for example [BVW85, SY92, NT941) that the

cu-rule minimizes the weighted mean number of customers in the queue in two main settings: (i)
generally distributed service requirements among all non-preemptive disciplines and (ii) expo
nentially distributed service requirements among all preemptive non-anticipating disciplines. In
the preemptive case the cu-rule is only optimal if the service times are exponentially distributed.
On the other hand, by applying Gittins’ framework to the multi-class queue one can charac
terize the optimal policy for arbitrary service time distributions. We believe that our results
open an interesting avenue for further research. For instance well-known optimality results in a
single-class queue like the optimality of the LAS discipline when the service times are of type

decreasing hazard rate or the optimality of FCFS when the service time distribution is of type
New-Better-than-Used-in-Expectation can all be derived as corollaries of Gittins’ result. The
optimality of the cu-rule can also easily be derived from the Gittins’ result.

In order to get insights into the structure of the optimal policy in the multi-class case
we consider several relevant cases where the service time distributions are Pareto or hyper

exponential. We have used these distributions due to the evidence that the file size distributions
in the Internet are well presented by the heavy-tailed distributions such as Pareto distributions
with the infinite second moment. Also it was shown that the job sizes in the Internet are

well modelled with the distributions with the decreasing hazard rate. We refer to [NMM98,

5.3 Gittins policy in multi-class Mb/i queue 71

CB97, WilOll for more details on this area, see also Subsection 1.1.3. In particular, we study
the optimal multi-class scheduling in the following cases of the service time distributions: two
Pareto distributions, several Pareto distributions, one hyper-exponential and one exponential

distributions. Using a tagged-job approach and the collective marks method we obtain, for
every class, the mean conditional sojourn time. This allows us to compare numerically the

mean sojourn time in the system between the Gittins optimal and popular policies like PS,
FCFS and LAS. We find that in a particular example with two classes and Pareto-type service
time distribution the Gittins’ policy outperforms LAS by nearly 25T under moderate load. We
demonstrate that in particular cases the PS has much worse performance than the Gittins policy.

Th~om an application point of view, our findings could be applied in Internet routers. Imagine
that incoming packets are classified based on the application or the source that generated them.

Then it is reasonable to expect that the service time distributions of the various classes may
differ from each other. A router in the Internet does not typically have access to the exact
required service time (in packets) of the TCP connections, but it may have access to the attained
service of each connection. Thus we can apply our theoretical findings in order to obtain the
optimal (from the connection-level performance point of view) scheduler at the packet level. We
implement the Gittins’ scheduling in the NS 2 simulator and perform experiments to evaluate

the achievable performance gain.

The structure of the chapter is as follows: In Section 2 we review the Gittins index policy
for the single-class M/G/1 queue and then provide a general framework of the Gittins index
policy for the multi class M/G/1 queue. In Section 3, we study the Gittins index policy for the
case of two Pareto distributed classes. In particular, we derive analytic expressions for the mean
conditional sojourn times, study various properties of the optimal policy, provide numerical
examples and NS-2 simulations. At the end of Section 3 we generalized the results to multiple
Pareto classes. In Section 4 we study the case of two distributions: one distribution being
exponential and the other distribution being hyper-exponential with two phases. For the case of
exponential and hyper-exponential distributions, we also obtain analytical results and provide

numerical examples. Section 5 concludes the chapter.

5.3 Gittins policy in multi-class M/G/1 queue

Let us first recall the basic results related to the Gittins index policy in the context of a
single-class M/G 1 queue.

Let H denote the set of non-anticipating scheduling policies. Popular disciplines such as PS,
FCFS and LAS, also called FB, belong to H. Important disciplines that do not belong to U are
SRPT and Shortest Processing Time (SPT).

We consider a single-class M/G/1 queue. Let X denote the service time with distribution

72 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

P(X < a,) = F(x). The density is denoted by f(x), the complementary distribution by P(x) =

1— F(x) and the hazard rate function by h(x) = f(x)/P(x). Let r(~), ~ € fl denote the mean
conditional sojourn time for the job of size x in the system under the scheduling policy it, and

7, it C II denote the mean sojourn time in the system under the scheduling policy it.

Let us give some definitions.

Definition 5.1 For any a, A ≥ 0, let

J(aA)= fo~sf@+t)~t — F(a)F(a+A) (5.1)
J0 F(a+t)dt f0 Fa t)dt

For a job that has attained service a and is assigned A units of service, equation (5.1) can be

interpreted as the ratio between (i) the probability that the job will complete with a quota of

A (interpreted as payoff) and (ii) the expected processor time that a job with attained service

a and service quota A will require from the server (interpreted as investment). Note that for

every a> 0

J(a,0) = =

F(a)
J(a.oo)= f0°°P(a+t)dt = 1/E[X—aIX > a.

Note further that J a, A) is continuous with respect to A.

Definition 5.2 The Gittins index function is defined by

G(a) = sup J(a, A), (5.2)

for any a ≥ 0.

We call G(a) the Gittins index after the author of book jGit89j, which handles various static

and dynamic scheduling problems. Independently, Sevcik defined a corresponding index when

considering scheduling problems without arrivals in ISev74I. In addition, this index has been

dealt with by Yashkov, see FYas92l and references therein, in particular the works by Klimov

[K1i74, K1i78].

Definition 5.3 For any a ~ 0, let

A(a) = sup{A ≥ 0 I J(a, A) = G(a)}. 5.3)

By definition, G(a) — J(a,A*(a)) for all a.

5.3 Gittins policy in multi-class M/G/1 queue 73

Definition 5.4 The Gittins index policy lrg is the scheduling discipline that at every instant
of time gives service to the job in the system with highest G(a), where a is the job’s attained
service.

Theorem 5.1 The Gittins index policy minimizes the mean sojourn time in the system between
all non-anticipating scheduling policies. Otherwise, in the M/G/1 queue for any it C 11,

ro ≤r.

Proof. See [Git89.

Note that by Little’s law the Gittins index policy also minimizes the mean number of jobs
in the system.

We generalize the result of Theorem 5.1 to the ease of the multi-class single server queue.
Let us consider a multi-class M/G/1 queue. Let X~ denote the service time with distribution
P(X, ≤ x) = F~(x) for every class i = 1,. . . , M. The density is denoted by f1(x) and the

complementary distribution by Fj(x) = I — F1(x). The jobs of every class-i arrive with the
Poisson process with rate .X~, the total arrival rate is A = Z~L1 A~. For every class i = 1,..., M

we define J1(a, A) = and then the Gittins index of a class-i job is defined as G~(a) =
Jo F,(a+t)dt

sup~>0 J~(a, A).

The mean conditional sojourn time T, (x) for the class-i job of size x, i — 1,..., M, and the
mean sojourn time r in the system under the scheduling policy iv C H are defined as in the
previous section.

Proposition 5.1 In a multi-class M/G/1 queue the policy that schedules the job with highest
Gittins index C, a , i = 1,. .. , M in the system, where a is the job’s attained service, is the
optimal policy that minimizes the mean sojourn time.

Proof. The result follows directly from the application Gittins Index Definition 5.2 and The
orem 5.1 to a multi class M/G/1 queue.

Let h~(x) — f,(x)/P~(x) denote the hazard rate function of class i — 1,. .. ,M. Let the
service time distribution of class-i have a decreasing hazard rate. It is possible to show, see

IAAO7I, that if h~(x) is non-increasing, the function J~(a, A) is non-increasing in A. Thus

G~(a) = J~(a,O) = h,(a). (5.4

As a consequence we obtain the following proposition.

Proposition 5.2 In a multi-class M C 1 queue with non-increasing hazard rat j’functions
h~(x) for every class i = 1,. . . , M, the policy that schedules the job with highest h,(a), i

74 Chapter 5: Optimal policy For multi-class scheduling in a single server queue

1,. , M in the system, where a is the job’s attained service, is the optimal policy that minimizes

the mean sojourn time.

Proof. Follows immediately from the Gittins policy Definition 5.4, Proposition 5.1 and equa
tion (5.4).

The policy presented in Proposition 5.2 is an optimal policy for the multi-class single-server
queue. Let us notice that for the single class single server queue the Gittins policy becomes
a LAS policy, as the hazard rate function is the same for all the jobs and so the job with the
maximal value of the hazard rate function from attained service is the job with the least attained
service. When we serve the jobs with the Gittins policy in the multi-class queue to find a job
which has to be served next we need to calculate the hazard rate of the attained service of every

job in the system. The job which has the maximal value of the hazard rate function from it’s
attained service is served the next.

Now let us consider several subcases of the described general approach. Depending on the
behavior of the hazard rate functions of the job classes the policy is different. We consider the

case with two job classes in the system and two subcases: a) both lob classes are distributed
with Pareto and the hazard rate function)do not cross and (b) job size distributions are hyper
exponential with one and two phases and they cross at one point. Then we extend the case of
two Pareto job classes to the case of N Pareto job classes. We provide the analytical expressions
for the mean conditional sojourn times in the system and numerical results. We implemented
the algorithm for the case of two Pareto classes with the NS-2 simulator on the packet level.

5.4 Two Pareto classes

Let us first present the case when job sizes are distributed according to Pareto distribution.

5.4.1 Model description

We consider the case when the job size distribution functions are Pareto. We consider the
wo-class single server M/G/1 queue. The jobs of each class arrive to the server with Poisson

process with rates Ai and A2. The job sizes are distributed according to the Pareto distributions,
namely

F,(x) = 1 — ~ i 1,2. (5.5)

Here b~ = m1(c2 — 1), where m~ is the mean of class-i, i — 1,2. Then f~(x) = b~c~/(x + b~)c~4.1,

i — 1,2 and the hazard rate functions are

h~(x)= (x+b1)’ i=1,2.

(c1_c)Y c_i~~ _c1I~

kit,

5.4 Two Pareto classes

high—priority queue LAS
U

~~c~j1
ow—priority queue Gittins

h,(z)
1i2(x) I I I

() 1 ________ ___________

Figure 5.1: Two Pareto classes, hazard rates Figure 5.2: Two Pareto classes, policy scheme

Th~function~cross at the point

— c2b1 — c1b2
Cl — C2

Without loss of generality suppose that c1 > c2. Then the behavior of the hazard rate functions

depends on the values of b1 and b2. Let us first consider the case when the hazard rate function

do not cross, so a** <0. This happens when bi/b2 <ci/c2. Then the hazard-rate functions are

decreasing and never cross and hi(x) > h2(x), for all x ≥ 0.

Let us denote 9 and function g(x) in the following way that

hi(x) — h2(g(z)), hi(S) = h2(O).

We can see that g 6 0. For given expressions of h~(x), i = 1,2 we get

C2 c1b2 — c2bjg(x)— (x+bi)—b2, 9=
Cl C2

According to the definition of function g x , the class 1 job of size x and the class-2 job of size

g(x) have the same value of the hazard rate when they are fully served, see Figure 5.1. Then

the optimal policy structure is the following. The optimal policy scheme is given on Figure 5.2.

5.4.2 Optimal policy

The jobs in the system are served in two queues, low and high priority queues. The class-i

jobs which have attained service a < 9 are served in the high priority queue with LAS policy.

When the class-i job achieves 9 amount of service it is moved to the second low priority queue.

76 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

The class-2 jobs are moved immediately to the low priority queue. The low priority queue is
served only when the high priority queue is empty. In the low priority queue the jobs are served
in the following way: the service is given to the job with the highest h~(a), where a is the job’s
attained service. So, for every class-i job with a attained service the function hi(a) is calculated
for every class-2 job with a attained service the function h2(a) is calculated. After all values of
h a are compared attd the job which has the highest h~(a) is served.

Now let us calculate the expressions of the mean conditional sojourn time for the class-i and

c ass-2 jobs.

5.4.3 Mean conditional sojourn times

Let us denote by indices fj(’) and (2) the values for class-i and class-2 accordingly.

Let us define as the n-th moment and be the utilization factor for the distribution
F1(x) truncated at y for i = 1,2. The distribution truncated at y equals to F(x) for x ≤ y and

equals to 1 when x > y. Let us denote W,,~, the mean workload in the system which consists
only of class-i jobs of size less than x and of class-2 jobs of size less than y. According to the
Pollaczek-Khinchin formula

-~
Now let us formulate the following Theorem which we prove in the Appendix.

Theorem 5.2 In the two-class M/G/i queue where the job size distributions are Pareto, given

by (5.5), and which is scheduled with the Gittins policy described in Subsection 5.4.2, the mean

conditional sojourn times for class-i and class-2 jobs are

Tl(x)=X+~T~0, x<8, (5.6

— Px

Tj(x) = X +Wx,g(x) , ~ ≥ e, (5.7)
1Px P9(x)

g~r) + Wx,g(x)
T2(g(x)) = (1) (2) x ≥ 8. (5.8)

‘Pr P9(r)

Proof. The proof is very technical and is given in the Appendix. Let us give a very general
idea of the proof. To obtain expressions (5.7), (5.8) we use the fact that the second low priority
queue is the queue with batch arrivals. To obtain expressions of the mean batch size with
and without the tagged job we apply the Generating function analysis using the method of the
collective marks. I

9

5.4 Two Pareto classes 7 77

The obtained expressions (5.6), (5.7 d (5.8 can be interpreted using the tagged-job and
mean value approach. /

Let us consider class-i jobs. For t b of size x <8 the mean conditional sojourn time is
known, [Kle76a, Sec. 4.61, Tj(x) = ~ x <6, where W ,o is the mean workload and is
the mean load in the system for cl s-i job of sizefrj The mean workload W,,,o and mean load

consider only the jobs of the high priority que~ of class-i.

For the jobs of size x > 6 the expression (%g~ can be presented in the following way,
Ti(x) = x + W~9(~) + Ti(x)(p~’~ + P~))~ where/

• x is time which is actually spent to serve the job;

• W~,9(~) is the mean workload which the tagged job finds in the system and which has to

be processed before it;

• Ti(x)(p~,~ + P~)) is the mean time to serve the jobs which arrive to the system during

the service time of the tagged job and which have to be served before it.

Let us provide more explanations. Let us find the expression for the mean workload in the
system for the class-I job of size x, which is the tagged job. According to the PASTA property

N of Poisson arrivals, all jobs arriving to the system see the system in the same steady state. So,
class-i and class-2 jobs see the same mean workload in the system when they arrive. As we need
to take into account only the mean workload which is served before the tagged job, then for
each job the mean workload Wxg(x) depends on the size of the tagged job, x. The jobs which
have to be served before the tagged job of class-i of size x are the class-i jobs of size less than
x and class-2 jobs of size less than g(x). Then using Pollaczek-Khinchin formula (5.6) for the
class-i jobs of size less than x and class-2 jobs less than g(x) we conclude that W~9(~) gives

the mean workload in the system for the class-i job of size x, which has to be done before it.
Let us notice that the mean workload in the system for the class-2 job of size g x) is the same,

Now let us find the mean workload which arriv~ during the service time of the tagged job. /~
The service time of the tagged job is T1(x). The mean load of jobs arrival to the system is:
for the class-i of size less than x is .A1X4~’~ = and for the class-2 with size less than g(z)

is = ~ Then T1(x)(p~’ + P~~) is the mean workload which arrive during the
service time of the tagged job of class-i of size x.

Now we use the similar analysis to givet4’nterpretation to the expression of T2(g(x)) for
the class-2 job of size g(x). We can rewrite expression (5.8) in the following way T2(g(x))

g(x) + W~9(~) + T2(g(x))(p$P + P~).

In the case of the tagged job of class 2 of size g x) the jobs which have to be served before
the tagged job are jobs of class-i of size less than x and jobs of class-2 of size less than g(x).

78 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

Then in the previous expression g(x) is the time to serve the class-2 job of size g(x); ~f~9

the mean workload in the system for the class-2 job of size g(x) which has to be served before it

+ is the mean work which arrives during the service time T2(x) and which
has to be served before class-2 job of size g(x).

Let us describe several properties of the optimal policy.

&4.4 Properties of the optimal policy

Property 5.1 When the class-2 jobs arrive to the server they are not served immediately, but

wait until the high prtority queue is empty. The mean waiting time is the limit lim9 ~ —o T2(g(x)).

As 1im~_.9g(x) —0, then

-~U)
1479,0 ________lim T2(g(x)) = = m

g(x)—O i—p~’ (i—p~~)2

Let us notice that

9+14~9,0lim T2(g(x)) ≠ Ti(O) = (1)
g(x)—O 1 — p9

That means that the mean waiting time of the class-2 jobs is not equal to the time which the

parts of the class-i jobs of size more than 0 wait in the system before start to be served.

Property 5.2 Let us consider the condition of no new arrival. According to the optimal policy

structure in the low priority queue the jobs are served according to the LAS policy with different

rates, which depend on the number of jobs in each class and hazard rate functions. For the case

when there are no new arrivals in the low priority queue we can calculate the rates with which

the class-i jobs and class-2 jobs are served in the system at every moment of time. We consider

that all the class-i jobs and all the class-2 jobs already received the same amount of service. Let

n1 and n2 be the number of jobs in class-i and class-2 and let x1 and x2 be the attained services

of every job in these classes. Then at any moment

hj(xi) — h2(x2).

If the total capacity of the server is A, then let A~ and A2 be the capacities which each job of

class-i and class-2 receives. Then

,i1A1 + n2A2 = A.

Also

hi(xi Ai) — h2(x2 + A2).

4 Two Pareto classes 79

As A is very small (and so as well A~ and A2) according to the LAS policy, then we can

approximate

h~(x + A~) = ht(x) + A1h~(x), i = 1,2.

Then from the previous equations we have

Iàih’1(xi)=A2h’2(x2). ~

Then

h~(x1)
A —

A2 h(x1)
A nih~(x2)+n2h~(xi)~

This result is trite for any two distributions for which the hazard rates are decreasing and never

cross. For the case of two Pareto distributions given by (5.5) we have the following:

A1 c2 A~
A njc2+n2c1’ A nic2+n2ci~

So, for the case of two Pareto distributions the service rates of class-I and class-2 jobs do not

depend on the current jobs’ attained services.

Property 5.3 As one can see from the optimal policy description, the class-I and class-2 jobs

quit the system together if they have the same values of the hazard rate functions of their sizes

and if they find each other in the system. According to the definition of the g(x) function we

can conclude that the class-i job of size x and class-2 job of size g(x), if they find each other

in the system, quit the system together. But these jobs do not have the same conditional mean

sojourn time,

Ti(x) 0 T2(g(x)).

Let us prove this fact formally. Let r1 (xl?) be the sojourn time of class-i job of size x, given
the sample-path P. By sample-path we understand the jobs (and their residual service times
present when the job arrives, and also all the future arrivals and service times. It holds that:

ri(x P) 0 r2(g(x) P). (5.9

This is true as if we consider P~ the sample-path such as the system is empty and there is no
arriving jobs during the serving time. Then ri(xIPi) x and r2(g(x) Pi g x), so they are
not equal at least on one sample path. The probability that the sample-path Pi takes place is
non-zero. That proves (5.9).

80 Chapter 5: Optimal policy for multi-class sched uhng in a single server queue

—7

NI

By unconditioning on the sample-path that the job finds upon arrival, we can define the

mean conditional sojourn time as:

Ti(x) = f r1(x P dFj P), (5.10)
PEQ

where dF1(P) is the probability that the sample path upon arrival isP C Q equals to all possible

sample-paths. Similarly

T2(g(x)) - f r2(g(x)IP)dF2(P). (5.11)

of Poisson arrivals, job arrivals see the steady state of the system,

class-2 jobs see the same system upon arrival. This implies that

Now, in view of 5.9 this implies that Ti x ~ 7’2 g x , which

5.4.5 Two Pareto classes with intersecting hazard rate functions

Figure
rates

Now let us consider the case when the hazard rate function cross then a**

cib2)/(ci —c2) ≥ 0, see Figure 5.3. As we considered c1 > c2, the~6i 7<h2cO and then class-

2 jobs are served in the high priority queue until they receive 8 = (cib2 — c2b~)/c2 amount of

service. Here 8* is such that h2(9*) = h1(0) and g(9*) = 0. In this case the g(x) function crosses

the y = x function at point a**, see Figure 5.4, and so in the low priority queue the class-2 jobs

are served with higher priority with comparison to the class-i jobs until they receive a” amount

of service. After class-i and class-2 jobs received a** amount of service the priority changes and

Now, by the PASTA property

which means that class-i and

dFi(P) = dF2(P), for all P.

proves the property.

h1 (0)
U

0~
Iii(x)

9_ (C. x 9(1)

5.3: Two Pareto extension classes, hazard

3:

Figure 5.4: Two Pareto extension classes, g(x)
function behavior P,~. rt2 ~..

(c2bj —

5.4 Two Pareto classes 81

class-i jobs receive more capacity of the server in the system. According to this analysis we

can rewrite the expressions of mean conditional sojourn times of Section 5.4 Theorem 5.2 in the

following way

Corollary 5.1 In the two-class M G 1 queue where the job size distributions are Pareto, given

by (5.5) such that the hazard rate functions cross, and which is scheduled with the Gittins optimal

policy, the mean conditional sojourn times for class-i and class-2 jobs are

Ti(x) — x + W~,9(~)
— (1) (2) x≥O,lPx Pg(s)

x+W~
x <8*,T2(x) (2)

1 — Px
g(x) + W~,9(,,)

T2(g(x)) = — (1) (2) x ≥ 8*.
—

Proof. The proof follows from the previous discussion.

5.4.6 Numerical results

— - - PS
— — LAS

— Gittins

I

Figure 5.5: Two
times comparison, V

Pareto classes, mean sojourn Figure 5.6: Two Pareto classes,
times comparison, V2

mean sojourn

We consider two classes with parameters presented in Table 5.1. We provide the results for

two different parameters sets, which we call V1 and V2

~y “~ ~

~

0.5

0.45

0.4

0.35

0.3

0.25

02

0.15 — —

0.1

0.05

0.55 0.5 0.65 0.7 0.75 0.8 0.85 03 0.95

8 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

Table 5.1: Two Pareto classes •arameters
flflflamnwflfl

0.4. .0.85 0.5..0.95

0.06.0.74 0.31.0.99

It is known that in the Internet most of the traffic is presented by the large files (80%),
while most of the files are very small (909~). This phenomenon is referred to as “mice-elephant”
effect. Also it is known that the file sizes are well presented by the heavy-tailed distributions like

Pareto. Here the class-i jobs represent “mice” class and class-2 jobs “elephants”. We consider
that the load of the small files is fixed and find the mean sojourn time in the system according
to the different values of the “elephant” class arrival rate.

We compare the mean sojourn time for the Gittins policy, PS, FCFS and LAS policies.
These policies can be applied either in the Internet routers or in the Web service. The expected
sojourn times are

TPS_ PA
1 p

TFCFS = p/A +~

here ~ means the total mean unfinished work in the system.

7LAS = 1 fT_~Sfl(Af() + A2f2(xfldx,

where

LAS
T (x) = (1) (2)

1Px Px

The results are presented on Figures 5.5,5.6. For the results of 172 we do not plot the mean

sojourn time for the FCFS policy as class-2 has an infinite second moment. As one can see
Gittins policy minimizes the mean sojourn time. In particular, it outperforms the LAS policy
by almost 25 — 309’ when the system is loaded by around 90%. We note that surprisingly the
PS policy produces much worse results than the LAS and Gittins policies.

5.4.7 Simulation results

We implemented Gittins policy algorithm for the case of two Pareto distributed classes with
NS-2 simulator. The algorithm is implemented in the router queue. In the router we keep the
trace of the attained service for the flows in the system. We keep the trace during some time
interval after which there are no more packets from the flow in the queue.

5.4 IWo Pareto classes

It is possible to select the packet with the minimal sequence number of the flow which has
to be served instead of selecting the first packet in the queue. In the current simulation this
parameter does not play a big role according to the selected model scheme and parameters.
(There are no drops in the system, so there are no retransmitted packets. Then all the packets
arrive in the same order as they were sent.)

The algorithm which is used for the simulations is as follows:

Algorithm

on packet dequeue
select the flow f with the max hj(af), where

af is the flow’s attained service
select the first packet Pf of the flow f in the queue
dequeue selected packet Pf
set af a~ + 1

To compare Gittins policy with the LAS policy we also implemented LAS algorithm in the
router queue. According to the LAS discipline the packet to dequeue is the packet from the flow
with the least attained service.

The simulation topology scheme is given in Figure 5.7. The jobs arrive to the bottleneck
router in two classes, which represent mice and elephants in the network. The jobs are generated
by the FTP sources which are connected to TCP senders. The file size distributions are Pareto,

Figure 5.7: NS-2 simulation scheme.

84 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

Lu
F~ = 1 — b7/(z + b~)c , i 1,2. The jobs arrive according to the Poisson arrivals with rates A1
and A2. For the simulations we selected the scenario described in Subsection 5.4.5.

We consider that all connectio have the same propagation delays. The bottleneck link
capacity is p. The simulation run time is 2000 seconds. We provide two different versions
of parameters selection, which we call Vs1 and Vs2. In Vsi first class takes 259’ of the total
bottleneck capacity and in Vs2 it takes 50%.

The parameters we used are given in Table 5.2.

Table 5.2: Two Pareto classes simulation •arameters

aflfl.usnu,.flflfl
n0000000

The results are given in Table 5.3. We provide results for the NS-2 simulations and the
values of the numerical mean sojourn times with the same parameters. We calculate the related

—DT —Gift
gain of the Gittins policy in comparison with DropTail and LAS policies, g~ = T and

=

Table 5.3: Mean sojourn times
—Lii —LAS —(JUt

Ver. T T T g2

Vs1 NS-2 18.72 2.10 2.08 88.89% 0.95%

Vs1 theory PS: 4.71 1.58 1.01 78.56% 36.08%

Vs2 NS-2 6.23 2.03 1.83 70.63% 9.85%

Vs2 theory PS: 6.46 3.25 2.19 66.10% 32.62%

We found that with the NS-2 simulations the gain of the Gittins policy in comparison with
LAS policy is not so significant when the small jobs do not take a big part of the system load.
As one can see in Vs2 when the class-i load is 50% the related gain of the Gittins policy in
comparison with LAS policy is 10%. In both versions the relative gain for the corresponding
analytical system is much higher and reaches up to 36%. We explain this results with the

phenomena related to the TOP working scheme.

5.4.8 Multiple Pareto classes

We consider a multi-class single server M/G/i queue. The jobs arrive to the system in N
classes. Jobs of i-th class, i — 1,..., N arrive according to the Poisson arrival processes with
rates A,. Jobs size distributions are Pareto, namely

F~(x)=1— 1 i—1,...,N.
(z + 1)ci

5.4 TWo Pareto classes 85

1-priority queue

°I.2

Figure 5.8: N Pareto classes, hazard rates

Then, the hazard rates

Figure 5.9: N Pareto classes, policy scheme

Cj

(x+i)’

never cross. Without loss of generality, let us consider that c1 >

the values of 0~,, and gj,j(x), i,j — 1,... ,N in the following way

=

h1(x) =

c2 > ... > cjv. Let us define

Then we get

c1
gj,j(x) = —(x + 1), 8i,j = — — 1.

C, cj

Let us notice that 0k,j < Ok,i+I and 81,k > 8i4-1,k, k = i,...,N, i = i,...,N—i, i$ k,i 0 k+i,

see Figure 5.8.

The optimal policy is the following. The scheme of the optimal policy is given on Figure 5.9.

Optimal policy.

There are N queues in the system. The class-i jobs arrive to the system and go to the

first-priority queue-i. There they are served until they get 81,2 of service. Then they are moved

to the queue-2, which is served only when the queue-i is empty. In the queue-2 the job of class-i

are served with the jobs of class-2 with the Gittins policy. When the jobs of class-i attain service

O1,3 they are moved to the queue-3. When the jobs of class-2 attain service 823 they are also
moved to the queue-3. And so on.

I,
I,
clns-2

.IoI,s I _______

2-pr,oiity queue Gittin.s

ru;2

y

elas.

I I

I__
II - - queue

. .

86 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

To find the expressions for the mean conditional sojourn times in the system we use the
analysis which we used in interpretation of the mean conditional sojourn times expressions in
the case of two class system, see Sectio For job of every class its mean conditional sojourn
time consists if the time which is spent to serve the job when the system is empty, the mean
workload in the system which has to be done before the tagged job and the mean workload
which arrives during the service time of the tagged job and has to be served before it.

Let the tagged job be from class-i of size x. The jobs which have the same priority in the
system and which have to be served before the tagged job are: class-i jobs of size less than x,
class-i jobs of size less than gi,,(x).

We denote X~N the n-th moment and the utilization factor for the distribution F~(x)

of the class-i, j = 1,.. . , N truncated at x. The mean workload in the system which has to be
done before the tagged job is then found with Pollaczek-Khinchin formula and equals to

rN ~ v2
TI? £_.tz—1 f”1’gj(x)

9 N X — N2(1 — Pg1,~(x))

Then we formulate the theorem.

Theorem 5.3 For the class-i jobs of size x such as 81,p < X < 8I,p+I, p — 1,... ,N and

corresponding class-k jobs with sizes gl,k(x), k = 2, . . . , N the mean conditional sojourn times

are given by

— z + W(x,gi,2(x),. . . ,g~(x))

— 1 — pj(x) — p2(gl,2(x)) — ... — pp(gl,p(X))’

gl,k(x) + W(x,g12(x),...
= 1 —pj(x) —p2(gI,2(x)) — ... Pp(gi,p(X))’

/ where 01,p <x < Oi~i and we consider that 8iN+I = ~, i — 1,..., N.

Proof. It is similar to the proof of Theorem 5.2.

5.5 Hyper-exponential and exponential classes

We consider two class M/G/1 queue. The jobs of each class arrive with the Poisson arrival
process with rates)q and A2. The job size distribution of class I is exponential with mean 1/pi,
and hyper-exponential with two phases for class-2 with the mean p~p 1 p)/’2)/(p2p3).

Namely,

Fj(x) = 1_e_I~~X, P2(x) = 1 pe P2X_(1 _p)e_tL3X. (5.12)

5.5 Hyper exponential and exponential classes 87

Figure 5.10: Exponential and HE classes, hazard Figure 5.11: Exponential and HE classes, policy
rates. description.

Note that the hazard rates are

hj(x) = ~i, h~(x) = x ≥ 0.

The hazard rate function of class-i is a constant and equals to h1 = j’j. The hazard rate function

h2(x) of the class-2 is decreasing in x. As both hazard rate functions are non increasing the
optimal policy which minimizes the mean sojourn time is Gittins policy based on the value of

the hazard function, which gives service to the jobs with the maximal hazard rate of the attained

service.

For the selected job size distributions the hazard rate functions behave in different ways
depending on parameters iti, P2, P3 and p. The possible behaviors of the hazard rate functions

determine the optimal policy in the system. If the hazard rate functions never cross, the hazard

rate of class-i is higher than the hazard rate of class-2, then the class-i jobs are served with

priority to class-2 jobs. This happens when h1 > h2(x), x C (0, oo). As h2(x) is decreasing, then

this happens when p~ > h2(0). Let us consider that /22 > p~, then as h2(0) — pp2 + (1 p)p~
and ~ > h2(O) if p’ > jz~ > p~. For this case it is known that the optimal policy is a strict
priority policy, which serves the class-i jobs with the strict priority with respect to the class-2

jobs. From our discussion it follows that this policy is optimal even if /22 > ~ > /23, but still

I” > PP2 + (1 — p)p~.

Let us consider the case when /22 > ~ > ps and Ui < p/~2 + (1 — p)p~. Then it exists the

unique point of intersection of h2(x) and hi. Let us denote a* the point of this intersection.

1z2(z1)

P1

/z2(x2)

x1 <a a4 3,

third-priority queue LAS

88 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

The value of a* is the solution of ~ ~ :;~~~‘ — jt1. Solving this equation, we get that

1 ln(~_P__#2 #1

/‘2 /13 \1—pui ~i3

The hazard rate function scheme is given on Figure 5.10. Then, the optimal policy is the
following.

5.5.1 Optimal policy.

There are three queues in the system, which are served with the strict priority between
them. The second priority queue is served only when the first priority queue is empty and the
third priority queue is served only when the first and second priority queues are empty. The
class-2 jobs arrive to the system are served in the first priority queue with the LAS policy until

they get a amount of service. After they get a* amount of service they are moved to the third
priority queue, where they are served according to the LAS policy. The class-i jobs arrive to
the system and go to the second priority queue, where they are served with LAS policy. Since
h1(x) = /11, class-i jobs can be served with any non-anticipating scheduling policy. The scheme
of the optimal policy is given on Figure 5.11.

According to this optimal policy we find the expressions of the expected sojourn times for
the class-i and class-2 jobs.

5.5.2 Expected sojourn times

Let us recall that the mean workload in the system for the class-i jobs of size less than x and
class-2 jobs of size less than y is W~, and is given by (5.6). We prove the following Theorem.

Theorem 5.4 The mean conditional sojourn times in the M G/i queue with job size distribu

lion given by (5.12) under Gittins optimal policy described in subsection5.5.1 are given by

x + Wxa*
Ti(x) = (1) (2)’ xE [0,~j, (5.13

‘Px Pa.

T2(x) — ~ Wc~x xE [0,a*, (5.14)
1— Ps

a: °°~

T2(x) = (1) ~ y€ (a ,oo). (5.15)
1 PooPx

Proof. To find expressions of the mean conditional sojourn times we use the mean-value
analysis and tagged job approach. The mean conditional sojourn time for the class-i job of size
a: consists of the following elements.

• a:, time need to serve the job itself.

5.5 Hyper exponential and exponential classes 89

• W, mean workload in the system which has to be served before the tagged job.

• Tt, mean time to serve the jobs which arrive to the system during the service time of the

current job and which have to be served before the tagged job.

When the tagged job is a class-i job of size x the jobs which have to be served before it are all

class-i jobs of size x and all class-2 jobs of size less than at. Then the mean workload which the

tagged job finds in the system and which has to be done before it is W = Wx,a~. To find the

mean work which arrive to the system during the service time of the tagged job, which is T1 (z)

we take into account only the jobs which have to be served before it. So, T* = T1 (x)(p~2 +p~).

For the tagged job of class-2 of size x ≤ at the jobs which have to be served before it are

the class-2 jobs of size less than x. Then the mean workload which the tagged job finds in the

system and which has to be done before it is Wo,~ and the mean time to serve the jobs which

arrive to the system during T2(x) is

For the class-2 job of size x > a* the jobs which have to be served before it are all class-i jobs

and class-2 jobs of size less than x. Then the mean workload which has to be done before the

tagged job is ~ and the mean time spend to serve the jobs which arrive during the service

time of the current job is T2(x)(p~2 +

Summarizing the results of the previous discussion we get

Tj(x) = x + W~. + T1~)(p~) + xE [O,~],

T2(x)=y+W0,~±T2~)p~), xE [0,at],

T2(x)=y±W~,~±T2(x)(p~)±p~)) xc(at,oo).

from here we get the proof of the Theorem. I

5.5.3 Numerical results

Let us calculate numerically for some examples the mean sojourn time in the system when

the Gittins policy is used. We consider two classes with the parameters given in Table 5.4. Also

here p = 0.1 and the threshold value is at = 7.16. We compare the obtained results with the

mean sojourn times when the system is scheduled with FCFS, PS and LAS policies, the results

are given on Figure 5.12.

Table 5.4: Ex onential and HE classes simulation arameters

0.4. .0.85 0.5..0.95

0 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

S.5 0.55 0.6 •65 0.7 0.75 0.0 0.05 0.9 W95

7
7- ~ 4.1,Q~. n-i) -

Figure 5.12: Exponential and HE classes, mean sojourn time

5.5.4 Pareto and exponential classes

We can apply the same analysis for the case when class-i job size distribution is exponential
and class-2 job size distribution is Pareto. Let us consider the case when the hazard rate
functions of class-i and class-2 cross at one point.

Let Fi(x) = 1—c MIX and .E2(x) — 1_b2/(x+b2)c2. Then h1 =p.~ and h2(x) — c2/(x+62).

The crossing point is a — c2//.L1 b2. When a ≤ 0 the hazard rate functions do not cross
and then the optimal policy is to give strict priority to the class-i jobs. If at > 0 then the
hazard rate functions cross at one point and the optimal policy is the same as in the previous
section. Then the expressions of the mean conditional sojourn timed of class-i and class-2 are

also (5.13), (5.14) and (5.15).

5.6 Conclusions

In 10it891 Gittins considered an M C/i queue and proved that the so-called Gittins index
rule minimizes the mean delay. The Gittins rule determines, depending on the service times
of jobs, which job should be served next. Gittins derived this result as a by-product of his
groundbreaking results on the multi-armed bandit problem. Gittins’ results on the multi-armed
bandit problem have had a profound impact and it is extremely highly cited. However, and in
despite of the big body of literature on scheduling disciplines in single server queues, Gittins
work in the M/G/i context has not received much attention.

~1 ffl,4 lL)Q~’)d I

(Lrc) ((x)6’~ x)tv +

(912) (i) + T =((x)fi’g X)tv 0°~4j+6 /

vi Jvnb9 X B ~ZZ9

Jo qot ~-ssvjv JOJ 73UV X azis Jo qo~ i scvp .zoj saw u.tno(os ;vuozppucn UVDW 27fJ J~9 emwa’~j

~wwaq Ru!MoIloJ aq~ nejntuioj °M

“u9~aJyjj U! ananb 8u~xuq~ .tosSaoos~ P~7 !4lnN .101 NDO.1u!alx JO OUO T.fl 01 .19!U1!5

sisiCfeuR aq~ asn OM walsiCs 041 U! Sawil usnoros TEUOVIIPUOD weam 044 Jo suorssasdxa aq; puy oj

•swAuse ~-i~i~q 14!M ananb ~ s~ ananb A~isoud M0j 044 uaqj k~dwa 5! ananb £luOud 42!q 04~

uaqM ~C~uo pa.&aas si ananb £4!soisd MOl 011 sananb aq~ uaa~~aq]c4!sOUd P!~;s ~ s~ asaq; pu~

~~4od svi ql!M pa~sas 5! waTp jöijSia ‘wa4sAs 044 Ui sananb OM2 ass asaqi ananb Avsoud

MOl all U! Ofl qD!4M ‘sqol g-ssep ~U2 9 < x saz~s 4ltM sqof t-s~i~ saP!sUOD Sn 20]

(~ç) Aq UOA!2 ~! se

[9t Dos Le9LaIyl] 005 ‘~~~~oui ~! ~ s!ql 0j awn u.inofos WUo!2!pUoD u~aw 044 .IOJ uoissaadxa
044 Os ‘sCD!Iod syrj qlTM ananb ~2!J0!1d q2nq 044 U! ~0AJOS 015 9 > X 0Z!S JO sqo~ 1-~P ~4JJ

(99) pUE

L2) ‘(9Cc) qv& uaA!2 axe ~yç uoiiaasqng U! uaA!2 £040d SUfl4~f) ~ew~do 042 tp!M pajnpaqos
1,9 UO9009 U! paq!nsap wals~(s all u! S~UI; uano[os i o~~puoo uBaw 044 T544 aAoad OM

~ wasoai.~j jo joos~ :x~puadd~

~Xoijod sv~ ~E4l aoauwaopad

iai~aq £pu~ogiu~ns saA!2 ADt{Od SU!fl!9 qD!IM .iapun SUO!1!PUOD 044 0W2!lSaAu! 02 O~{fl PIflOM

0515 0~4\ pa2sn[eAa X11n;aseD aiotxi aq os~u pinoqs 4OU.104~~ 042 O3ffl swals~Cs 15~ U! s4~nsas .zno

~ aq~ sUo!4nqp4s~p awn; aD!AIOSJO sad&~ Jaq;O JOpISUOD Low OM 4315050.1 arn;nj u~

1C3!TOd l!njdosq U044 aouEwso;lad

.xai~aq qauw sapnAOsd ~ £D!lod sv’-i 42!M UosTndwoo U! U!~~ %O1 aAa!qoo uoo Xot1od SUtfltD

wq~ pUflOJ OM slInsa.x uo~yejnw~s eqi 44!M sawaqDs .re1nDpsed [O.IOAOS .IOJ sUo!ye~nw~s paptAosd

pu~ ananb sa;nos 041 U! IcD!lod TEWfldO sUp;!o atp pa;Uawajduz! OM .1oye~nw!s ~9N 2U!Sfl

~Xoi1od SUT4VQ uoq~ aiunwso;sad OSJOM

qonw S04 Sd 041 i(J2Uisud.1ns sasso ninon.wd U! T~4l aleswuowap a~ asea aaAsas-a{2u!s 044 II!

15wqdo aq 04 UMOU~ ~! IDNM ‘svi t~o~; ~a~p L11UEDy!u~!s 1mb Laqod ~ewpdo 041 ‘0~U.1 ~i5ZE4

~Ui~easoap o a~gq sauq; ao!Asas ~ q2noql UOAO ‘yeq~ MOI{S slJnsas snc~ ananb sselo-mrlw ~ U!

auqdnsnp 2Uqnpaqos ~~w~ido 044 OZpal3USUtp 04 L~njod ~St1!V}!f) pasn OAt4 aM 2jiOM wanno 042

UJ 0UO~OUOw 30U 5! UO!4nqrs4s!p 01144 aD!AJas Ot{4 JO O~53 pseroq 042 UO4M Loqod 2U~JnpaqDs

15wfldo 044 0zU04~5n4D 02 pasn aq ~jT~D ADqOd 15u!n!o ~ paaoqs s~oq;no [~ovv] u~

16 g wasoaqj~ Jo JOOJJ :xipuaddy 2 •c

92 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

where a1(x — O,g(xfl/(i — ~~‘)) and c~2(x — 6,g(x))/(i — p~1 are the times spent in the low

priority queue by the class-i and class-2 sobs respectively and qual to

x—6+Ai(x) I1’6
I — P&

ct2(x 9g(~))=~(x)+A2(~(X) 14’b
i — Pt,

where Wt, is the mean workload in the low priority queue which the tagged batch sees when arrive

to the low priority queue, Pb ZS the mean load in the low priority queue and A~(x), — i, 2 are

the mean works which arrive to the low priority queue with the tagged job in the batch.

Proof. Let us consider that the tagged job is from class-i and has a size x > 9. The time it
spends in the system consists of the mean time it spends in the high priority queue. This time
is as it has to be served only with the class-i jobs until it gets 9 amount of service. After

the tagged job is moved to the low priority queue after waiting while the high priority queue
becomes empty. This is the time aj(x)/(i — pr). The time a1(x —9) is the time spent by the
tagged job in the low priority queue. This time consists of the time spent to serve the job itself,
x — 9, of the mean workload in the low priority queue which the tagged job finds, Wt,, of the
mean work which arrives in the batch with the tagged job, A1(x) and of the mean work which
arrive during the service time of the tagged job, ai(x —

We use the same analysis for the mean conditional sojourn time of the class-2 job of size
g(x). I

Now let us find the expressions for the Wt,, pt,, Ai(x) and A2(x). Let us define the truncated
distribution F1,9,~(y) F (y),9 <y < x and Fig,~(y) = O,y < 9,y > x. Let be then th

moment and ~ i = 1,2 be the utilization factor for this truncated distribution. We use this
notation because the jobs of class-i which find themselves in a batch are already served until 9.

Let N~ be the random variable which denotes the number of jobs in a batch of class-i, i = 1,2.
We define as the random variable which denotes the size of class-i job in a batch. Let

(2) . . .

Xg(x) be the random variable which corresponds to the size of the class-2 job in a batch. Then

N, N2

—~ Z-’c~.~
is the random variable which denotes the size of the batch. Let us denote as At, the batch arrival
rate. We know that At, = A~ + A2. According to the previous notations we can write

i’& A~EY~,

here E[Yo] is the mean work that a batch brings and by Pollaczek-IChinchin

At,E[P~,2j
2(1 — Pb)

5.7 Appendix: Proof of Theorem 2 93

Let us note that W& does not depend from which class the tagged job comes. As we know the
first and the second moments of ~ X~,), to find Pb and W6 we need to know the first and
the second moments of N~, i = 1,2. To find this values we we use the method of the Generating
functions, which is described in the following section.

5.7.1 Generating function calculation 4IA~~’ /~
Lemma 5.2 The G nerating function equals to .s ~ U 4/)

A 6 t.
G z , ~ (f ~ (zi z2))_A2x(1_z2)dF1 (x) +

0

z1e A~6(1—Gi(ziz2fl—A26(1—z2)p (9)) + (5.18)

Proof. We propose a two dimension generating function G(zi, z2), which we obtain using
collective marks method. The method of the collective marks is described in [K1e76b, Ch. 71•

Let us mark the jobs in a batch in the following way. We mark the job of class-i with a
probability 1 — zj, then zj is a probability that the job of class-i is not marked. The same is
defined for the jobs of class-2 as z2. Let ~ be the probability that n1 class-i and n2 class-2
jobs arrive in the batch. Then

G(zi,z2) =

iii n2

is a generation function and it gives a probability that there are no marked jobs in the batch.

Let us define as a “starter” or S a tagged job. Let us distinguish the cases when the starter
S belongs to class-i or class-2 and denote by Gi(zi, z2) and G2(zi, z2) the probabilities that
there are no marked jobs in the batch if the starter is from the class-i and class-2. When the
S € class-i, we consider two cases depending on the size of the starter (S ≤,> 6). Then

G(zi,z2) = IUG1(zi,z2),5 ≤ 9] + [Gj(zi,z2),S >9]) +

Let us calculate G1 (zi, z2). When the class-i job arrives to the system it creates the busy period.
Still this job does not receive 9 amount of service the low priority queue is not served. So, the
jobs which arrive to the low priority queue and the jobs which are already in the low priority
queue are waiting and so they create a batch. The probability that there are no marked job in
this batch is G1(zi,z2).

Let the class-i job of size x arrive to the system. Let x ≤ 9. The probability that k1

class-i jobs arrive in the period (O,x) is .Pi(x) = e~1X(Aix?~~/ki!. The probability that all

the batches generated by this arrived k1 jobs of class-i is G1 (zi, z2)’~’, because each of them
generates the batch which does not have marked jobs with probability G~ (zi, z2). During time

94 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

(O,x) the probability that k2 class-2 jobs arrive to the system is P2(x) = e_”23(A2x)?’2/k2!. The
probability that this jobs are not marked is not included in Gi(zi,z2) and equals to 42. Then
we summarize on k1 and k2, integrate on x in (0,6) with dF1 (x), as only the class-I jobs generate
busy periods. We get that the probability that there are no marked jobs in the batch is

[Gi(zi,z2),S ≤ 6] = f~ (~ Pi(x)Gi(zi~z2)~P2(x)4l) dFj(x) —

0 kj=O

p0

= I e_A1X_G1(z1,Z2fl_A2x l_Z2)dFi(x)
Jo

Let class-I job of size x > 6 arrive to the system. The class-i job is first served in the high
priority queue until it gets 6 of service. Then it is moved to the low priority queue. The

probability that ki class-i jobs arrive in the period (0,6) is Pi(6) = e~’6(Ai6 k k1!. The
probability that there are no marked jobs in all the batches generated by this arrived k1 class-i
jobs is C1 (z)’~. The probability that It2 class-2 jobs arrive to the system in the period 0,6) is
P2(6) = e~2S(A26)’~2 k2!. The probability that all this jobs are not marked is ~

We have to take into account the “starter” itself, as it has the size more than 6 and it comes
in the batch. The probability that the starter is not marked is zj. Then we summarize on
and k2, integrate on x on (6, cc) with dFi(x), as only the class-2 jobs generate busy periods.
We get

[Gi(zj,z2),S>6] — f~ (~Pi(6)oi(zi~z2)k1ziP2(e)41) dFi(x) =

— z1e A10 I—Gi(ziz2))—A28(1—z2)p (6).

Let us find 02(zi, z2). When the job of the second class arrives to the system it generates the
batch of size one, then the probability that the jobs of this batch are not marked is z2. Then
02(z1,z2) = Z2.

[G2(zi,z2)] = — z2.

Finally

G(zi,z2) — tdt(zl~22) +

and we get (5.18). Let us notice that G(1, 1) — 1.

Now we can calculate E[N~], E[N2j and so Pb and l47&. After some mathematical calculations
we get the following result.

5.7 Appendix: Proof of Theorem 2 95

Lemma 5.3

1 21 Px —P9~
P6=’—

‘—p9
(1) (1)

Wb=W~9(—W9(1+p6)—8 —~

i—P9

Proof. We use the following equations. For i = 1,2

1 OG(zi,z2)E1N1j = 1,1
azi

— 1)) — E[N~] — E[N~] =

82G(z1, z2)
EN1N2]= Ii,i.

6z18z2

Using b~ = 1 after some mathematical calculations we obtain the result of the current

Lemma.

Now let us find expressions for Ai(z and A2(x).

Lemma 5.4 The mean workload which comes with the tagged job of class-i of size x in the

batch and has to be done before it equals to

A1(x)=2(W9+0p6 9
i PG

Proof. The term Ai(x) is the work that arrives with the tagged job of class-i of size x and
that gets served before its departure. Since the tagged job arrives from class-i only when the

batch is started by a class-i job, the calculations now will depend on G1(z1,z2). We denote

and b2 the mean number of jobs of class-i and class-2 which arrive in the batch with the

tagged job of class I when the batch is initiated by a class-i job. Then

.41(x) + —

Here

n1P(ni) E[N~1]
E[N111]

where N1 1 is the random variable which corresponds to the number of jobs of class-i in the

batch when the batch is initiated by the class-i job. So the number of class-i jobs that arrive

96 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

/E[N2 I
in addition to the tagged job is — 1). Note that since we condition on the fact that

the starter is a class-i job, N111 is now calculated from Gi(zi,z2) so:

8G1 (zi, z2)
= Ozi ~

D2G~(z~, z2)
— i)] = Ii,i.

uZ1uZ1

Then we can find (bi — 1). Now we need to calculate b211, that is, the mean number of class-2
jobs that the tagged job of class-i job see. We have that from the Generating function Gi(zi, z2)

by conditioning on the number of class-i jobs:

Gi(zi,z2) = ZZ4142pni,n2 — ~Ez~t1z~2pn2nipni,

ui n2 ui n2

= E(N1j ~ n2Pn2 nlp,11 — EN1 b2 i.

nl n2

Then we can calculate b2ii

i 82G1(zi,z2)
6211 = E[N111] 0z18z2 1,1

Finally we find the expression for Aj(x). I

Lemma 5.5 The mean workload which comes with the tagged job of class-2 of size g(x) in the
batch and has to be done before it equals to

(2)

A2(g(x)) = 2(W9 + O)Pb — 0 Pg(x) —

i PS

Proof. The term A2(g(x)) is the work that arrives with the tagged job of size g(x) of class-2
and that gets served before its departure. When the tagged job arrives from class-2 the batch
can be started by a class-i or by a class-2 job, so the calculations depend on G(z1,z2). We
denote b1 2 and 62 2 the mean number of jobs of class-i and class-2 which arrive in the batch
with the tagged job of class-2. Then

A2(g(x)) b~ 2E X91,~ + 62 2E[X92~ E[X~,)1 —

— 61 2E X9~ + (622 — i)E[X~,)j.

As the tagged job is from class-2, then 622 — 62. We need to find the value of b~ 2- We use the
fact that the jobs of class-i and class-2 arrive independently from each other.

G(zi,z2) — EZzr = ZZ4l42pn11n2pn2
ui n2 ui n2

5.7 Appendix: Proof of Theorem 2 97

8 G(zi,z2) ____~2Pn2 = Eli’!2 b1 2

0z18z2 ~ = E[N~j ~ ~ E[N2j
nl n2

Then

1 820(zj,z2)
b112 = E[N2] 8z18z2

From here we get the expression for A2(g(x)).

Now we can prove the result of Theorem 5.2.

Lemma 5.6 Expressions (5.16), (5.17) and (5.7), (5.8) are equal.

Proof. After simplification of the expressions (5.16), (5.17) we get equations 5.7 , 5.8

98 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

CHAPTER 6

IMPROVING TCP FAIRNESS WITH THE

MARKMAX POLICY

6.1 Summary

We introduce MarkMax a new flow-aware AQM algorithm for Additive Increase Multiplica
tive Decreases protocols (like TCP). MarkMax sends a congestion signal to a selected connection
whenever the total backlog reaches a given threshold. The selection mechanism is based on the
state of large flows. Using a fluid model we derive some bounds that can be used to analyze
the behavior of MarkMax and we compute the per-flow backlog. We conclude the chapter with
simulation results, using NS-2, comparing MarkMax with Drop Tail and showing how Mark
Max improves both the fairness and link utilization when connections have significantly different
RTTs.

The results of this work are published in jOBAO8j.

100 Chapter 6: Improving TCP Fairness with the MarkMax Policy

6.2 Introduction

It has been known for a long time that if TCP connections with different RTTs share a
bottleneck link, TCP connections with smaller RTTs take a larger share of the bandwidth

tFlo9l, Man9O]. In jLM97] the authors have observed that under synchronization assumptions
a TCP connection obtains a share of the link capacity proportional to RTT~ with 1 < a < 2.
In IBr000l the author has used a fluid approximation to derive a more rigorous model for the
case when connections have different RTTs. Then, in IABL+001 it was observed that in the case
of not complete synchronization and, especially when RED 1FJ931 is used, the distribution of
the link capacity is more fair. In particular, the experiments of [ABL 001 have suggested that
a TCP connection obtains a share of the link capacity proportional to RTT°85. This was later
justified by an analytical model for the case of two competing TCP connections [AJNO2}. In
[AARTO6] the authors have used a fluid model to analyze what happens if only one connection
reduce its sending rate when multiple connections share the same bottleneck link but they have
ignored backlog dynamics: whenever the total arrival rate at the bottleneck link is equal to its

capacity one of the connection reduces its sending rate, so that the backlog is always zero. In

jSSO7] the authors have proposed an MLC(1) AQM algorithm to approach maxmin fairness. In
particular, for I = 1 the MLC(1) algorithm performs similar to RED and for I = 2 the MLC(1)
algorithm performs similar to CHOKe IPPPOOI. The authors of [SSO7] argue that by choosing

a significantly large parameter I one can be arbitrary close to the maxmin fairness. The present
work indicates that this does not appear to be the case.

Building upon [AFGO6, AARTO6I and [StaOT] we propose a new flow-aware active queue
management packet dropping scheme (MarkMax). The main idea behind MarkMax is to iden
tify which connection should reduce its sending rate instead of which packets should be dropped.
To improve fairness we propose to cut flows with the largest sending rate during the congestion
moments. Several AQM schemes previously proposed do not discriminate between flows. Typi
cally they drop every incoming packet with a certain probability that is a function of the state
of the queue.

When AQM was first introduced in the 1990s it was unfeasible to classify incoming packets in

real time for high speed links but with technological advances this is now possible. Furthermore,
to reduce the numbers of flows that need to be tracked, it is possible to concentrate on the
larger flows using the heavy-hitter counters of fStaO7l to identify large flows. Then, according
to [AABNO4I we suggest to treat short flows with priority and mark large flows which have
the largest backlog during the congestion moments. We also suggest to use ECN [RFBO1I to
minimize the number of dropped packets.

The chapter is organized as follows: In the next Section 6.3 we specify the algorithm. Then,
in Section 6.4 we perform its theoretical analysis. We conclude the chapter with a section on

6.3 The MarkMax algorithm 101

NS-2 simulations illustrating the performance of MarkMax.

6.3 The MarkMax algorithm

The algorithm has three parameters: the thresholds 9, 9~, 9~, selected in such a way that

9 < ~ < 9h The threshold 0 acts as a “trigger,” whenever the queue size is above this value
one connection is cut. We propose two different ways of selecting which connection to cut, as

described later on. The other two thresholds are needed because we are dealing with a packet

based system with non-zero propagation and queueing delays.

Let q be the queue size and flag be a Boolean variable initialized to TRUE. The following

algorithm is executed every time a new packet arrives:

enqueue packet

if q ~ O~ or q ≥ 9h

then flag — TRUE

if q ≥ 9 and flag TRUE

then a. select connection with MarkMax-B (full backlog based MarkMax or

MarkMax-T (backlog tail based MarkMax)

b. set the ECN flag in the first packet of the selected connection from

the head of the queue

c. flag — FALSE

The 9h and 91 thresholds are used do determine whether a congestion signal should be sent

or not, if q ≥ 9. After a congestion signal is sent the algorithm will not send another one as

long as the queue remains in the interval [9~, Oh].

The 9h threshold acts as a safety mechanism covering the cases when a single cut in the

sending rate of the selected connection might not be enough to reduce the total arrival rate to

a value smaller than the capacity of the outgoing link. Whenever the queue size is above 0h we

keep sending congestion signals to the selected connection. This does happen especially during

the slow start phase.

Given that the system has non zero propagation and queueing delays whenever we set the

ECN bit of a certain connection we need to wait for the sender to receive the corresponding

acknowledgment before it reduces its sending rate. Before such reduction is noticeable at the

bottleneck link we still need to wait for the propagation and queueing delay between the sender

and the bottleneck link. During this time the sending rate and the queue will keep growing

so that, at the bottleneck link, it is not immediately possible to conclude whether a single cut

is enough or not. Clearly if we set 9h too high the system will respond slowly, whenever one

102 Chapter 6: Improving TCP Fairness with the MarkMax Policy

cut is not enough, and the queue will be larger. On the other hand if we set 8h too close to 8
unnecessary multiple cuts can take place.

The lower threshold S~ is needed because the queue size can oscillate around 8, due to the
arrival and departure of single packets and to the bursty nature of the arrival flows. If the
queue size is close to 8 the threshold can be crossed multiple times, so if we use only one
threshold 0 this could generate multiple congestion signals, potentially causing the sender to
reduce its sending rate multiple times1. Furthermore it could happen that different connections
are selected, causing, again, multiple and unnecessary cuts. Because of these oscillations using

81 is the only way to determine whether the selected connection has reacted to the congestion
signal.

Even if a single cut is enough to reduce the total sending rate to a value smaller than the
capacity of the outgoing link the additive increase aspect of TCP will increase the sending rate
again so that the backlog will, eventually, start to increase again. Clearly if we set 8~ too low
the backlog might never reach it forcing the algorithm to use only the 8h threshold and to send
multiple spurious congestion signals.

In the next section we use a fluid approximation to further discuss the selection of 8 and

8h Based on the simulations we run it looks reasonable to suggest that 8h and 81 can be set as
follows: 8h 1.158 and Si = 0.858.

After enqueueing the arriving packet the algorithm sets the flag variable to TRUE if the
queue size has grown too large or has sufficiently decreased. In both cases the queue size is
sufficiently far from 8 so that we should send a new congestion signal if q ≥ 8. This is done

by the last if statement: at first a connection is selected, then the ECN flag is set in the first
packet from the head of the queue of the selected connection. Finally the flag is set to FALSE
to indicate the fact that one congestion signal has already been sent.

We propose two different criteria for selecting the connection to be cut: MarkMax-B selects
the connection with the biggest (per connection) backlog and MarkMax-T selects the connection
with the biggest backlog in the final part of the queue (the tail). As such the MarkMax-T variant
has one extra parameter, expressed as a percentage, indicating the portion of the queue that
will be considered.

The per connection backlog is related to the sending rate of each connection. Clearly a larger
sending rate will result in larger backlog. More precisely the connection with the biggest backlog
is the connection with the largest average sending rate since the beginning of the current busy
period. Larger values of 8 and corresponding larger queues lead to a larger averaging window,
basically increasing the “memory” of the system. The idea behind MarkMax-T is to reduce the
averaging window in order to identify the connection with the biggest instantaneous rate.

‘The ECN specification does mention that senders should reduce the sending rate only once per round trip
time, but this is not enough to guarantee that multiple cuts will not take place if we mark multiple packets.

6.4 Fluid model 103

6.4 Fluid model

Consider N TCP connections sharing a single bottleneck link with capacity p. Let RTT~ be
the round trip time of the i-th connection (1 = 1,... , N) and A,(t) its sending rate at time t.
We approximate the behavior of the system using a fluid model. Data is represented by a fluid
that flows into the buffer with rate A(t) = E~ A,(t), and it leaves the buffer with rate p if there
is a non-zero backlog. Fluid models have been successfully used to model TCP connections. In
[AABOO] it is shown that such a model adequately describes the behavior of a TCP connection,
provided the average sending rate is large enough.

As in [AAPO5] we assume that, between congestion signals, senders increase their sending
rate linearly. If at time to the sending rate of the i-th sender is A3,~ then at time t > to its
sending rate is A,(t) = .A1,,~ + a~t, where a~ — 1/(RTT,)2. For the sake of simplicity we assume

that RTT, is a constant, as if it often done (see, for example, IABN~95, SZC9O, AAPO5I).
It is not too hard to see that, if at time t0 the sending rates are A0, and the total backlog

is x0, the backlog x t) is given by:

x t _xo+(Ao_p)t+~t2. (6.1

Where A0 = ~, A0,~ and a = a~, provided x0 and Ao are such that x0 ≥ (Avis)2 If
xo < and Ao < p then, after a decreasing phase, the buffer will be empty for a certain

time and will finally start increasing again. In this case

xo+(Ao~p)t+eç~ ift<t1

z(t)= 0, ifti<t<L±~& 6.2

if t>a~

where t1 = p_Ao_y”(gs~Ao)2_2axo

Solving A(t) = Ao + at for t and substituting in (6.1) we have that

(6.3
2a a a 2a

provided x0 ≥ (Ao.-is)2 A similar expression can be obtain substituting the value of t in (6.2
Figure 6.1 shows some of the possible trajectories of the system. Note that all these parabolas

have the same shape in the sense that as x0 and A0 vary the only thing that changes is the height

of the vertex on the A = p line.
One possible way of adapting the MarkMax algorithm to the fluid case is as follows: every

time the total backlog x(t) reaches U we can “send a congestion signal” to the corresponding
connection by multiplying its sending rate by fi (0 < 5 < 1). Throughout the chapter we will

104 Chapter 6: Improving TCP Fairness with the MarkMax Policy

x(A

8

0

use 5 = 1/2 (to model TCP New Reno) unless otherwise stated. The two selection methods
previously discussed can easily be adapted as well: for MarkMax-B we select the connection with
the biggest backlog, while for MarkMax-T we pick the connection with the biggest instantaneous
sending rate. Recall that the idea behind MarkMax-T was exactly this and, with the fluid model,
we know A~(t) exactly so there is no need to approximate it.

To simplify the analysis, unless otherwise specified, we assume that the source reacts imme
diately to the congestion signals. Combining this with the fact that we know the sending rate
after a cut and the are no short term oscillations in the queue size, it suffices to use only one
threshold (8). As a consequence whenever the backlog reaches 8 the chosen connection, say j,
immediately changes its rate to 5Aj. If~ A, A3 > p that is the arrival rate is still greater

than i~) the procedure is repeated by selecting a new connection to cut (it can be the same
one or not, depending on the specific case) until the total sending rate is less than p. For the
MarkMax-T version this procedure is guaranteed to terminate: eventually all connections will
be cut. While for MarkMax-B this is not the case: if multiple cuts are needed the algorithm will
always pick the same connection. As there is no feedback delay the backlog does not change.
If the sum of the rates of the other connections is greater than p even an infinite number of
cuts will not suffice and the algorithm will not terminate. Given that this happens only in the
fluid model and only for very large (and unrealistic) values of 6 we decided not to address the
problem.

It is worth noting that using this fluid model it is also possible to exactly compute the per
connection backlog, at any given time t, using an approach based on network calculus [Cru9l].
Let .R,~~(t) be the total amount of traffic sent by the i-th connection until time t (this is generally
called a “process” in network calculus), that is R~,1~(t) — J’~ A~(u)du. Similarly let Rj,0~~(t) be
the total amount of traffic of connection i that has left the buffer until time t. Clearly the

A p A A’~t’ A*

Figure 6.1: Some of the possible trajectories in the state space

6.4 Fluid model 105

backlog at time I is x~(t) = R2,1~(t) — R,,0~~(t) so that we need to compute R,j11(t) and R,,0~~(t)
to find x,(t). Let 11,..., t, be the times at which a congestion signal was sent (to any of the

connections). Between two congestion signals, say t~j and t~+i, we know that if A~(t) = A,,, + a,t

then R,,~~(t) — S,,, A~,j(t — t~) + ~(t t~)2 where A~,j 4 A~(t~) and S~,j 4 R,,10(t~). This way

we can also compute Rj,~~(r) for any r ≤ I.
To compute ~ we can take advantage of the fact that we are dealing with a fluid

FCFS queue with continuous inputs (the arrival rate is bounded) so that the delay for all the

bits exiting at time I is the same and it is equal d(t) = inf {u ≥ 01R10(t — u) ≤ R0~~ t)} where

R1~(t) = ~ Rj,10(t) and R0~~(t) E, Rj,0,g(t). This implies that Rj,0~~(t) = Ri ~ I d(t) . As

we know Rj,1~(i-) for any r < ~ we only need to find d(t) to compute Ri,011t(t).

Let v ~ I — d(t), that is the bits that are exiting at time I joined the queue at time v. We

can find v exploiting the fact that R,,1~(v) = R011~(t) and that R.jut(t) — p(t it where it is the

beginning of the system busy period containing I and can be found because R ~(r) is known

for all r ~ I. We also have that, if tk < r ~

R~~(r) — Sk + Ao(r — 1k) + ~(r — 1k)2, (6.4

where k 4 max {j 83 < S} and 8, ±. ~. Sçj. That is the traffic exiting at time I entered in the

buffer between tk and tk 1~ As tk <v ≤ 1K+1 we can use 6.4) to solve R1~ v) p(t it) for v

and finally compute d I — I v. Knowing d I we can use R1,0~~(t) — R,,1,-, I d I)) to compute

x~(t) = R,,1~(t) — Ri, ~~(t

Using this method we wrote a simulator for the fluid model (in Python that implements

both variants of MarkMax. Using this simulator we have noticed that, provided the value of S

is not too big, MarkMax B and MarkMax-T behave in a very similar way. In the remainder of

this section we present some results that can be derived using the fluid model.

6.4.1 Guideline bounds

Let 19 be such that x(ts) — 0. Let A and A be, respectively, the total sending rate before

and after the cut(s at time 10. Let

lo, ifA≤jz
g(A) ~ ‘A ;2

i’;:’~ ifA≥p

(marked as (2.2) in Figure 6.1) and let A = {(A,x)Ix > g(A)}. It is easy to verify that if

(Ao,xo) c A, then any trajectory starting at (Ao,xo) stays in A. Furthermore, given that

we send the congestion signal(s) whenever x(t) = 8 and that there is no feedback delay, the

maximum rate ~max corresponds to intersection between g A) and x — 8 in Figure 6.1. It is

easy to see that ~max = ,~ + V~.

106 Chapter 6: Improving TCP Fairness with the MarkMax Policy

Clearly all the trajectories described by (6.3) intersect the x = U line twice, once to the left
of the A = p line and once to the right. Only the intersection points to the right correspond
to an increasing backlog phase so that A is always between p and A~fl. We can also bound
A+: as we keep sending congestion signals until the arrival rate is less than p we have A+ <p.

The fact that A— ≥ p implies that A~ cannot be smaller than fl1z (this happens when A+ — p
and either there is only one connection or, in the case of multiple connections, the biggest one
is significantly bigger than the others). Combining all this we have:

p≤A ≤p+v~~, (6.5)

,3p <A~ ~ p. (6.6)

After the cut(s) the total sending rate will be reduced by a factor 5 ~ A+ A—, which is
always smaller than

Lemma 6.1 If we use MarkMax-T then:

67
i+S N

Proof. Let A, be the sending rate of i-th connection at time tg so that A— — >~ A, . And let

j be such that A, max~{A~}, then:

- A~
fl=~r≤1—(1—fl)~

<1— (1— $)A = N—i + 5
— A-N N

Where the first equality is the definition of 5, the first inequality follows from the fact that
A~ ~ SA; + ~ A~ = A — A.i(1); this inequality is true because the right hand side

corresponds to the case where there is only a single cut and in this case A+ is largest. The
second the inequality follows from the fact that A~ = maxi{A } ≥ ~-.

By (6.6) and (6.5 we have that A ≥ fip and A <p + 2a8, combining these inequalities
with the definition of 5 we have the lower bound.

Using the upper bounds in (6.5) and (6.7) we have:

A~ =$A <(p+~)N+tl. (6.8)

As the upper bound on /3 corresponds to the case where only one connection is cut, if the right
hand side of (6.8) is less than p then a single cut of the connection with the biggest rate will be
enough. The following lemma follows immediately by setting the right hand side of (6.8) less
than or equal to p and solving for U.

6.4 Fluid model 107

Lemma 6.2 If we use MarkMax-T and if

1 21_ 2

2a(N—1+,8)2’

then A~ = ~A3 + A~ ≤ p (that is after a single cut A <p), where A~ = max {A2}.

Using the lower bound in (6.8) we can find a lower bound on 9 so that there will be no underfiow.
That is the backlog is always positive and the link is fully utilized.

Lemma 6.3 If we use MarkMax-T and if

~> ~2(~ ~2 (6.10)

where (— , then the backlog is positive.

Proof. We have that:

A~=/3A ≥Cp

p> p—p
P

where the first inequality follows from (6.7) and (6.5) and the second from (6.10). It is easy to

see that if A~ > A~ = p — \/~2~ then the backlog is always positive (see Figure (6.1): we want
the vertex of the parabola (6.3) to be on the x = 0 axis), which completes the proof. I

We conclude with a bound that can be used as a guideline to set °h•

Lemma 6.4 At time t = to + RTTj

x(t) <9 fl&öRTT, + ~RTTJ? 6.11

where RTTj = max,RTT~.

Proof. Consider a cycle that start at time to then at time t = to + RTT~

x(t) = 9+ (A p)(t—tg) + ~(t_to)2

9 + (A- pjRTT~ + RTTI2

≤ 9 + ~/~.ëmax{RTT~} + ~ max{RTT,2},

where the first equality follows from (6.1), and the inequality from the upper bound in (6.5). I

Using (6.11) it is possible to know by how much the queue could grow between the time
the threshold 9 is reached and the time the “slowest” of the connections (i.e. the one with the
biggest RTT) reacts to a congestion signal.

108 Chapter 6: Improving TCP Fairness with the MarkMax Policy

6.5 Simulation results

We have modified the NS-2 simulator in order to simulate the behavior of the proposed
algorithm. We have implemented both the MarkMax-B and the MarkMax-T, referred to as
MM-B and MM-T, respectively, in this section. For MM-T we only consider the last 10% of
the queue (recall that for this version we are considering only the final part of the queue when
determining the connection with the biggest backlog). We have compared MarkMax with the
standard DropTail (DT) policy, by setting the queue size for DT equal to 8. For the MM case

the buffer size was large enough to be considered unlimited so that we could verify that MM
can stabilize the queue size.

We consider three scenarios, the corresponding topologies are presented in Figures 6.2,6.3.
Each node s~ has a TCP connection with node d~. All the connections have a Maximum

Segment Size (MSS) of 540 B. The bottleneck link is the link between the nodes S and D and
has capacity ~t and propagation delay abLlflk. The links (si, 5) and (D, d~) have capacity p~ and
propagation delay a~. For the first scenario (see Figure 6.2) there are only two sources and two
destinations while for the second scenario there is an additional TCP connection sending traffic

in the opposite direction on the bottleneck link in order to introduce some variability in the flow
of the acknowledgments for connections I and 2. The links used by this additional connection

are represented as dotted lines in Figure 6.2. In the third scenario we consider 10 connections
(see Figure 6.3) with all the traffic going in one direction. In all cases only the link (5, D) uses
MM while all the other links use DT.

Let q be the average queue size at the bottleneck link and q2 (i = 1, ..., N) be the average
queue sizes for the i-th connection. Using Little’s formula we have that the average queueing
delay at the bottleneck link is T = q p . We can express the round trip time of the i-th
connection as: RTT, = 4a, + 2abLj~k + T, assuming the service time of each packet is negligible.
Let 6, ~ RTTZ — T 4a~ + 2ab~I~k. By increasing 6~ for some connections we model different
propagation and queueing delays of multiples links that, for the sake of simplicity, are not
explicitly considered.

Let t1 be the total simulation time. Given that all the sources start sending data at time 0
we have that the bott eneck link could transmit at most ptç units of data. Let D(tf) be the total

amount of data actually transmitted during the simulation so that the utilization of the link is

p ~ D(t1 (pt,). Let D,(tf) be the total amount of data received by the i-th connection so that
gj = D,(t1) tf is the corresponding goodput. To compare the fairness of different solutions we
use Jam’s fairness index which is defined as:

(Efi1 gi)2

-

Note that ≤ J ≤ 1 and that bigger values indicates greater fairness.

6.5 Simulation results I,

6.5.1 Fluid model

Using the fluid model simulator we investigate the behavior of MarkMax-B for different
values of 8. In this case p 70 Mbit s, RTT1 =12 ms, a — ~ 6 s, i 1,2. Table 6.1
shows the values of Jam’s index and bottleneck link utilization for this case. As 8 increases

the utilization increases as well, due to the increase in the average backlog size. When 8 is not
sufficiently large the utilization is less than one due to periodic underfiows. For each value of 8
Jam’s index decreases but it is not too far from 1.

8=6OMSS 8=24OMSS 8=96OMSS

4~c~
3 0.9893 0.890 0.9906 0.9500 0.9815 0.9964

7 0.9874 0.892 0.9874 0.9401 0.9788 0.9990

10 0.9861 0.890 0.9869 0.9400 0.9760 0.9990

20 0.9846 0.889 0.9863 0.9440 0.9754 0.9990

50 0.9836 0.899 0.9821 0.9433 0.9664 0.9925

6.5.2 Scenario 1

Table 6.1: Fluid Model: Jam’s index, utilization.

For Scenario 1 we set p =70 Mbit/s, P1 = #2 =300 Mbit s, 3~ =12 ms, 8 —240 MSS, 8~ —200 MSS,

8h =280 MSS, 8DT =240 MSS. Table 6.2 gives the values of Jam’s index and link utilization
for different values of 62/31 and different queue management algorithms. Both MM variants
outperform DT except in the first case when 62/31 = 3. In this case Jam’s index for DT is

Figure 6.2: Scenarios 1 and 2 Figure 6.3: Scenario 3

110 Chapter 6: Improving TCP Fairness with the MarkMax Policy

bigger but the utilization is somewhat lower. At the same time the difference between Jam’s
index for DT and MM is significantly large for larger values of 62/61. Table 6.3 shows that the
average queue size for the MM algorithms is somewhat larger than for DT. This is due to the
increased link utilization obtained by MM.

We have verified that in this case the hypothesis of Lemma 6.2 are satisfied and in the
simulations it is indeed the case that one cut is always enough to reduce the total sending rate
to a value less than u•

As the difference
remaining scenarios.

between MM-B and MM-T is not significant we only use MM-B in the

DT MM-B MM-T
~h
oi

3

7

10

20

J p

0.9853 0.9999

0.9625 0.9999

0.9494 0.9999

0.9561 0.9994

J p

0.9893 0.9751

0.7540 0.9720

0.5361 0.9563

0.5484 0.9993

J p

0.9999

0.9999

0.9997

0.9997

0.9633

0 .95 15

0.9501

0.9258

Table 6.2: Scenario 1: Jam’s index, utilization.

DT MM-B MM-T
~Z q/B t/ms Q/B D/ms q/B T/ms

3 78373 8.9 87257 9.9 86753 9.9

7 74802 8.5 81723 9.3 81547 9.3

10 69219 7.9 80019 9.1 79502 9.1

20 68268 7.8 74297 8.4 74189 8.4

6.5.3 Scenario 2

Table 6.3: Scenario 1: average queue size and delay.

The only difference between the first and second scenario is that there is one additional

TCP connection 53, d3) sending data in the opposite direction on the bottleneck link. All the
parameters are the same as in scenario 1 with the only difference being that the buffer size for
the DT queue between D and S (that is the queue used by the data traffic of connection 3 and
the acknowledgments of connections 1 and 2) is set to 240 MSS and the 6~ 62. Table 6.4
shows that as in the previous scenario MM-B outperforms DT. Not surprisingly the presence of

6.6 Conclusion and future work 111

traffic competing with the acknowledgments on the (D, 8) link does alter the performance of

MM-B, for lower values of 52/61 there is a slight increase in Jam’s index but for higher values it

decreases and the utilization is always lower than in the previous case. Most likely this is due

to the fact that the presence of traffic disrupting the flow of the acknowledgments increases the

round trip time.

DT MM-B

j_ J p 4/B J p 4/B
7 0.8561 0.9338 34443 0.9637 0.9600 41966

10 0.7769 0.9497 32174 0.9632 0.9510 39486

20 0.6910 0.9146 28699 0.9228 0.9702 41350

50 0.5244 0.9262 29021 0.8572 0.9937 50408

Table 6.4: Scenario 2: Jam’s index, utilization and average queue size.

6.5.4 Scenario 3

In the last scenario we have 10 connections sharing the (8, D) link and no connections

using the reverse link, ~t =70 Mbit/s, ji~ =300 Mbit/s, i = 1,. .. ,1O, 6~ =12 ms, 6j~i =

— 1,... ,9, 0 240 MSS, O~ =200 MSS, 0h =280 MSS, 00T =240 MSS. Table 6.5 shows that

MM-B has a significantly higher Jam’s index, and slightly higher utilization, at the expenses of

a moderate increase in the average queue size.

J p 4/B i’/ms

DT 0.5848 98,91 65207 7

MM-B 0.9313 99,99 98913 11

Table 6.5: Scenario 3: Jam’s index, utilization and average queue size and delay

6.6 Conclusion and future work

We have introduced MarkMax: a simple flow-aware AQM algorithm. We have used a fluid

model to set the parameters of the algorithm as well as to analyze its behavior. We have also

shown how to compute the per-flow backlog using such a model. We have simulated the two

proposed variants MarkMax-B and MarkMax-T) using NS-2, showing how they improve the

fairness and link utilization compared to the standard DropTail algorithm.

112 Chapter 6: Improving TOP Fairness with the MarkMax Policy

These results are definitely promising and warrant further analysis. Of all the issues that

we plan on addressing we would like to mention performance and queue stability with large

number of connections and comparison between MarkMax-B and MarkMax-T. So far we have

conducted simulations with up to 10 connections but it is not immediately clear if the algorithm

would perform equally well with more connections. It is conceivable that, at least in some cases,

cutting a single connection could p6 be enough to bring the total sending rate to a value smaller

than p. We would also like to determine whether MarkMax-B always outperforms MarkMax-T

as indicated by the simulations we run so far or if it the situation can be reversed by properly

selecting the fraction of the queue that is considered while computing the per-connection backlog

in MarkMax-T.

6.6 Conclusion and future work

Chapter 6: Improving TCP Fairness with the MarkMax Policy

CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

In the current thesis we propose several new contributions to improve the performance in

computer networks. The obtained results concern the resource sharing problems in the Internet

routers, Web servers and operating systems. We study several algorithms which decrease the

mean waiting time in the system with efficient resource sharing, provide the possibility to intro

duce the Quality of Service, Network Pricing and flow differentiation to the networks. We show

the effectiveness of the proposed algorithms and study the possibility of their implementation in

the router queues. The studied problems open several directions for future work, some of which

are the topics of our current research.

In Chapter 3 we study the TLPS scheduling scheme for the case of hyper-exponential job

size distribution and find an approximation of the optimal threshold for the case of two phase

job size distribution. We show that the mean waiting time in the system with the use of the

found threshold approximation can be reduced up to 369’ in comparison with the DropTail

policy. Still the question of the threshold selection in the case when the job size distribution

is hyper-exponential with many phases or has a different distribution stays open. We consider

this to be an important topic future studies.

In Chapter 4 we prove the monotonicity of the mean conditional sojourn time in the DPS

system under a restriction on the system parameters. As we did not find a counter-example

and therefore the found restriction is probably not a necessary condition, we think that it is

possible to prove the theorem for the general case without additional system constraints. Also

the investigation of the system parameters to find the cases when the DPS system gives a

significant gain in comparison with PS system is an interesting topic for future research.

In Chapter 5 we study the optimal Gittins policy in the multi-class single server queue.

This topic opens a large area for future research, as we studied several particular cases of the
115

116 Chapter 7: Conclusions and perspectives

Gittins policy application. Taking into account the Internet traffic structure, we study the case

when the jobs arrive to the system in two classes, which are Pareto distributed and represent

“mice” and “elephants” in the Internet. For this case we describe the optimal system policy,

find the analytical expression of the mean waiting time and implement the algorithm in the

router queue. With the simulation results we show that with the found optimal policy the

gain in the system can reach 10% in comparison with the LAS policy and 36% in comparison

with the DropTail policy. Also we study several cases of particular interest when jobs arrive in

classes with exponential distributions. As a future research we propose to consider the cases

with more than two job classes in the system, also we may consider other types of service times

distributions. It is important to investigate the system parameters to find when the Gittins

policy gives a significant gain in comparison with the LAS policy. The applicability of our

results in real systems like the Internet should also be more carefully evaluated.

In Chapter 6 we introduce a new flow-aware AQM scheme, MarkMax, which reduces the

sending rate of the connection with the largest sending rate when the router buffer reaches

some given threshold. With the fluid model we found the guidelines for the threshold selection.

Using the NS-2 simulator we implement MarkMax in the router queue and show that it im

proves fairness in the system and provides better performance than the DropTail policy. As a

future research topic we propose to study more complex system topologies and cases with the

large number of connections share the bottleneck link. For this case we propose to cut several

connections at once. The selection of the number of connections to cut and its dependency on

the number of connections present in the network constitute a challenging study.

A possible research direction is a combination of MarkMax and a flow differentiation schedul

ing policy like TLPS or Gittins policies. Development of the new algorithm which gives priority

to the short flows and at the same time improves fairness between the long flows can be an

interesting and nontrivial task. We think that such an algorithm can improve both, fairness and

mean waiting time in the system and provide better system performance.

118 — Chapter 7: Conclusions and perspectives

LIST OF ACRONYMS

ACI< Acknowledgment
AQM Active Queue Management
DNS Domain Name System
DPS Discriminatory Processor Sharing

DT DropTail
FB Foreground Background

FCFS First Come First Served
FTP File rftansfer Protocol
HTTP Hypertext Transfer Protocol
HE hyper-exponential
ICMP Internet Control Message Protocol
IP Internet Protocol
LAN Local Area Network
LAS Least Attained Service
MIME Multipurpose Internet Mail Extension
MLPS Multi Level Processor Sharing
MM MarkMax

MSS Maximum Segment Size
MTU Maximum Transmission Unit
NS Network Simulator
OSI Open Systems Interconnection
PASTA Poisson Arrivals See Time Averages

PS Processor Sharing
RED Random Early Dropping
RFC Request for Comment

RTT Round-Trip Time

120 Chapter 7: Conclusions and perspectives

SMTP Simple Mail Transfer Protocol
SRPT Shortest Remaining Processing Time
SPT Shortest Processing Time
TCP Transmission Control Protocol
Telnet remote terminal protocol
TLPS Two Level Processor Sharing
UDP User Datagram Protocol
WAN Wide Area Network
WWW World Wide Web

BIBLIOGRAPHY

AAO6 S. Aalto and U. Ayesta. Mean delay analysis of Multilevel Processor Sharing

disciplines. Proceedings of IEEE INFOCOM 2006, 2006. 13, 18, 30, 33

AAO7 S. Aalto and U. Ayesta. Mean delay optimization for the M C 1 queue with

Pareto type service times. In Extended abstract in ACM SICMETRICS 2007, San
Diego, CA, pages 383 384, 2007. 73, 91

AAAO6] E. Altman, K. Avrachenkov, and U. Ayesta. A survey on Discriminatory Processor

Sharing. Queueing Syst., 53(1-2):53 63, 2006. 14, 54

[AABOOj E. Altman, K. Avrachenkov, and C. Barakat. A stochastic model of TCP IP

with stationary random loses. In ACM SICCOMM 2000, Stockholm, Sweden,
volume 30, pages 231 242, 2000. 103

[AABO5I K. Avrachenkov, U. Ayesta, and P. Brown. Batch Arrival Processor-Sharing
with Application to Multi Level Processor-Sharing Scheduling. Queueing Systems,
50:459 480, 2005. 18, 44

IAABNO4I K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg. Differentiation between
short and long TCP flows: Predictability of the response time. In IEEE INFOCOM

2004, volume 2, pages 762 773, 2004. 13, 18, 30, 40, 44, 100

[AABNQO5] K. Avrachenkov, U. Ayesta, P. Brown, and R. Nuflez-Queija. Discriminatory Pro
cessor Sharing revisited. In INFOCOM, 24th Annual Joint Conference of the IEEE

Computer and Communications Societies, pages 784 795. IEEE, 2005. 14, 54, 55

[AANBO2J K. E. Avrachenkov, U. Ayesta, P. Nain, and C. Barakat. The effect of router
buffer size on the TCP performance. In In Proceedings of the LONIIS Workshop
on Telecommunication Networks and Teletraffic Theory, pages 116 121, 2002. 9

[AANOO4I S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. Two-level processor-sharing schedul
ing disciplines: mean delay analysis. SIGMETRICS Perform. Eval. Rev., 32(1):97
105, 2004. 13, 30

123

124

[AANOOS] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. M/C/1/MLPS compared to

M/C/1/PS. Operation Reserch Letters, 33(5):519 524, 2005. 13

[AAPO5I K. Avrachenkov, U. Ayesta, and A. Piunovskiy. Optimal choice of the buffer
size in the Internet routers. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC ‘05. 44th IEEE Conference on, pages 1143 1148,
December 2005. 103

IAARTO61 E. Altman, R. E. Azouzi, D. Ros, and B. Tuffin. Loss strategies for competing
AIMD flows. Comput. Networks, 50(11):1799 1815, 2006. 100

[ABL~00J E. Altman, C. Barakat, E. Laborde, P. Brown, and D. Collange. Fairness analysis

of TCP IP. Decision and Control, 2000. Proceedings of the 39th IEEE Conference,
1:61 66, 2000. 100

ABN~95j E. Altman, .J. Bolot, P. Nain, D. Elouadghiri, M. Erramdani, P. Brown, and

D. Collange. Performance modelling of TCP IP in a Wide-Area network. In 34th
IEEE Conference on Decision and Control, December 1995. 103

[ABOO7] K. Avrachenkov, P. Brown, and N. Osipova. Optimal choice of threshold in Two

Level Processor Sharing. Annals of Operations Research journal, 2007. 15, 24, 29

AFGO6I K. Avrachenkov, L. Finlay, and V. Gaitsgory. Analysis of TCP-AQM interaction
via periodic optimization and linear programming: the case of sigmoidal utility

function. In NE W2A N, Also LNCS v.4003, pages 517 529, December 2006. 100

[AJKO4I E. Altman, T. Jimenez, and D. Kofman. DPS queues with stationary ergodic
service times and the performance of TCP in overload. In in Proceedings of IEEE

Infocom, Hong-Kong, 2004. 14, 54

FAJNO2] E. Altman, T. Jimenez, and R. Nunez-Queija. Analysis of two competing TCP IP

connections. Perform. Eval., 49(1-4):43 55, 2002. 100

[AKMO4j G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. SIGCOMM

Comput. Comrnun. Rev., 34(4):281 292, 2004. 9

jAllOO] M. AlIman. A Web server’s view of the Transport layer. ACM Computer Com

munication Review, 30, 2000. 7

AP599j M. AlIman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581

(Proposed Standard), April 1999. Updated by RFC 3390. 9

BIBLIOGRAPHY 125

FBan03l N. Bansal. Analysis of the M/G/l Processor-Sharing queue with bulk arrivals.
Operations Research Letters, 31(5):401 405, 2003. 18, 36, 42

[BFOBRO2I N. Benameur, S. B. Fredj, S. Oueslati-Boulahia, and J. W. Roberts. Quality
of service and flow level admission control in the Internet. Computer Networks,

40(1):57 71, 2002. 7

[BGGO3] M. Barthelemy, B. Gondran, and E. Guichard. Spatial structure of the Internet

traffic. Physica A Statistical Mechanics and its Applications, 319:633 642, March
2003. 7

jBGG~08) N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and 0. Salmon. Experimental
study of router buffer sizing. Systems and Networking Laboratory Technical Re
port TRO8-UT-SN, University of Toronto, Department of Computer Science, May
2008. 9

[BMO6I F. Baccelli and D. R. McDonald. A stochastic model for the rate of non-persistent
TCP flows. Proceedings of Value Tools 2006, 2006. 19, 30, 32, 42

FBNMOO] D. Bertsimas and J. Nino Mora. Restless bandits, linear programming relaxations
and a Primal-Dual index heuristic. Operations Research, 48:80 90, 2000. 70

jBra89l R. Braden. Requirements for Internet hosts - communication layers. RFC 1122
(Standard), October 1989. Updated by RFCs 1349, 4379. 9

Bre961 L. P. Breker. A survey of network pricing schemes. In University of Saskatchewan,
1996. 11

Br000l P. Brown. Resource sharing of TCP connections with different round trip times.
In INFOCOM 2000, pages 1734 1741, 2000. 100

BroO6I P. Brown. Comparing FB and PS scheduling policies. SIGMETRICS Perform.
Eval. Rev., 34(3):18 20, 2006. 13

ETO1 T. Bu and D. Towsley. Fixed point approximations for TCP behavior in an AQM
network. In SJGMETRICS ‘01: Proceedings of the 2001 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems, pages
216 225, New York, NY, USA, 2001. ACM. 54

BVW85j C. Buyukkoc, P. Varaya, and J. Walrand. The cp~ rule revisited. Adv. Appi. Prob.,
17:237 238, 1985. 70

126

1CB971 M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: ev
idence and possible causes. IEEE ACM Transactions on Networking, 5:835 846,
1997. 7, 71

[CCO8] D. Collange and J.-L. Costeux. Passive estimation of Quality of Experience. Jour
nal of Universal Computer Science, 14(5):625 641, 2008. 7

[CJO7I N. Chen and S. Jordan. Throughput in Processor-Sharing queues. IEEE Trans
actions on Automatic Control, 52 (2):299 305, 2007. 12

FCru91] R. L. Cruz. A calculus for network delay. I. Network elements in isolation. Infor
mation Theory, IEEE Transactions on, 37(1):114 131, 1991. 104

jCvdBB~05] S. K. Cheung, J. L. van den Berg, R. J. Boucherie, R. Litjens, and F. Roijers. An

analytical packet flow-level modelling approach for wireless LANs with quality-of
service support. In in Proceedings of ITC-19, 2005. 54

FDGNM96I M. Dacre, K. Glazebrook, and J. Nino-Mora. The achievable region approach to
the optimal control of stochastic systems. Journal of the Royal Statistical Society.
Series B, Methodological, 61(4):747 791, 1996. 70

IFBP~011 S. B. Fred, T. Bonald, A. Proutiere, C. Regnie, and J. W. Roberts. Statistical
bandwidth sharing: a study of congestion at flow level. SIGCOMM Comput.

Commun. Rev., 31(4):111 122, 2001. 12

1FJ931 S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid
ance. IEEE ACM Trans. Netw., 1(4):397 413, 1993. 11, 100

[Flo9lj S. Floyd. Connections with multiple congested gateways in packet-switched net
works part 1: one-way traffic. SIGCOMM Comput. Commun. Rev., 21(5):30 47,

1991. 100

[Flo95] S. Floyd. TCP and Explicit Congestion Notification. ACM Computer Communi
cation Review, 24(5):10 23, 1995. 11

[FMO3aI H. Feng and V. Misra. Asymptotic bounds for Mx/G/1 Processor Sharing queues.
Technical report CUCS-OO-04, Columbia University, 2003. 18

jFMO3bJ H. Feng and V. Misra. Mixed scheduling disciplines for network flows. ACM

SIGMETRICS Performance Evaluation Review, 31(2):36—39, 2003. 13, 30

[FMI8Oj G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a processor among many job

classes. Journal of the ACM, 27:519 532, 1980. 14, 20, 54, 56

BIBLIOGRAPHY 127

[FML~03j C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Rhan, D. Moll, R. Rockell, T. Seely,

and C. Diot. Packet-level traffic measurements from the Sprint IP backbone. IEEE
Network, 17:6 16, 2003. 7, 8

[FORR98J E. W. Fulp, M. Ott, D. Reininger, and D. S. Reeves. Paying for QoS: an optimal
distributed algorithm for pricing network resources. Quality of Service, 1998.
(IWQoS 98) 1998 Sixth International Workshop on, pages 75 84, May 1998. 11

FRO1 E. W. Fulp and D. S. Reeves. Optimal provisioning and pricing of differentiated

services using QoS class promotion. In In Proceedings of the INFORMATIK:
Workshop on Advanced Internet Charging and QoS Technology, 2001. 11

[FRO4I E. W. FuIp and D. S. Reeves. Bandwidth provisioning and pricing for networks
with multiple classes of service. Comput. Netw., 46(1):41 52, 2004. 11

[FSKSO2I W.-C. Feng, K. C. Shin, D. D. Kandlur, and D. Saha. The BLUE active queue
management algorithms. IEEE ACM Trans. Netw., 10(4):513 528, 2002. 11

[FW981 A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long tail distribu
tions to analyze network performance models. Performance Evaluation, 31:245
258, 1998. 19, 30, 32, 42

[FW991 E. Frostig and C. Weiss. Four proofs of Gittins’ multiarmed bandit theorem.
Applied Probability Trust, 1999. 70

[GitS9j J. Gittins. Multi-armed Bandit Allocation Indices. Wiley, Chichester, 1989. 14,
15, 70, 72, 73, 90

IGMOII L. Guo and I. Matta. The war between mice and elephants. Technical report,
Boston University, Boston, MA, USA, 2001. 13

[GMO2aj L. Guo and I. Matta. Differentiated control of web traffic: A numerical analisys.
SPIE ITCOM, Boston, 2002. 13, 30

[GMO2bI L. Guo and I. Matta. Scheduling flows with unknown sizes: approximate analysis.
In in Proceedings of the 2002 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 276 277, 2002. 13, 14, 54

IHBSBAO3I M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based schedul
ing to improve web performance. ACM Transactions on Computer Systems,
21(2):207 233, 2003. 30

128

[HLN97] D. P. Heyman, T. V. Lakshman, and A. L. Neidhardt. A new method for analyzing
feedback-based protocols with applications to engineering Web traffic over the
Internet. In SIGMETRICS ‘97: Proceedings of the 1997 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems, pages
24 38, New York, NY, USA, 1997. ACM. 12

[HTOSJ Y. Hayel and B. Tuffin. Pricing for heterogeneous services at a Discriminatory
Processor Sharing queue. In Networking 2005, volume 3462 2005, pages 816 827.
Springer Berlin Heidelberg, 2005. 54

[Jac88j V. Jacobson. Congestion avoidance and control. In SIGCOMM ‘88: Symposium

proceedings on Communications architectures and protocols, volume 18, pages 314
329, New York, NY, USA, August 1988. ACM Press. 9

IJBB92I V. Jacobson, R. Braden, and D. Borman. TCP extensions for high performance.
RFC 1323 (Proposed Standard), May 1992. 9

jKKO6j B. Kim and J. Kim. Comparison of DPS and PS systems according to DPS weights.

Communications Letters, IEEE, 10(7):558 560, July 2006. 55, 56, 58

[KKO8I J. Kim and B. Kim. Concavity of the conditional mean sojourn time in theM C 1
Processor Sharing queue with batch arrivals. Queueing Systems, 58(1):57 64, 2008.
17, 18, 22

IKIe67 L. Kleinrock. Time-shared Systems: a theoretical treatment. J. ACM, 14(2):242
261, 1967. 14, 54

K1e76a] L. Kleinrock. Queuezng systems, volume 2. John Wiley and Sons, 1976. 12, 13,
18, 20, 23, 24, 25, 30, 32, 34, 77, 91

1e76b1 L. Kleinrock. Queueing systems, volume 1. John Wiley and Sons, 1976. 12, 93

li74J G. Klimov. Time-sharing service systems. i. Theory of Probability and Its Appli

cations, 19:532 551, 1974. 72

1i781 G. Klimov. Time-sharing service systems. ii. Theory of Probability and Its Appli

cations, 23:314 321, 1978. 72

KMR71] L. Kleinrock, R. R. Muntz, and E. Rodemich. The Processor-Sharing queueing
model for time-shared systems with bulk arrivals. Networks Journal, 1:1 13, 1971.
18

BIBLIOGRAPHY 129

[IKNQBO4I C. Van Kessel, R. Nuflez-Queija, and S. Borst. Asymptotic regimes and approx
imations for Discriminatory Processor Sharing. SIGMETRICS Perform. Eval.

Rev., 32(2):44 46, 2004. 14, 54

[KNQBO5I G. Van IKessel, R. Nuflez-Queija, and S. Borst. Differentiated bandwidth sharing
with disparate flow sizes. INFOCOM 2005. 24th Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings IEEE, 4:2425 2435,
March 2005. 14, 54

jKriOO] J. Kristoff. TOP Congestion Control. Technical report, DePaul University, 2000.

9

IKSHO3I R. E. A. Khayari, R. Sadre, and BR. Haverkort. Fitting world-wide web request
traces with the EM-algorithm. Performance Evaluation, 52(2 3 :175 191, 2003.

30, 42

jKur72J A. G. Kurosh. Higher algebra. MIR, 1972. 26

[LM97] T. V. Lakshman and U. Madhow. The performance of TOP IP for networks
with high bandwidth-delay products and random loss. IEEE ACM Trans. Netw.,

5(3):336 350, 1997. 100

[Man9Oj A. Mankin. Random drop congestion control. In SICCOMM ‘90: Proceedings

of the ACM symposium on Communications architectures S protocols, pages 1 7,

1990. 100

[MROOI L. Massoulie and J. W. Roberts. Bandwidth sharing and admission control for elas
tic traffic. In Telecommunication Systems, volume 15, pages 185 201(17). Springer,
2000. 12

[NMM98 M. Nabe, M. Murata, and H. Miyahara. Analysis and modeling of World Wide

Web traffic for capacity dimensioning of Internet access lines. Perform. Eval.,

34(4):249 271, 1998. 7, 12, 71

[NT941 P. Nain and D. Towsley. Optimal scheduling in a machine with stochastic varying
processing rate. IEEE ACM Transactions on Automatic Control, 39:1853 1855,
1994. 70

INTO2I W. Noureddine and F. Tobagi. Improving the performance of interactive TOP
applications using service differentiation. In Computer Networks Journal, pages
2002 354. IEEE, 2002. 13

130

[NWO8] M. Nuyens and A. Wierman. The Foreground-Background queue: A survey. Per
form. Eval., 65(3-4):286 307, 2008. 13

[OBAO8I N. Osipova, A. Blanc, and K. Avrachenkov. Improving TCP fairness with the
MarkMax policy. In In Proceedings of the 15th International Conference on
Telecommunications, ICT 2008, 2008. 16, 99

jOsiO7J N. Osipova. Batch Processor Sharing with Hyper-Exponential service time. Tech
nical Report RR-6180, INRIA, 2007. 19

[Osio8aj N. Osipova. Batch Processor Sharing with Hyper-Exponential service time. op
erations Research Letters, 36(3):372 376, 2008. 14, 17, 19, 45

[OsiOSb} N. Osipova. Comparison of the Discriminatory Processor Sharing Policies. Tech

nical Report RR-6475, INRIA, 2008. 15, 53

[PosSlj .1. Postel. Transmission Control Protocol. RFC 793 (Standard), September 1981.

Updated by RFC 3168. 9

jPPP00~ R. Pan, B. Prabhakar, and K. Psounis. Choke: a stateless active queue manage
ment scheme for approximating fair bandwidth allocation. In INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 2, pages 942 951, 2000. 11, 100

RBUKO5j I. A. Rai, E. W. Biersack, and C. Urvoy-Keller. Size-based scheduling to improve
the performance of short TCP flows. IEEE Network, 19:12 17, 2005. 13

RF991 K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notifica
tion (ECN) to IP. RFC 2481 (Experimental), January 1999. Obsoleted by RFC
3168. 11

RFBO1I K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard), September 2001. 11,
100

[Rig94] R. Righter. Scheduling. M. Shaked and J. Shanthikumar (eds), Stochastic Orders,
New York: Academic Press, pages 381 432, 1994. 55

[RobOll J. Roberts. Traffic theory and the Internet. IEEE Communication Magazine,
39(1):94 99, 2001. 7

1R589j R. Righter and J. Shanthikumar. Scheduling multiclass single server queueing
systems to stochastically maximize the number of successful departures. Probability
in the Engineering and Informational Sciences, 3:323 333, 1989. 13

BIBLIOGRAPHY 131

FRS93I K. M. Rege and B. Sengupta. The M/G/l Processor Sharing queue with bulk
arrivals. In In Proceedings of Modelling and Evaluation of ATM Networks, pages
417 432, 1993. 18

1RS941 K. M. Rege and B. Sengupta. A decomposition theorem and related results for
the Discriminatory Processor Sharing queue. Queueing Systems, 18(3-4):333 351,
1994. 14, 54

1RS961 K. M. Rege and B. Sengupta. Queue-length distribution for the Discriminatory
Processor-Sharing queue. Operations Research, 44(4):653 657, 1996. 14, 54

IRUKBO2] I. A. Rai, C. Urvoy-Keller, and E. W. Biersack. Size-based scheduling with differ
entiated services to improve response time of highly varying flows. In in Proceed
ings of the 15th ITC Specialist Seminar, Internet Traffic Engineering and Traffic
Management, 2002. 13

[RUKBO3] I. A. Rai, C. Urvoy-Keller, and E. W. Biersack. Analysis of LAS scheduling for
job size distributions with high variance. In SIGMETRICS ‘03: Proceedings of the

2003 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 218 228, New York, NY, USA, 2003. ACM. 13

IRUKVB04] 1. A. Rai, C. Urvoy-Keller, M. K. Vernon, and E. W. Biersack. Performance
analysis of LAS-based scheduling disciplines in a packet switched network. SIC-
METRICS Perform. Eval. Rev., 32(1):106 117, 2004. 13

[SAM99I M. Murata S. Ata and H. Miyahara. Analysis and application of network traffic
characteristics to design of high-speed routers. Internet. Conference No2, Boston
MA ,ETATS-UNIS (20 09 1999), 3842:14 24, 1999. 7

ISCEH96I S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks:
reshaping the research agenda. SICCOMM Comput. Commun. Rev., 26(2):19 43,

1996. 11

jSch68l L. E. Schrage. A proof of the optimality of the Shortest Remaining Processing
Time discipline. Operations Research, 16(3):678 690, 1968. 12, 30

[Sev74] K. Sevcik. Scheduling for minimum total loss using service time distributions.

Journal of the ACM, 21:66 75, 1974. 72

ISSO7] R. Stanojevic and R. Shorten. Beyond CHOKe: Stateless fair queueing. In NET
COOP 2007, LNCS v.4465, pages 43 53, 2007. 11, 100

132

[Sta94] W. Stallings. Data and Computer Communications: 4th edition. Macmillian Pub

lishing Company, 1994. 5, 6, 8

jStaO3j W. Stallings. Computer Networking with Internet Protocols and Technology. Pear
son Education, Inc., Prentice HaIl, 2003. 4, 6, 9

jStaO7I R. Stanojevic. Router-based algorithms for improving Internet Quality of Service.

Phd thesis, Hamilton Institute, National University of Ireland Maynooth, 2007.
100

jSte97] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms. RFC 2001 (Proposed Standard), January 1997. Obsoleted
by RFC 2581. 9

FSY92I J. Shanthikumar and D. Yao. Multiclass queueing systems: Polymatroidal struc
ture and optimal scheduling control. Operations Research, 40(2):293 299, 1992.
70

[SZC9OI S. Schenker, L. Zhang, and D. D. Clark. Some observations on the dynamics of a
congestion control algorithm. SICCOMM Comput. Commun. Rev., 20(5):30 39,
1990. 103

[Tan96j A. S. Tanenbaum. Computer networks: 3rd edition. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1996. 4, 9

[TMW97] K. Thompson, C. J. Miller, and R. Wilder. Wide-area Internet traffic patterns

and characteristics. IEEE Network, 11:10 23, 1997. 7

ITsi93I J.N. Tsitsiklis. A short proof of the Cittins index theorem. In IEEE CDC, pages
389 390, 1993. 70

[VWB85I P. Varaiya, J. Walrand, and C. Buyukkoc. Extensions of the multiarmed bandit
problem: the discounted case. IEEE ~&ansactions on Automatic Control, 30:426
439, 1985. 70

[WBHBO4] A. Wierman, N. Bansal, and M. Harchol-Balter. A note comparing response
times in the M CI 1 FB and M/CI/1/PS queues. Operations Research Let

ters, 32(1 :73 76, 2004. 13

Web921 R. Weber. On the Gittins index for multiarmed bandits. Annals of Appllied

Probability, 2(4 :1024 1033, 1992. 70

BIBLIOGRAPHY 133

FWHBO3I A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect
to unfairness in an M/GI 1. SIGMETRICS Perform. Eval. Rev., 31(1):238 249,
2003. 13

FWhi88l P. Whittle. Restless bandits: activity allocation in a changing world. Journal of
Applied Probability, 25:287 298, 1988. 70

FWil98i F. Wilder. A guide to the TCP IP protocol suite: second edition. Artech House,
INC, 1998. 9

jWilOlJ C. Williamson. Internet traffic measurement. IEEE Internet Computing, 5:70 74,

2001. 7, 8, 71

IWol89i R. W. Wolf. Stochastic modeling and the theory of queues. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989. 7

FWZO2] B. Wydrowski and M. Zukerman. GREEN: An Active Queue Management al
gorithm for a self managed Internet. In ICC, volume 4, pages 2368 2372, 2002.
11

FYas87l S. F. Yashkov. Processor Sharing queues: some progress in analysis. Queueing
Syst. Theory AppI., 2(1):1 17, 1987. 12

FYas92l S. Yashkov. Mathematical problems in the theory of shared processor systems.
Journal of Mathematical Sciences, 58:101 147, 1992. 72

