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CHAPTER 1

INTRODUCTION

In the early 1970s, networks that interconnected computers and terminals began to appear.
These networks were developed to share computer resources and to interchange data between
computers. Since then the task of minimization of the transmission costs and times and maxi-
mization of the amount of transmitted data was one of the most important tasks in computer
networks. While with the technical progress the capacities of the computers grow, the need of

quick, efficient and safe data transmission grows as well.

The Internet is the largest computer network which connects more than one billion of users
all over the world. The size of the Internet grows very fast, though the network resources have
to be shared between a very large number of users. An incorrect resource allocation may imply
server inaccessibility, long delays and other problems in the networks, which lead to the users’
dissatisfaction with the provided service. Even though until today a lot of work was done to
achieve optimal resource sharing, high performance and low delays, Internet behavior is far from

ideal and there are still a lot of problems that have to be solved.

In the present thesis we are dealing with the problem of the resource sharing in computer
networks. We consider several scheduling algorithms and their application to flow scheduling
in the Internet routers. As the waiting time in the network is one of the most important
characteristics for the common users, we concentrate on the problem of mean waiting time
minimization. Taking into account the Internet traffic structure we study several size-based
differentiation algorithms which give priority to the short flows and can significantly decrease
the mean waiting time in the network. We introduce a new flow-aware packet dropping scheme
for the Internet routers which improvef performance in the network and fairness between the

flows.



4 Introduction

1.1 The state of the art

1.1.1 Computer networks

A computer network is a set of several computers or terminals, which are interconnected by
a communication network. Even if computer networks are widely presented in literature, see
[Tan96, Sta03], in this introduction we describe some computer network basics to explain the
motivation for the provided analytical results.

Before talking about computer networks in detail, let us first answer the question: “Why are
people interested in computer networks, what can they be used for?”. Globally we can classify
the computer networks users in two groups, companies and common users. The companies use
the computer networks mainly to achieve resource sharing (all programs, equipment and data
availability to the workers of the company), high reliability (possibility to continue to work in
case of hardware failure problems), saving money (high cost of big computers in comparison
with several small ones), scalability (possibility to add new working places in the network and
to increase system performance by adding new processors without global change of the system
structure), communication between workers of the company (reports, work discussion). For the
common computer and Internet users the most important aims are: access to remote information
(bank accounts check, shopping, newspapers, magazines, journals, on-line digital libraries), per-
sonal communication (mail, virtual meetings, videoconferences), entertainment (video, movie,
television, radio, music, game playing). So, computer networks take a big part of everyday
peoples life and can help us in many different areas.

Now that we pointed why we need the computer networks, let us return to our subject, how
computer networks work. The main goal of computer networks is the possibility to interchange
data between computers. In its simplest form data communication takes place between two
devices that are connected directly. Often, however, it is not practical for two devices to be
point-to-point connected. It is the case when the devices are situated very far from each other.
An example is the telephone network of the world, or all the computers of a single organization.
Then the solution is to connect each device to a communication network. Later in this work
we refer to the devices which communicate either as stations or as nodes. The stations may be
computers, telephones or other communication devices.

Communication networks may be categorized based on the architecture and techniques used
to transfer data. Globally there are broadcast and switched (point-to-point) networks. In
the broadcast networks the transmission from one station is broadcast and received by all
other stations. In the switched networks data is transferred from source to destination through
intermediate nodes. The purpose of every node is to move data from node to node until it
reaches its destination. Switched networks are divided into circuit-switched networks and packet-

switched networks. In circuit-switched networks, the path between a sender and a destination
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is set in advance and then the data is transmitted using this channel.

In packet-switched networks, data is sent in a sequence of small chunks, called packets. Each
packet passes through the network from one node to another along some path leading from source
to destination. At each intermediate node, called router, the packet is received, stored briefly,
and then transmitted to the next node. The router takes decision where to transmit the packet.
Packet-switched networks are commonly used for computer-to-computer communications.

The computer networks are also classified according to their size as Local Area Networks
(LAN), which cover a campus under a few kilometers in size, Metropolitan Area Networks
(MAN), which cover a group of offices or a city, and Wide Area Networks (WAN), which cover
a large geographical network. LAN and MAN usually do not use the packet switching, because
of their limited sizes. The examples of LAN are Ethernet, IBM Token ring and the most known
MAN are Distributed Queue Dual Bus (DQDB), etc. The most famous and the largest WAN
is the Internet, which connects more then one billion of users and allows to interchange data
between them. The WAN networks usually use the packet switching technology. In particular,
the Internet is based on the packet switching technology.

In the present work, we study problems related to packet-switched networks and in particular,
to the Internet.

1.1.2 Computer network architecture

Nowadays the communication between computers in the Internet is mostly based on the
Open System Interconnection model (OSI) which consists of seven layers, see [Sta94]. The layer
structure is used to decompose a complex problem of communication between computers into
several smaller problems, the layers are autonomous and do not depend on each other. Every
layer is responsible for certain functionalities, it uses the functions of the lower layer and gives
functionality to the upper layer. The layers are based on the concept of the protocol, a set of
rules which serves to organize data transfer. The OSI layers are: Physical, Data Link, Network,
Transport, Session, Presentation and Application.

We do not give a full description of all layers and their functionalities here, but we restrict
ourselves to the Transport and Network layers of the OSI system, as they correspond to the
data transfer and provide error recovery and flow control.

The Network layer accepts packets from the Transport layer and delivers them from source
to destination in the network. The Network layer is based on the Internet Protocol (IP). The
IP technology does not check if the packets were delivered, so the error recovery has to be done
by the Transport or other higher level protocols. The Network layer provides unreliable delivery
service in the networks.

The Transport layer accepts data from the Session layer, splits it into packets and transmits

packets to the Network layer. The Transport layer checks the delivery of the packets to the
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destination, it provides a reliable transport mechanism, see [Sta94]. The two main Internet
protocols of the Transport layer are Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). Both of them use IP protocol of the Network layer, that’s why we are usually
talking about TCP/IP protocols.

UDF protocol is rarely used in the Internet because of its unreliability. UDP does not provide
a reliable delivery of the packets and is used by the applications which provide their own flow
control and check packet arrivals. Also UDP can be used when some loss of transferred data
can be tolerated, as in the Internet telephony.

The most used protocol in computer networks and in the Internet is TCP. TCP is a reliable
connection-oriented protocol which allows to deliver the information from one machine in the
network to another without errors. It is designed to provide maximum throughput and reliable
transfer over an unreliable and unknown network. Different parts of the WAN can have different
topologies, bandwidths, delays, packets sizes and other parameters. Also all these parameters
can change. TCP dynamically adapts to properties of the network and is robust in the face
of many kinds of failures. TCP provides flow control to make sure that a fast sender does not
overflow a slow receiver or intermediate nodes with more information than they can handle.
Using the Congestion Control mechanism, TCP reduces its sending rate when a loss occurs in
the network, and so adapts its sending rate according to the parameters of the receiver and the
network. We givevmore full description of TCP protocol work in Subsection 1.1.5.

The applications that are nowadays [Sta03| the most used in the Internet and computer
networks and which use the TCP/IP protocol are: Telnet (virtual terminal), File Transfer
Protocol (FTP) is used for file transfers between systems with different properties and structures,
electronic mail protocol (SMTP) is used to transfer the electronic mail messages, Multipurpose
Internet Mail Extension (MIME) makes it possible to include pictures and other multimedia in
the message, Domain Name System (DNS) is used to find the relation between the host names
and their network addresses, Hypertext Transfer Protocol (HTTP) is used to transfer web pages
in the Internet, Session Initiation Protocol (SIP) is the application level protocol for sessions
control in the networks.

1.1.3 The Internet traffic structure

Let us point out the most important characteristics of the traffic structure in computer
networks and in the Internet, which we need in the following analysis.

In the flow-level modelling framework, flow is the basic unit of the data traffic. The flow
is defined as an interruptive stream of packets sent from the source to destination. We can
model as a flow one TCP connection which opens, sends one or more files and then closes, or
we can define every file sent by the application as a separate flow. In the current work we

consider that the flow corresponds to the sending of one file. In the current work we use terms
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“flow/connection/file/session” interchangeably, in stochastic scheduling we use the term “job”.
A flow is basically characterized by its duration, size and sending rate.

The Internet traffic structure was widely studied in the literature. In [CB97, TMW97,
NMMO98, SAMQQ],"’authors analyze the real data traffic on the selected web servers during
sufficiently long period of time and describe traffic characteristics. In [FML+O3],'Quthors propose
a monitoring system which is designed to analyze traffic measurement and also provide results
they got with the proposed system. In [Wil01], the author describes traffic measurements
and characteristics. In [BGG03|authors provide traffic collection and analysis between several
important servers in France. In [BFOBR02] ,'guthors study the admission control in the Internet
in application to elastic and streaming flows. In more recent work [CCOS},‘/authors propose a
new characteristic, the Quality of Experience, to measure how the users perceive the network
performance and provide tHe real traffic measurements results.

In the Internet traffic is divided in elastic and streaming flows. Elastic flows are transferred
files, HTTP pages, etc. Streaming flows are created by video and audio applications. Elastic
flows are still dominant in the Internet even though audio and video applications are more and

more used, see [BFOBR02|. In the current work we study elastic flows simulation, considering

that streaming flows take some limited share of the bandwidth.

The traffic transferred with the TCP/IP protocol represents 90% of all Internet traffic, see
[CC08, FML™03, BFOBR02].

The interarrival times between the files in the Internet are exponentially distributed and the
flow arrivals to the network can be modelled with a Poisson process. The important character-
istic of the Poisson process is Poisson Arrivals See Time Averages (PASTA) property [Wol89],
which plays an important role in“énathematical analysis of the network modelling.

Most flows (90 — 95%) transferred in the Internet are very small, but most of the traffic
is created by the long flows, which are not numerous (remaining 5 — 10%), see [Wil01, All0O,
FML™03] and others. According to [CC08], 80% of the traffic is created by the flows larger than
1 MB and 50% by the flows of size larger than 10 MB. This is caused by the fact that the most
frequent flows are created by e-mail and web page transfers, which have small sizes and the long
flows are generated by file transfers, peer-to-peer applications, etc., and are much rarer. The
short flows are then called “mice”, long flows “elephants” and this phenomena in the Internet is
called “mice-elephant” effect.

It was found that the file size distributions in the Internet are well modelled by long-tailed
and heavy-tailed distributions and also have a Decreasing Hazard Rate (DHR). In [NMM98|,
with the real data analysis)authors confirm that the file size distribution in the Internet can
be modelled with heavy-tailed Pareto distributions. In [CBQT],; authors provide network traffic
analysis from a web server and found that the file size distribution is heavy tailed. In [Rob01],

the author shows that the streaming flows durations are also heavy-tail distributed.
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In contrast to the flow arrivals, the packet arrivals are generally not Poisson. Because of the
DropTail router policy, which creates global synchronization in the network, and also because
of the TCP algorithm, (we discuss this later in Subsection 1.1.5), the packets have the tendency
to arrive in groups, which are called batches. Such arrivals are also called bursty arrivals.

Packet sizes in the Internet vary from Maximum Transmit Unit (MTU), to the acknowledge-
ment (ACK) sizes (40 bytes). According to [Wil01, FML™'03|, the large packets represent 50%
of all packets in the network, ACKs represent 40% and the rest of the packets have sizes which
are randomly distributed between these values.

The traffic on the link is usually bidirectional, but not symmetric.

1.1.4 Traffic control in computer networks

One of the main problems associated with the computer networks is traffic control, see
[Sta94], which is in regulating the amount of traffic which enters the network so that the network
performance is high. Traffic control can be separated on flow control, congestion control and
deadlock avoidance.

The deadlock is a situation when the router cannot send a packet because all the buffers are
full. The deadlock avoidance techniques are designed to avoid such a situation.

Flow control is needed to prevent the sender from transmitting information with a rate
which is higher than the possible receiving rate of the destination. Flow control regulates data
transmission rate between two nodes.

Congestion is a situation when the data arrival rate is higher than the network transmission
capacity. In this case the router can not serve all the incoming packets, which are then collected
in the router buffer and wait in the queue to be served. If the arrival rate does not decrease,
the queue size increases dramatically, there is no place for more packets, and the new arriving
packets are dropped and later retransmitted. The congestion in the networks is responsible for
the most important part of delays. Congestion control techniques try to prevent the congestion
situation before it happens, or at least, react on it properly, i.e., decrease data arrival rates.
The efficient congestion control algorithm has to avoid buffer overflow and at the same time try
to keep the queue not empty, to achieve higher throughput.

To provide efficient traffic control the sender needs to know the situation on the router and
in the network, which is not always easy and even more, usually impossible to realize. On the
other side, the router neither does not have a direct access to the data senders to control their
sending rates.

In the Internet the traffic control is realized with the combination of the DropTail policy on
the router and TCP/IP protocols.

The DropTail policy is the simplest and the most commonly used algorithm for the buffer size
management in TCP/IP networks. With the DropTail algorithm the router drops the arriving
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packets from the tail of the queue if the buffer is full. The enqueued packets are served according
to the First Come First Served (FCFS) policy. The buffer size of the router is limited. Even it
is technically possible to make the buffer size very large, it is not used, because the large queue

size creates large queuing delay. The selection of the router buffer size is an important problem,

whlch is not yet solved. More on ‘this topic one can find in [AA\TBOQ - AKMO04, BGG"'OS] etc.

The current TCP implementation provides flow and congestion control. We give more detail
description of TCP algorithms in the following Subsection 1.1.5.

1.1.5 TCP/IP protocols

TCP/IP protocols are now widely used in the Internet and play an important role in de-
termining the network performance. The formal TCP description is given in [Pos81|. The idea
of the dynamic congestion window size is proposed in [Jac88|. Later changes and extensions
are given in [Bra89, JBB92, Ste97, APS99|. Also the description of TCP can be found in such
books as [Sta03, Tan96, Wil98] or in reviews, see [Kri00].

TCP is based on the end-to-end argument idea, which is that the sending rate of data flow
is controlled by the receiver. To realize data transmission between two nodes, TCP has to
be installed on both of them, the sender and the receiver. When TCP sends a data file, it
breaks it into packets (or segments) of the given size and sends each of them separately in the
data stream. When packets arrive to the destination, they are given to the TCP entity, which
reconstructs the original file. As the IP protocol does not give guarantee of packet arrivals, it is
up to TCP to find which packets were lost and retransmit them. For that purpose every time
the destination TCP receives a packet, it sends back to the sender a packet of small size, which
is called acknowledgement (ACK) which contains information about the received packet. The
receiver acknowledges the last packet of the received continuous stream of packets. If there is a
packet which arrives out of order, TCP sends the ACK for the last packet which was received
in order. In this case the sender receives several times the same ACK, which is called duplicate
ACK, knows that the packet of the stream was lost and can retransmit it. The time between
sending a packet and receiving an ACK for it is round-trip-time (RTT) which is an important
notion related to TCP.

The congestion control scheme in TCP is realized with congestion window (cwnd) which
controls the amount of data which can be sent without being acknowledged and in fact controls
the rate of transmission. The algorithms which are used in TCP congestion control are: Slow
Start, Congestion Avoidance, Fast Retransmit and Fast Recovery.

The Slow Start algorithm is used in the beginning of the file transfer to determine the capacity
of the network. During Slow Start TCP increments its congestion window by one packet for
each received ACK. Slow Start ends when the congestion window reaches some given threshold.

After Slow Start algorithm, the Congestion Avoidance algorithm is used. During Congestion
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Avoidance, congestion window is incremented by one packet per RT'T or by one packet when the
data which corresponds to the current size of congestion window is acknowledged. Congestion
Avoidance is continued until congestion is detected. The Slow Start algorithm makes it possible
for the TCP connection to increase its sending rate quickly in the beginning of the file transfer,
while during the Congestion Avoidance the rate increases slowly to avoid the network overload.

To detect a congestion and a packet loss TCP uses a timer. To retransmit the lost packet
faster than the timer expires the Fast Retransmit algorithm is used, which is that if TCP receives
three duplicate ACK, the packet is considered to be lost. The Fast Recovery mechanism is that
the congestion window is reduced in half in the case of packet loss detection. It helps TCP to
restore’congestion window more quickly than if it was reduced to one packet and so help to
achieve higher throughput.

The Tahoe implementation of TCP includes Slow Start, Congestion Avoidance and Fast Re-
covery. Reno includes Tahoe properties plus Fast Retransmit. NewReno is a slight modification
of the Reno version that improves performance during Fast Recovery and Fast Retransmission.
In our studies and simulations we conside1:_| NewReno version of TCP.

': -

1.2 Computer networks problems and proposed solutions

1.2.1 Traffic control schemes advantages and disadvantages

TCP is the most used data transmission protocol in the Internet as it is flexible and provides
a reliable data transfer and traffic control. On the flow level TCP tries to provide a fair share of
the bottleneck capacity between all flows currently present in the queue. As the routers generally
do not use discriminating or priority policies, the share of the bottleneck capacity depends only
on the sending rates of every flow. Then, if the sending rates of every flow are kept equal, the
bandwidth share is equal as well.

The advantage of the DropTail policy is its simplicity. There is no need to set various
parameters and keep the additional information about the flows and the state of the queue.

However, there are many disadvantages of the currently used combination of DropTail pol-
icy and TCP/IP protocols. They are packet retransmissions, global synchronization, unfair
bandwidth sharing, absence of Quality of Service.

With the DropTail policy packets are dropped when the buffer is full, TCP reduces its
sending rate only after a packet loss is detected, which creates multiple packet retransmissions
in the network. DropTail policy does not make differentiation between flows and so there is no
Quality of Service.

When several TCP connections share the same bottleneck link, the bottleneck bandwidth
is shared unfairly and the flows with small RTTs have an advantage inm respect to the flows

with large RTTs. This happens because during the congestion moments all connections which
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share the bottleneck link decrease their sending rates, but for connection with high RTT it takes
longer to restore its sending rate than for connection with small RTT. Then the final transferred
amount of data for the slow connection is much smaller than for the fast connection. Also the
fact that all connections currently using the bottleneck link reduce their rates nearly at the
same time creates global synchronization in the network, which in turn leads to the network
underutilization.

There were many proposals to increase performance of the Network and Transport layers
of the Internet. Between them are Network Pricing, Explicit Congestion Notification (ECN),
Active Queue Management (AQM) algorithms and scheduling algorithms.

Network Pricing is a category of congestion control, where the cost of transmission is used.
Making the transmissions of TCP payable may avoid congestion as the senders will be forced to
minimize the generated amount of traffic. More on this topic can be found in [Bre96, SCEH96,
FRO1, FR04, FORR98].

ECN is a flag which is used to warn the TCP sender about the congestion situation in the
network, see [Flo95, RF99, RFB01]. When the congestion occurs, the router marks packets with
ECN flag instead of dropping them. The packet marked with ECN flag comes to the destination
and the receiver sends back the ACK with ECN flag. When the ACK with ECN flag is received
by the sender, it reduces in half its congestion window as if a packet loss was detected. So,
if in the router instead of dropping the packets, they are marked with ECN flags, the TCP
congestion window is reduced, but there is no need to retransmit the packets again.

To avoid unfair resource sharing in the Internet several AQM schemes were proposed. AQM
is a family of packet dropping algorithms for FCFS queues which manage the length of packet
queues dropping the packets when necessary. AQM algorithms inform the sender about the
possibility of the congestion before a buffer overflow happens. Among AQM algorithms are
RED [FJ93], GREEN [WZ02], BLUE [FSKS02], MLC(!) [SS07], CHOKe [PPP00], etc. None
of them was widely implemented in the networks because of their complexity and nontrivial
parameters selection.

From the user point of view the most important characteristic in computer networks is ’131153
waiting time, the time which passes between the mouse click and the page appearance on the
screen. The delay in the networks consists of the transfer delay, propagation delay, processing
delay and queueing delay. In the networks the queueing delay and delay which is caused by
the packet drops and retransmissions give the largest part of the waiting time. The queueing
delays in the network can be reduced with the efficient scheduling algorithms. While “’AQM
scheme finds the packet which has to be dropped to avoid congestion in the network, scheduling
algorithms find the packet which have to be next served and are used to reduce queueing delay

and to manage bandwidth share between flows.

To develop an efficient scheduling algorithm one has to take into account the specific problems

vV
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of its application domain. In tHe case of computer networks, these problems are: large number
of connections sharing the bottleneck link, the traffic characteristics, the changes of the sending
rates, the possible changes of the network topology and properties and so on. Even though
there exist a lot of different scheduling algorithms, it is not evident to find one which is efficient,
scalable, easy to implement, does not need knowledge of specific system parameters.

In the following subsection we give a short review of the scheduling algorithms which were

proposed to be applied in computer networks and in the Internet.

1.2.2 Computer network modelling with stochastic scheduling

From the stochastic scheduling theory, it is known that, applying different scheduling policies
to a queue, it is possible to influence the system characteristics a lot. The goal of stochastic
scheduling is to find an algorithm which improves system performance and at the same time
which is simple to implement.

It is quite difficult to model the network on the packet level, as the packet arrivals are bursty
and are not Poisson distributed as flow arrivals, see Subsection 1.1.3. Thus networks are often
modelled on the flow level. Every file sent by TCP connection is presented as a job and every
router as a queue.

When we talk about a job size, we consider the time that the job is served in the queue if
there is no more jobs in the system. Though later in this work we use the terms “job size” and
“service time” interchangeably.

As we discussed in Subsection 1.2.1, the bandwidth share on the bottleneck link of the TCP
flows in the case when their RTTs are of the same order is well modelled by the Processor
Sharing (PS) discipline, see [HLN97, NMM98, MR00, FBP*01, CJ07]. Under the PS policy
every job present in the system receives an equal share of the processor capacity. The PS
discipline is easy to analyze, Kleinrock in his book [Kle76a, Sec. 4.4] obtained the expression of
mean conditional and mean sojourn time in the M/G/1 system scheduled with PS discipline.
However, PS disciple does not minimize the mean sojourn time in the system.

It is known that the Shortest Remaining Processing Time (SRPT), see [Kle76a, Ch. 3],
policy minimizes the mean sojourn time in the system, see also [Sch68]. The SRPT discipline
requires knowledge about the job sizes, which is not always possible, as the router does not have
information about the size of the file which was send.

Kleinrock in his book [Kle76b, Kle76a] gives an overview of policies, which do not use in-
formation about the job sizes and are called non-anticipating. In the last years these policies
received a significant attention because of their possible application to resource sharing in com-
puter networks.

It is shown in [Yas87| that the Least Attained Service (LAS) or Foreground-Background

(FB) policy, see [Kle76a, Sec. 4.6], minimizes the mean waiting time in the system among all
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non-anticipating scheduling policies when the job size distribution function has a decreasing

a lot of attention, it was studied in [RS89, FM03b, RUKB03, RUKVB04, RBUKO05|. The survey
on LAS is presented in [NW08|. However, LAS has some disadvantages, for example, it can be
very unfair for the long flows in some cases and it increases a lot the service time for the long
flows, see [FM03b]. Also the mean waiting time in the system under LAS highly depends on the
job size distribution, [RUKBO03]. If there is a long flow in the system which is almost finished
to be served and there is another long flow which arrives, then the first flow has to wait all
the service time of the second flow before quitting the system. The problem of LAS unfairness
with the large jobs was studied in [RUKB03, WHBO03]. Regarding this problem, in [Bro06] it
was shown that when the second moment of the job size distribution is infinite, LAS always has
smaller expected conditional sojourn time than PS.

Both, SRPT and LAS policies give priority to the short flows and though minimize mean
waiting time in the system. The file size distribution in the Internet is heavy-tailed and most
of the flows have short sizes, see Subsection 1.1.3. Then it seems logical to give priority to
the short flows in the network. The differentiation between short and long flows in the Internet
was widely studied, see [GM01, NT02, GM02a, GM02b, RUKB02, RUKB03, FM03b, WBHB04,
AANOO04, AABNO4.

Among flow differentiating policies is the Multi Level Processor Sharing (MLPS) discipline
which was introduced and described by Kleinrock, see [Kle76a, Sec. 4.7]. He shows that the
mean sojourn time in the MLPS system can be sufficiently reduced in comparison with the PS
system. When the MLPS discipline is applied, the jobs are served according to their attained
service up to the given number of thresholds. In [AANO04, AANOQ5] authors show that when
the job size distribution has a DHR, MLPS decreases the mean waiting time in the system with
respect to the PS discipline. In [AA06] authors show that with MLPS the mean delay in the

system can be very close to optimal when the job size distribution has a DHR.

A The particular case of MLPS, Two Level Processor Sharing (TLPS) and its application to
resource sharing in computer networks was studied in [AANO04, AABN04]. In [AABNO04] based
on the TLPS model authors develop the RuN2C algorithm and show that it reduces significantly
the mean waiting time in the system in comparison with the standard DropTail policy. The
mean waiting time in the TLPS model significantly depends on the threshold selection, which
was not yet studied analytically.

The main idea behind LAS and TLPS policies is to give priority to the short jobs, but they
do not give possibility to give preference to some selected flows. In contrast, Discriminatory
Processor Sharing (DPS) policy allows to introduce the Quality of Service in the network. DPS
provides a natural approach to model the resource sharing of the TCP flows with different RTTs
or weighted round-robin algorithm, which is used in operating systems. Also the DPS discipline
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can be used to model the pricing policies on server, when the different services are provided
according to the paid rates. DPS was first introduced by Kleinrock [Kle67]. Under DPS jobs
are organized in classes and are served according to the vector of weights, so each class has its
priority in the system. The DPS policy was studied in [FMI80, RS94, RS96, GM02b, AJK04,
KNQB04, KNQB05, AABNQO5]. Most of the results obtained for the DPS queue were collected
together in the survey paper [AAA06]. However, weight vector selection in DPS is not a trivial
task because of the system complexity.

The problem of finding an optimal policy between all non-anticipating scheduling policies in
the M/G/1 queue was solved by Gittins in [Git89]. He showed that in the M/G/1 queue the
policy which gives service to the job in the system with the highest Gittins index function of the
attained service minimizes the mean waiting time in the system between all non-anticipating
scheduling policies. The well known results of LAS optimality for the DHR job size distribution
can be derived as a corollary of the general optimality of the Gittins policy. However, this

optimality result did not receive much attention and so was not fully exploited.

1.3 Thesis contribution and organization

In the current Thesis we study the problem of resource sharing in computer networks. We
study several scheduling algorithms from the stochastic scheduling theory and their application
to the computer networks. In Chapters 2 - 5 we study the problem of the mean waiting time
minimization in the system with various scheduling algorithms. In Chapter 6 we study the
congestion control problem in the networks and propose a new flow-aware algorithm to improve
the fair resource sharing of the bottleneck capacity.

In Chapter 2 we study the Batch Processor Sharing (BPS) model with hyper-exponential
service time distribution. For this distribution we solve Kleinrock’s integral equation for the
expected conditional response time function and prove the concavity of the solution with respect
to the job size. We apply the found result to find the analytical expressions of the mean
conditional and unconditional times for the TLPS model in the following Chapter 3. We also
use the batch queue analysis in the derivation of the mean conditional sojourn time in Chapter 5.
The results of this chapter are published in [Osi08a].

In Chapter 3 we analyze the TLPS scheduling discipline with the hyper-exponential job size
distribution and with the Poisson arrival process. In the first part of the chapter we study the
case when the job size distribution has two phases. The choice of two-phase job size distribution
is motivated with the “mice-elephant” effect of the file size in the Internet, see Subsection 1.1.3.
In the case of the hyper-exponential job size distribution with two phases, we find a closed
form analytic expression for the expected sojourn time and an approximation for the optimal

value of the threshold that minimizes the expected sojourn time. With the numerical results
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we show that the mean waiting time in the TLPS system is very close to optimal with the
found approximated threshold value. With the simulation results with NS-2 simulator we show
that ‘analytically found threshold approximation minimizes the mean waiting time in the TLPS
system between other threshold values and gives significant relative gain in comparison with the
DropTail policy.

In the second part of Chapter 3 we study the TLPS system when the job size distribution
is hyper-exponential with many phases. For this case we derive a tight upper bound for the
expected sojourn time conditioned on the job size. We show that when the variance of the job
size distribution increases, the gain in system performance increases and the sensitivity to the
choice of the threshold near its optimal value decreases. This work is published in [ABO07].

In Chapter 4 we study the comparison of two DPS policies with different weight vectors.
We show the monotonicity of the expected sojourn time of the system depending on the weight
vector under certain conditiongon the system. The restrictions on the system are such that
the result is true for systems for which the values of the job size distribution means are very
different from each other. The restriction can be overcome by setting the same weights for the
classes, which have similar means. The condition on’means is a sufficient, but not a necessary

condition. It becomes less strict when the system is less loaded. The results of this chapter can
be found in [Osi08b].

In Chapter 5 we obtain the optimal policy for multi-class scheduling in a single server queue.
We apply the results of Gittins [Git89], where he foundlﬁ ‘the optimal policy which minimizes the
mean waiting time in the system in a single class M/G/1 queue between all non-anticipating
policies. In this chapter we show that a straightforward extension of Gittins’ results allows
us to characterize the optimal scheduling discipline in a multi-class M/G/1 queue. We apply
the general result to several cases of practical interest where the service time distributions have
DHRs, like Pareto or hyper-exponential. We show that in the multi-class case the optimal policy
is a priority discipline, where jobs of the various classes depending on their attained service are
classified into several priority levels. Using a tagged-job approach we obtain, for every class, the
mean conditional sojourn time. This allows us to compare numerically the mean sojourn time in
the system between the Gittins optimal and popular policies like PS, FCFS and LAS. As in the
Internet the file size is heavy-tailed and has a DHR, see Subsection 1.1.3, the obtained optimal
Gittins policy can be applied in the Internet routers, where packets generated by different
applications must be served. Typically a router does not have access to the exact required
service time (in packets) of the TCP connections, but it may have access to the attained service
of each connection. Thus we implement the Gitting’ optimal algorithm in NS-2 and we perform

numerical experiments to evaluate the achievable performance gain.

In Chapter 6 we introduce MarkMax, a new flow-aware AQM algorithm for Additive Increase
Multiplicative Decreases protocols (like TCP). The main idea behind MarkMax is to identify
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which connection should reduce its sending rate instead of which packets should be dropped.
In contrast with several previously proposed AQM schemes, MarkMax uses the differentiation
between flows currently presented in the system and cuts the sending rate of the flows with the
biggest sending rate. MarkMax sends a congestion signal to a selected connection whenever the
total backlog reaches a given threshold. The selection mechanism is based on the state of large
flows. Using a fluid model we derive some bounds that can be used to analyze the behavior of
MarkMax and we compute the per-flow backlog. We provide the simulation results, using NS-2,
compare MarkMax with Drop Tail and show how MarkMax improves both the fairness and
link utilization when connections have significantly different RT'Ts. We specify the algorithm,
perform its theoretical analysis and provide simulation results which illustrate the performance
of MarkMax. The work is published in [OBAO0S].

We give the conclusion and future work in Chapter 7.



CHAPTER 2

BATCH PROCESSOR SHARING WITH
HYPER-EXPONENTIAL SERVICE TIME

2.1 Summary

One of the main goals to study BPS is the possibility of its application to age-based schedul-
ing and the possibility to take into account the burstiness of the arrival process. Bursty arrivals
often occur in modern systems such as web servers. Age-based scheduling is used in differenti-
ation of short and long flows in the Internet.

We study the BPS model with the hyper-exponential service time distribution. For this
distribution we solve Kleinrock’s, integral equation for the expected conditional response time
function and prove the concavity of the solution with respect to the job size. We note that the
concavity of the expected conditional sojourn time for the BPS with the hyper-exponential job
size distribution was proven using another method in [KKO08§].

We apply the obtained results to find the mean conditional sojourn time in the Two Level
Processor Sharing (TLPS) system when the job size distribution is hyper-exponential. We prove
that in the TLPS system the mean conditional sojourn time is not a concave function.

The results of this chapter are published in [Osi08a].

17
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2.2 Introduction

The Processor Sharing (PS) queueing systems are now often used to model communication
and computer systems. The PS systems were first introduced by Kleinrock (see [Kle76a] and
references therein). Under the PS policy each job receives an equal share of the processor.

PS with batch arrivals (BPS) is not yet characterized fully. Kleinrock et al. [KMRT71]
first studied BPS. They found that the derivative of the expected response time satisfies an
integral equation and found the analytical solution in the case when the job size (service time)
distribution function has the form F(z) = 1 — p(z)e™#* where p(x) is a polynomial.

Bansal [Ban03], using Kleinrock’s integral equation, obtained the solution for the Laplace
transform of the expected conditional service time as a solution of thegystem of linear equations,
when the job size distribution is a hyper-exponential distribution. Also he considers distributions
with a rational Laplace transform. Rege and Sengupta [RS93| obtained the expression for the
response time in condition upon the number of customers in the system. Feng and Mishra
[FMO03a] provided bounds for the expected conditional response time, the bounds depend on the
second moment of the service time distribution. Avrachenkov et al. [AABO5] proved existence
and uniqueness of the solution of Kleinrock’s integral equation and provided asymptotic analysis
and bounds on the expected conditional response time.

We study the BPS model with the hyper-exponential service time distribution. For this
distribution we solve Kleinrock’s integral equation for the expected conditional response time
function and prove the concavity of the solution with respect to the job size. We note that the
concavity of the expected conditional sojourn time for the BPS with the hyper-exponential job
size distribution was proven using another method in [KKO08§].

One of the main goals to study BPS is the possibility of its application to age-based schedul-
ing and the possibility to take into account the burstiness of the arrival process. Bursty arrivals
often occur in modern systems such as web servers. Age-based scheduling is used in differ-
entiation of short and long flows in the Internet. A quite general set of age-based scheduling
mechanisms was introduced by Kleinrock and termed as Multi Level PS (MLPS). In MLPS jobs
are classified into different classes depending on their attained amount of service. Jobs within
the same class are served according to FCFS, PS or FB policy. The classes themselves are served
according to the FB policy, so that the priority is given to the jobs with small sizes.

We study the Two Level PS (TLPS) scheduling mechanism, a particular case of age-based
scheduling. It is based on the differentiation of jobs according to some threshold and gives
priority to jobs with small sizes. The TLPS scheduling mechanism can be used to model size
based differentiation in TCP/IP networks and Web server request differentiation, see [AA06,
AABNO4].

It is known that many probability distributions associated with network traffic and, in
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particular, the file size distribution in the Internet are often modelled with heavy-tailed distri-
butions. In [BM06, FW98§]| it is shown that a heavy-tailed distribution can be approximated
with a hyper-exponential distribution with a significant number of phases. We study the TLPS
model with the hyper-exponential service time distribution. We apply the results of the BPS
queueing model to the TLPS model with the hyper-exponential service time distribution, find
an expression for expected conditional sojourn time function and prove that it is not a concave
function with respect to the job sizes.

The Chapter is organized as follows. In Section 2.3 the BPS scheduling mechanism with the
hyper-exponential service time distribution is considered. In Section 2.4 the results obtained
for the BPS model are applied to the TLPS model, where the job size distribution is also
hyper-exponential. We put some technical proofs in the Appendix.

This results of this chapter were published in [Osi08a], Chapter 3 of the current Thesis, more
detailed proofs can be found in Research Report [Osi07]|. The analysis of the queue with batch

arrivals is also used in Chapter 5.

2.3 The analysis of the Batch Arrival Processor Sharing model

Let us consider an M/G/1 system with batch arrivals and PS queueing discipline. The
batches arrive according to a Poisson process with arrival rate A. Let 7@ > 0 be the average
size of a batch. Let b > 0 be the average number of jobs that arrive with (and in addition to)
an arbitrary job which is tagged upon arrival. Let B(z) be the required job size (service time)
distribution and B(x) = 1 — B(z) be its complementary distribution function. The load is given
by p = Anm, with m = fooo zdB(x). We assume that the system is stable, p < 1.

It is known that many important probability distributions associated with network traffic
are heavy-tailed. In particular, file size distributions observed in the Internet are often heavy-
tailed. The heavy-tailed distributions are not only important and prevalent, but also difficult
to analyze. In [BMO06, FW98] it was shown that it is possible to approximate a heavy-tailed
distribution by a hyper-exponential distribution with a significant number of phases. Thus, in

our work we use the hyper-exponential function to represent the job size distribution function

B(m):l—Zpie_“"r, 1< N < o0, (2.1)
i

P >0, uy >0, i=1,...,N, > . p; = 1. Without loss of generality, we can assume that
0 < N < pN-1 < ... < i < i1 < 00, (2.2)

By > ; and [[; we mean Zf\;l and ]—[:\;1 By Zi?&j or H#j we mean Zi:h__’N‘#j and
Hi:l,...,N‘i?‘:j'
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Let a(z) be the expected conditional response time in the BPS system for a job with service
time x and o'(z) be its derivative. Kleinrock showed in [Kle76a, Sec. 4.7] that o/(x) satisfies

the following integro-differential equation

o

el = /\ﬁj{; o (y)B(z + y)dy + A7 /(;ma’(y)ﬁ(w —y)dy +bB(zx) + 1. (2.3)

Before presenting our main result let us prove auxiliary lemmas. Let us define

- Pi
U(s)=1—- AR . 2.4
(5 e 2.4)
Lemma 2.1 The zeros b;, i=1,...,N of the rational function (2.4) are all real, distinct,

positive and satisfy the following inequalities:

0<by < pn, pr1 <bj<p, i=1,...,N—1. (2.5)

Proof. Following the approach of [FMI80], the equation ¥(s) = 0 has Ny roots —b;, ¢ = 1,..., Ny,
where Ny is the number of distinct elements within p;. We have N; = N because of (2.2). All
~b;, i =1,..., N arereal, distinct, negative and satisfy the following inequalities: 0 > —by > —uy,
—fir1 > =b; > —p, i=1,..., N — 1. With this we prove the statement of Lemma 2.1. |

Lemma 2.2 The solution of the following system of linear equations:
Ty . _
2—2_52_1’ CI—I,...,N, (26)

is unique and is given by

Hq:l,...,N (N’g - b%)

 k=1,...,N. 9.7
NG @7)

T =

Proof. The proof is given in the appendix. |

Corollary 2.1 The solution of equation (2.6) is positive. Namely, z >0 fork=1,...,N.

Proof. It follows from (2.2) and (2.5). |

Now we can prove our main result.
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Theorem 2.1 The expected conditional response time in the BPS quewe with the hyper-ezponential

job size distribution function as in (2.1) is given by:

Ck _pra c
T) = cpxr — ; ie BN ; b—z, a(0) =0, (2.8)
1
Cp = 1—'_*",5= (2.9)
b I1, (uf = 57)
Cp = == , k=1,...,N, 2.10
= oxm (bknq# (62 - 2) (2.10)

where by, k=1,..., N are the solutions of the equation V(s) = 0 and are all positive, distinct,

real and satisfy inequalities (2.5).

Proof. Let us denote by Lo/ (s) the Laplace transform of &'(z) and L; = Lo/(us), i =1,...,N.
From (2.1), (2.3):

b il
o (z) = M\ E piLie % + )\ﬁ/ o (y)B(zx — y)dy + bB(z) + 1.
- 0
T

Taking the Laplace transform of the above equation and using the convolution property, we
have

_ piLi Pi 1
T(s) = A — 40 =5
sJ¥s) n¥s+m+ : s+,un;+s

Using the results of Lemma 2.1 we get:

ITjsti (s + k) Tlezils+me) | 1TTu0s + )
Lo(8) = M1 W ol R A = . [ET1
)= L ey PR TG0 i The ey 1
Hence there exist ¢g and ¢, £ =1,..., N such that:
_ %o Chk
Loo(s) = = +zk:s+bk' (2.12)

Then, taking the inversion of the Laplace transform and using «(0) = 0, we get (2.8). From
(2.11) and (2.12)

cy = LQI(S)S|3=0 =

(2.13)

From (2.4) we have

Hibi — Pi
=U(s)|s=g=1—-AT2 —=1-p
" (8)]s=0 E?, p p

=
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So, then for cp we have (2.9). Let us find ¢, k= 1,..., N. We denote:

* Ci
La,r(S) = Z m, (214)

and L} = L%, (u;), 7 =1,...,N. Using (2.11), (2.12) and (2.14), we can write

; bi i L} i
Lo ()l 0) o Bl s P

[Li(s+m) = s+ ~ 5+

Multiplying the above equation by (s + 1), setting s = —q, ¢ =1,..., N and using (2.14) we
get

i (b — :Uuq) = Cj
= A\Tip +bpg, g=1,...,N. 2.15

Let us notice that from (2.4) we have the following

H (bi — ,uq)

ot L = U)o+ )iy = —NTP =1 .
H’L#q Hi — .UJq} ()( AR 4

Then, using (2.15), we get

Cjbj b
N (2.16)
; pz—b:  22m
So, ¢k, k=1,...,N are solutions of the linear system (2.16). If we denote
C by,
= , k=1,...,N
= b/ 2am)’ i e

then the system (2.16) will take the form (2.6) and by Lemma 2.2 for c; we have the statement
(2.10). This completes the proof of Theorem 2.1. [ |

Corollary 2.2 The expected conditional sojourn time function in the BPS system with the

hyper-ezponential job size distribution as in (2.1) is a strictly concave function.

Proof. The function (2.8) is a strictly concave function if o’(z) = — 3", cxbre T < 0. This
is true, as ¢ >0, by >0, E=1,...,N, which follows from b >0, 7 > 0, Corollary 2.1 and
Lemma 2.1. |

The result of Corollary 2.2 was also proven using another method in [KKO08|.

Remark 2.1 Let us denote by n(z) an average density of jobs still in the system which have

recetved an amount of service equal to x . Then n(x)dz s the average number of jobs still in
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the system which received an amount of service between x and x + dx. From [Kle76a, Ch. 4],

we have
n(z)dz = AB(z)a'(x)dz.

As o/ (z) and B(z) are positive decreasing functions, n(z)dz is also a positive decreasing func-
tion. Then the average number of jobs which are still in the system and received an amount of
service around T is decreasing with respect to the received amount of service. This property is
not true for all queuwing systems. In particular, as we will see later, it is not true for the TLPS

system with the hyper-exponential job size distribution.

Let us denote the expected sojourn time in the BPS system as T Jo” o (z)B(z)dz.

Let us prove the following theorem.

Theorem 2.2 The expected sojourn time TBPS in the BPS system with the hyper-ezponential

job size distribution as in (2.1) is given by

=BPS m Picy
T = :
l—p S HitY

Proof. As the expected sojourn time G is given by
o0
TERE / o (z)B(z)dx,
0

then using (2.8) we receive the statement of the Corollary. o

2.4 The analysis of the Two Level Processor Sharing model

Let us study the TLPS scheduling discipline with the hyper-exponential job size distribution
F(x). Let F(z) =1 — F(z). The jobs arrive to the system according to a Poisson process with
rate A. We give a detailed TLPS model description in the Section 3.3 of the later Chapter 3. Let
@ > 0 be a given threshold. There are two queues in the system, low and high priority queues.

Both queues are served with the PS discipline. In the high priority queue jobs are served until

they receive € of service, if after the job received @ amount of service it is still in the system,
it waits in the low priority queue to be served. The low priority queue is served only when the
high priority queue is empty, thus, we can consider the low priority queue as a queue with batch
arrivals, see also [Kle76a, Sec. 4.7].

Let us denote by T- - °

a job of size  and by T() the expected sojourn time of the system. According to [Kle76a, Sec.

(x) the expected conditional sojourn time in the TLPS system for
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4.7] the expected conditional sojourn time of the system is given by:
s
=TLPS 1—pg’ —

e (z) = W) + 0 +o(z - 9):3 |z € (8, 00)
1—pe ’ ’ .

z € [0,6],

Here we use the following notations. Let us denote by Xj = fogny”‘lf(y)dy the n-th moment
for the distribution truncated at 6 and py = /\X_g1 the utilization factor. According to [Kle76a,
Sec. 4.7] the average batch size is m = F(0)/(1 — pg), the average number of jobs that arrive
to the low priority queue in addition to the tagged job is b = 2AF(8)(W(6) + 6) /(1 — pg) and

a(z — 0)/(1 — pg) is the time spent by the job in the low priority queue. Here W (6) = ,\X_g/(?.(l — pg))-

Using the result of Theorem 2.1 Section 2:3 we obtain the following result, which is used in

[ABO07] and in Chapter 3. L

AN
vV

Theorem 2.3 In the TLPS priority qu’éue with the hyper-ezponential job size distribution:

x ck(6) o0z ci(6)
o 2 Z be(0)© - Z 5:(@)’

[T (uf-5i6)

b g=L;=iN

F-a =% | o) [[ @0 - 20)
o f‘_ g7

j . *where bi(0),1=1,...,N are the roots of the rational function 1 — =2 Yo H‘u =0, and satisfy

1—py

the following inequalities: 0 < by (0) < pn, pig1 < bi(0) < pg, i=1,...,N — 1. Here F19 = pe~Hif

t=1,...,N. The coefficients cx(8), k =1,..., N are strictly positive for positive 8. The func-

tion a(x) is a strictly concave function with respect to the job size for positive 0.

. ; : . S 5 .
Corollary 2.3 The ezpected conditional sojourn time Pt (z) in the TLPS queue with the
hyper-exponential job size distribution is a strictly concave function for x > 0, linear for x < 8
and 1s not a concave function on the interval (0,00) with respect to the job sizes for positive

values of 0.
LPS
(z)

is linear for = < @, this follows from the standard PS model. As —TTLPS(:':) is not continuous at

Proof. The concavity of TTLPS(:E) for x > 0 follows from Theorem 2.3. The function T

the point = = 6, it is also not concave on the interval (0, 00) [ |

From Theorem 2.3 it follows that 1 < o/(0) and then TTLPS’(a:) TLPS’(Q:)|$:9+O.

Then for the TLPS system the average number of jobs which are still in the system and received

|m =6-0 <T
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an amount of service around z is not a decreasing and not even monotone function with respect
to the received amount of service.

Now let us give the expression of the mean sojourn time in the TLPS system, which we use
in Chapter 3 of the current Thesis.

Theorem 2.4 The expected sojourn time T(0) in the TLPS system with the hyper-ezponential

distribution function is given by the following equation:

o X;+WOF©)  (m—X])

76 =
©) 1—po 1- P
W (6) + 6) g — bi{p
)+ Z Hq( 2q 3(2)) , (2-17)

1—pe b( m+b (6)) T1gsz; (b3(6) — b5(6))
where b(8), i =1,..., N are defined as in Theorem 2.3.
Proof. According to [Kle76a, Sec. 4.7]

_ X} +W(O)F(9 [

T(g) = 2e T WOIEE) ()}

1—pg 1 —pg

Then using the result of Theorem 2.3 we get the statement of the current Theorem. O

2.5 Conclusion

We study the BPS queueing model, when the job size distribution is hyper-exponential, and
we find an analytical expression of the expected conditional response time and for the expected
sojourn time. We show that the function of the expected conditional sojourn time in the BPS
system with hyper-exponential job size distribution is a concave function with respect to job
sizes. We apply the results obtained for the BPS model to the TLPS scheduling mechanism
with the hyper-exponential job size distribution and we find the expressions of the expected

conditional response time and expected response time for the TLPS model.

2.6 Appendix

Lemma 2.2: The solution of the system of linear equations (2.6) is unique and is given by
(2.7

Proof. Let z, 1 be two vectors of size IV and D be the matrix of size N x N.

$=[$11$23"'3xN}T! l:[lalu"'vllT‘lxN

= |——rm
Hi = b ij=1,..,N
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Then, system (2.6) can be rewritten as

Dr=1
Applying Cramer’s rule [Kur72| we obtain:
det Dy, ‘
g =——=, k=1...,N, (2.18)
Dy = [Dyy; - - - Dig—13, 1, Digay, - - - D]

As D is a Cauchy matrix, its determinant is known [Kur72]:

—_— :
L\/‘ Let 2 {.-"\i" .

Hl§j<k§N ((#? = U%)(bi - b?)))
Hj,k:l,...,N (H? - bi)

Under the product sign by 1 < j < k < N we mean that we take all the combinations (j, k) such
as 1< j< N, 1<k<Nandj<k Byjk=1,...,N we mean that we take all the pairs
(7,k) suchas 17 N, 1<k<s N,

Due to (2.5), det I} > 0 and we can use Cramer’s rule to calculate zg. Let us find det Dy.

det D =

(2.19)

det Dy = det [Dm, S D[k—l]a.l_a D[k-}-l]a s i D[N]]
= (—1)k_1 det [1, D[ll‘ ey D[k—l]iD[k+1]? ron D[N]}

To simplify the ensuing computations let us introduce the following notations:
Bi=-b2,, 1i=2,...,k, Bi=-b, i=k+1,...,N.

Let us notice that here 3;, ¢ =1,..., N depend on the index k. As at this point the index k is
fixed we do not represent this dependency in the notation of ;.

Then, we have

1 1

= u3+8g ui+oy
det Dy = (—1)k1 e g om
w3 +82 nh+BN NxN

Under the sign of determinant we subtract the first line from all the other lines.

1 1 1
1 ;iﬁ; ’757”? ==
0 t-e]fuzg .u]*.ua
det Dk = (r—-l)kil (pg+82)(n]+062) (g +81 ) (n]+8L)
ni-n3s u3—udy
(R +82)e+82) " R AB e +0) NxN
k—1 2 2
(0 T J(ed - ud) ,
T
E=32,...N k3 +By
det Dk = ’2 :
H(.u'l = .6)6) u?\;+ﬁk

(N—1)x(N—1)
k=2,..,N
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So, as the above matrix under the sign of determinant is a Cauchy matrix of size N — 1, the
following equation holds:

(DR Tl = md) TT (2= )85 - By)
q=2,....IN

2<j<g<N
det Dy = =

(13 + By)
(13 + By) I;IN !
q=2,...,.I¥

Let us recall that 8; = —b?_;,i=2,...,kand ;= —b,i=k+1,..., N, then

(DR I] W2 —pd) [ 202

1<j<gsN 1<5<qSN, jq#k

II &3-5)

5q=1,...,N,q#k

1T (3 =)@ -v) s —03)

1,....N

j:
I wi-v) JJ @2-d)

79=1...,N g=1,...N,q#k

det D, =

Finally, from (2.18) and (2.19), we have expression (2.7) for zj, which proves Lemma 2.2.

U pee:
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CHAPTER 3

OPTIMAL CHOICE OF THRESHOLD IN
TwO LEVEL PROCESSOR SHARING

3.1 Summary

We analyze the TLPS scheduling discipline with the hyper-exponential job size distribution
and with the Poisson arrival process. TLPS is a convenient model to study the benefit of the
file size based differentiation in TCP /TP networks. In the case of the hyper-exponential job size
distribution with two phases, we find a closed form analytic expression for the expected sojourn
time and an approximation for the optimal value of the threshold that minimizes the expected
sojourn time. Using"’NSQ simulator we implement the TLPS algorithm in the router queue and
provide simulation results for the case of two phase hyper-exponential job size distribution. We
show that the found optimal threshold approximation value minimizes mean waiting time in the
TLPS system between other threshold values. We show that with the TLPS policy the relative
gain in mean waiting time in comparison with the DropTail policy is very near to the relative
gain which can be reached using the optimal LAS policy and goes up to 36%.

In the case of the hyper-exponential job size distribution with more than two phases, we
derive a tight upper bound for the expected sojourn time conditioned on the job size. We show
that when the variance of the job size distribution increases, the gain in system performance
increases and the sensitivity to the choice of the threshold near its optimal value decreases.

The results of this chapter are published in [ABOO7].

el i 29
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3.2 Introduction

The Two Level Processor Sharing (TLPS) scheduling discipline was first introduced by Klein-
rock, see [Kle76a, Sec. 4.7]. It uses the differentiation of jobs according to a threshold on the
attained service and gives priority to the jobs with small sizes. The TLPS scheduling mechanism
can be applied in file size based differentiation in TCP/IP networks [AANO04, AABN04, FM03b]
and Web server request differentiation [GM02a, HBSBA03]. A detail description of the TLPS
discipline is presented in the ensuing chapter. Of course, TLPS provides a sub-optimal mech-
anism in comparison with SRPT, which minimizes the expected sojourn time, see [Sch68].
Nevertheless, as was shown in [AA06], when the job size distribution has a decreasing hazard
rate, the performance of TLPS with appropriate choice of threshold is very close to optimal.

In the present chapter we characterize the optimal value of the threshold when the service
time is hyper-exponential. The motivation to study TLPS with the hyper-exponential service
time is as follows. The distribution of file sizes in the Internet often can be modelled with
a heavy-tailed distribution. It is known that heavy-tailed distributions can be approximated
with hyper-exponential distributions with a significant number of phases [BM06, FW98|. Also in
[KSHO3], it was shown that a hyper-exponential distribution models well the file size distribution
in the Internet. In [KSHO3] authors propose an efficient algorithm to approximate heavy-tailed
distributions with hyper-exponential distributions with many phases.

The chapter organization and main results are as follows. In Section 3.3 we provide the
model formulation, main definitions and equations. In Section 3.4 we study the TLPS discipline
in the case of the hyper-exponential job size distribution with two phases. It is known that the
Internet connections belong to two distinct classes with very different sizes of transfer. The first
class is composed of short HTTP connections and P2P signaling connections. The second class
corresponds to downloads (PDF files, MP3 files, MPEG files, etc.), see Subsection 1.1.3. This
fact provides motivation to consider first the hyper-exponential job size distribution with two
phases.

We find an analytic expression for the expected sojourn time in the TLPS system. Then,
we present the approximation of the optimal threshold which minimizes the expected sojourn
time. We show that the approximated value of the threshold tends to the optimal threshold
when the second moment of the job size distribution function goes to infinity.

We show that the ratio between the expected sojourn time of the TLPS system and the
expected sojourn time of the standard PS system can be arbitrary small for very high loads.
For realistic loads this ratio can reach 1/2. We also show that the system performance is not

too sensitive to the choice of the threshold around its optimal value.

—_—

In [AABNO4] authors provide the scheduling algorithm, RuN2C, which is based on the

TLPS policy and uses packets sequence numbers to schedule packets. Using NS-2 simulator
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we implement the TLPS algorithm in the router queue, which schedules packets according to
the attained service of every connection presented in the system. For that we keep the trace
of the connection’s attained service until there are no more packets from the connection in the
queune. We provide the simulation results for the different values of the threshold and show that
analytically found threshold approximation minimizes mean waiting time in the TLPS system.
We compare the mean waiting time in the system when the bottleneck queue is scheduled with
TLPS, LAS and DropTail policies. We found that the relative gain of the TLPS policy with
the approximated value of the optimal threshold can achieve up to 36% in comparison with the
DropTail policy and is very close to the relative gain achieved with the optimal LAS policy in
comparison with the DropTail policy.

In Section 3.5 we analyze the TLPS discipline when the job size distribution is hyper-
exponential with many phases. We provide an expression of the expected conditional sojourn
time as the solution of a system of linear equations. Also we apply an iteration method to find
the expression of the expected conditional sojourn time and using the resulting expression obtain
an explicit and tight upper bound for the expected sojourn time function. In the experimental
results we show that the relative error of the latter upper bound with respect to the expected
sojourn time function is 6-7%.

We study the properties of the expected sojourn time function when the parameters of the
job size distribution function are selected in such a way that with the increasing number of
phases the variance increases. We show numerically that with the increasing number of phases

the relative error of the found upper bound decreases. We also show that when the variance of

the job size distribution increases the gain in system performance increases and the sensitivity

of the system to the selection of the approximate optimal threshold value decreases.

We put some technical proofs in the Appendix.

3.3 Model description

3.3.1 Main definitions

We study the TLPS scheduling discipline with the hyper-exponential job size distribution.
The jobs arrive to the system according to a Poisson process with rate A. We measure the job
size in time units. Specifically, as the job size we define the time which would be spent by the
server to treat the job if there were no other jobs in the system.

Let & > 0 be a given threshold. When a new job arrives to the system, it goes to the high
priority queue, where it is served until it receives the amount of service 8. If the job is still in the
system and needs more service than f, the rest of the job, which is not yet served, goes to the low
priority queue. So, the jobs which attain an amount of service more th}éﬁ f are accumulated in

the low priority queue. The low priority queue is served when the high priority queue is empty.
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Both queues are served according to the PS discipline, namely, the server equally divides its
capacity among all jobs present in the queue. When the high priority queue is empty, the jobs
which are accumulated in the low priority queue arrive to the server in a batch. Thus, we can
consider the low priority queue as a queue with batch arrivals, see also [Kle76a, Sec. 4.7).

Let us denote the job size distribution by F(z). By F(z) = 1 — F(z) we denote the comple-
mentary distribution function. The mean job size is given by m = fﬂoo zdF(z) and the system
load is p = Am. We assume that the system is stable (p < 1) and is in steady state.

It is known that many important probability distributions associated with network traffic
are heavy-tailed. In particular, the file size distribution in the Internet is heavy-tailed. A
distribution function has a heavy tail if e(1 — F(z)) — oo as * — 0o, Ve > 0. The heavy-
tailed distributions are not only importam;g;alent, but also difficult to analyze. Often
it is helpful to have the Laplace transform of the job size distribution. However, there is
evidently no convenient analytic expression for the Laplace transforms of the Pareto and Weibull
distributions, the most common examples of heavy-tailed distributions. In [BM06, FW98§],
[FW98|, it was shown that it is possible to approximate heavy-tailed distributions by hyper-
exponential distributions with a significant number of phases. A hyper-exponential distribution

Fy(z) is a convex combination of N exponents, 1 £ N < oo, namely,

N N
FN($)=1~Zp;-e—mm’ i >0, p§; >0, i=1,...,N, and sz-:l. (3.1)
i=1

i=1
In particular, we can construct a sequence of hyper-exponential distributions such that it con-
verges to a heavy-tailed distribution [BMO06]. For instance, if we select

o L BT
Pi=omy M= oo i=1,...,N,
-1
T >1, 2 <y <y —1,

where v =1/3, ni™", m=v/m3>,_; i7", then the first moment of the job size
distribution is finite, but the second moment goes to infinity when N — co. The first and the

second moments m and d for the hyper-exponential distribution are given by:

o0 N - 00 N .
m_/ zdF(z) =S 2, d:/ z2dF(z) =sz—;. (3.2)
0 i1 M 0 —1 M
Let us denote
Fj=pe ™ i=1,...,N. (3.3)
We note that 211 Fi= F(8). The hyper-exponential distribution has a simple Laplace trans-
form:
T
Lf(m)(s) = @ o

i=1 S+'ui‘

2
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We would like to note that the hyper-exponential distribution has a decreasing hazard rate. In
[AAO06] it was shown that when a job size distribution has a decreasing hazard rate, then with
an appropriate selection of the threshold the expected sojourn time of the TLPS system can be
made close to optimal. Thus, in our work we use hyper-exponential distributions to represent
job size distribution functions. In the first part of the current chapter we look at the case of the
hyper-exponential job size distribution with two phases and in the second part of the chapter

we study the case of more than two phases.

3.3.2 The expected sojourn time in the TLPS system

Let us denote by TTLPS(Q:) the expected conditional sojourn time in the TLPS system for a
job of size z. Of course, TTLPS(:U) also depends on @, but for expected conditional sojourn time
we only emphasize the dependence on the job size. On the other hand, we denote by T(8) the
overall expected sojourn time in the TLPS system. Here we emphasize the dependence on 8 as
later we shall optimize the overall expected sojourn time with respect to the threshold value.

To calculate the expected sojourn time in the TLPS system we need to calculate the time
spent by a job of size  in the high priority queue and in the low priority queue. For the jobs with
size £ < @ the system will behave as the standard PS system where the service time distribution
is truncated at #. Let us denote by

a 2]
3—/0 y”dF(y)Jr@”F(G)—]O ny" " F(y)dy

the n-th moment of the distribution truncated at 6. The distribution truncated at & equals to

to F(x) for z £ 6 and equals to 1 when z > 8. In the following sections we will need

N T
X=m-30 X=2 ——wz——zz 34)
i=1 "t

zl 11”7'

The utilization factor for the truncated distribution is

F'i.

pe=AX}=p— )\Z . (3.5)
=1 Hi

Then, the expected conditional response time is given by
T
FTLPS 1—pp’
(@)= W©)+0+alz—-0)
1 —pg

z € [0,6],

, z € (6,00).
Here W (6) is the mean workload in the system for the jobs of size less then # and according to
the Pollaczek-Khinchin formula equals to

— AX2
WO = 3= oy
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According to [Kle76a, Sec.4.7], 8/(1 — pp) expresses the time spent in the high priority queue,
where the flow is served up to the threshold @ and W (8)/(1 — py) is the time spent waiting for
the high priority queue to empty. The remaining term a(z — 6)/(1 — pg) is the time spent in
the low priority queue. According to Kleinrock [Kle76a, Sec.4.7] the low priority queue can be
interpreted as an interrupted PS queue with batch arrivals. Then, o/(z) = da/dz is the solution

of the following integral equation
o0 T
a'fx) = )\ﬁf o' (y)B(z + y)dy + /\ﬁ] o (y)B(z — y)dy + bB(z) + 1. (3.6)
0 0

Here 7 is the average batch size, B(z) is the complementary truncated distribution and b = b(@)
is the average number of jobs that arrive to the low priority queue in addition to the tagged job.
The expressions for parameters 7, b(d) are explicitly explained in [Kle76a, Sec.4.7] and equal to

Blz) = F(0+2)
- F(e)
()
= )’
_2F(O)(W(9) +9)
aa = (1 - pg) '

The expected sojourn time in the system is given by the following equations:

T(9) = fo i

T@-”ﬁﬁgﬂm]f%ﬁ”@, (3.7)
P = [ z - - "(z)F b
T (9)_f9 o a)dF(m)_fO a!(@)Flz+ B)dz, (3.8)

3.4 Hyper-exponential job size distribution with two phases

3.4.1 Notation and motivation

In the first part of our work we consider the hyper-exponential job size distribution with
two phases. In particular, the application of the hyper-exponential job size distribution with
two phases is motivated by the fact that in the Internet TCP connections belong to two distinct
classes with very different sizes of transfer. The first class is composed of short HTTP connec-
tions and P2P signaling connections. The second class corresponds to downloads (PDF files,
MP3 files, MPEG files, etc.). We discuss this problem more in the Introduction of the present
Thesis, see Section 1.1.3.

According to (3.1) the cumulative distribution function F(z) for N = 2 is given by

F(z) =1—p1e™1% — ppe™#2%,
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where p; + p2 = 1 and p;,p2 > 0. The mean job size m, the second moment d, the parameters
F;, X_é, X_g and pg are defined as in Section 3.3.1 and Section 3.3.2 by formulas (3.2), (3.3),
(3.4), (3.5) with N = 2.
Let us define
_ M2
— Z
We note that the system has four free parameters. In particular, if we fix 1, €, m, and p, the

other parameters po, p1, p2 and A will be functions of the former parameters.

3.4.2 Explicit form for the expected sojourn time

To find the expression of T(f#) we use the result we obtained in the previous Chapter 2,

Section 2.4, Theorem 2.4 and so prove the following Theorem.

Theorem 3.1 The expected sojourn time in the TLPS system with the hyper-ezponential job

size distribution with two phases is given by

XI+WOFO) m-X5 b0 (mpalm - X% +6,(0)F*(9))

T(9) = 1— py 1—p 21— p)F(O) (1 + p2 —v(0)F(6)) (3.9)
where 5,(8) = 1 — v(8)(m — X}) = (1= p)/(1 — pg) and v(6) = A/(1 — py).
Proof. As we found in the previous Chapter 2, Section 2.4, Theorem 2.4,
T(G) = X_5+1W(§37(9) 3 (m1 = 35&)
2 _p2

where b;(#) are the roots of the rational function ¥(s) =1 — WE ; E%T = 0. Let us define
8,(8) = (1 = p)/(1 — pp) and v(0) = A/(1 — pg). Then for the case of two phase job size

distribution function ¥(s) equals to

52+ s(u1 + pa — Y(O)F(8)) + p1128,(6)
(s+ m)(s+ p2)

U(s) =

and has two roots, —b1(6) and —bs(8), which are the solutions of the square equation s2+s(u1 +
p2 — Y(O)F () + pu1026,(8) = 0. Then we know that

b1(8) + b2(8) = p1 + pa — ¥(6)F(6), (3.11)
b1(0)b2(0) = p11120,(8). (3.12)
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Simplifying expression (3.10) and using (3.11) and (3.12) we get expression (3.9) and so prove
the statement of the Theorem.

The same result can be obtained using the Laplace transform based method described in
[Ban03]. n

3.4.3 Optimal threshold approximation

We are interested in the minimization of the expected sojourn time function T'(f) with
respect to 0. Of course, one can differentiate the exact analytic expression provided in Theo-
rem 3.1 and set the result of the differentiation to zero. However, this will give a transcendental
equation for the optimal value of the threshold. In order to find an approximate solution of
T'(S) = dT{G)f/UdB = 0, we approximate the derivative T’(H) by some function 7'(#) and obtain
a solution for T’(éopt) =0.

Since in the Internet connections belong to two distinet classes with very different sizes of
transfer (see Section 3.3.1), then to find the approximation of T’(@} we consider a particular

case when pg << p1. Let us introduce a small parameter € such that

€ (mp1 — 1) _ € (mu —1)

= :1—
H2 =€, M 1_. @ P2 1 _e

We note that when e — 0 the second moment of the job size distribution goes to infinity.

Lemma 3.1 The following inequality holds: pip > A. _ LY
f/‘r" / {

Proof. Since p; > 0 and p2 > 0, then myuq > 1 and m > ﬁ; Taking into account that Am = p,
we get & > ,u.% Consequently, we have that puip > A. |

Proposition 3.1 The derivative of T(8) can be approzimated by the following function:

T'(0) = —e ™ pier + e ey,

where

__ plmp —1) oy — Pmp — 1)
mlmpr —p)(T—p) 7 (mp—p)?

5] (313)

Namely,

T'(6) — T'(6) = Oua/m).

Proof. Using the analytic expression for both T’(@) and %’(9), we get the Taylor series for
T’(B) — T'(6) with respect to ¢, which shows that indeed

/

T(0) —T'(8) = O(e).
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Thus we have found an approximation of the derivative of T(f). Now we can find an

approximation of the optimal threshold by solving the equation T'(¢) = 0.

Theorem 3.2 Let 64, denote the optimal value of the threshold. Namely, Oop = argminT(6).

R (2 s
i 1 — pe 1 (#2(1 = .0)) (3:14)

The value Gop given by

approzimates Oope so that “fl(éopt) = o(u2/11).

Proof. Solving the equation

we get an analytic expression for the approximation of the optimal threshold:

~ 1 1- 1 - A
G = — " (em( p)) _ ln((m ))_
pi(l —e) (11— A) p1—pe o \p2(l-p)
Let us show that the above threshold approximation is greater than zero. We have to show that

(p1—-2)
p2(1-p)

> 1. Since p1 > po and p1p > A (see Lemma 3.1), we have

H1 > 2
= wm(l=p)>pa(l—p)
= A<mp<p—p2l-p)
= (p1—=A) > pe(l—p).

Expanding T’(gopt) as a power series with respect to € gives:

—

T (Oopt) = €*(consty + consty Ine + constz In?¢),
where const;, i = 1,2 are some constant values! with respect to e. Thus,

T (Gopt) = o) = opiz/m),
which completes the proof. |

From formula (3.14) we can see that gopg is of the same order as 1/u)In(1/€). As a con-
sequence Ei,pt goes to infinity when € — 0. Also formula (3.14) indicates that the value of the
threshold should be chosen between 1/u1 and 1/ps.

In the next proposition we characterize the limiting behavior of T'(8yp) and T(@},pi) as e — 0.

In particular, we show that T(gopt) tends to the exact minimum of T(#) when e — 0.

'The expressions for the constants const; are cumbersome and can be found using Maple command “series”.
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Proposition 3.2

B o e m

I Cept) = T T o) =7 — 21
where ¢ s given by (3.13).

Proof. We find the following limit as € — O:

e m
li = — el
E%T(ﬁ) - c1 +cre )
where ¢ is given by (3.13). Since lim._oT(0) is a decreasing function, the optimal threshold
for it is 8,p = co. Thus,

lim T(0ope) = Jim lim T(6) = e,

f—oc e—0 1-— P

On the other hand, we obtain

which proves the proposition. |

=PS =%
Let us denote by g(p) = %ﬂ-g”&) the relative gain of the TLPS system with the optimal
threshold approximation (3.14) with respect to the PS system. In the next proposition we study

the limiting behavior of g(p) when ¢ — 0 and when the load of the system p — 1.

Proposition 3.3 The gain of the TLPS system with the value of the threshold as in (3.14)
according to the standard PS system has the following properties:

=PS .. =7
; _ = 11me~0T(90pt) — P(mﬂ«l = ]-)
e—0 T mpiy(mpy — p)
1

lim li = —,

e limg(p) e
The limit lime_o g(p) is an tncreasing function of p.
Proof. Follows from the previous derivations. [ |

One can see that the limit lim._.g g(p) can be made arbitrarily close to one by choosing p1
sufficiently close to 1/m and the load sufficiently close to one. This in turn implies that the
ratio lime .o T{gopf)/TPS can be made as close to zero as one wants.

This is a striking result as it shows that the performance of the TLPS system can be ar-
bitrarily better than the performance of the PS system for some selection of the parameters.
However, in the next SES/S_;QH with the numerical results we show that this set of parameters is

very small and for realistic parameters the gain is in the order of 50%.
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Figure 3.1: T(0) - solid line, T' ~ - dash dot line, ~ Figure 3.2: g(p) - solid line, gi(p) - dash line,
T(Bopt) - dash line. g2(p) - dash dot line.

3.4.4 Numerical results

For plots in Figures 3.1-3.2 we use the following parameters: p = 0.909, m = 1.818, u; = 1,
o =0.1,50 A=0.5 and ¢ = po /1 = 0.1. Then, p; = 0.909 and p2 = 0.0909.

In Figure 3.1 we plot T(6), T and T(ggpt). We note that the expected sojourn time in
the standard PS system T 4 equal to T(0)..We observe that T—(gopt) corresponds well to the
optimum even though € = 1/10 is not too small. - ( X (mj)

Let us now study the gain that we obtain using TLPS, by setting # = gom, in comparison
with the standard PS. To this end, we plot the ratio g(p) = Tis%-—zé@ﬂﬁ in Figure 3.2. The gain
in the system performance with TLPS in comparison with PS strongly depends on p, the load
of the system. One can see that the gain of the TLPS system with respect to the standard PS
system goes up to 45% when the load of the system increases.

To study the sensitivity of the TLPS system with respect to €, we plot in Figure 3.2 the

. TP _T(200pe) L) : 7
ratios g1 (p) = —,32?— and g2(p) = _‘—Tﬁﬁg‘_““*. Thus, even with the 50% error of the 8op¢

value, the system performance is close to optimal.

One can see that it is beneficial to use TLPS instead of PS in the case of heavy and moderately
heavy loads. We also observe that the TLPS system is not too sensitive to the choice of the
threshold near its optimal value, when the job size distribution is hyper-exponential with two

phases. Nevertheless, it is better to choose larger rather than smaller values of the threshold.
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3.4.5 Simulation results

Using NS-2 simulator we implemented the algorithm based on the TLPS scheduling scheme
and provide experimental results for the case of two phase hyper-exponential job size distribu-
tion. The algorithm is implemented in the router queue. In the router we keep the trace of the
attained service of all flows in the system. The trace is kept during some time after which the
router does not receive more packets from this low. Every time to dequeue the packet from the
bottleneck router, the router checks, if the first packet in the queue belongs to the flow which
already received § amount of service. If the flow did not receive § amount of service, then the
packet is served, else, the next packet is considered. If in the queue there are no packets which
belong to the flows which did not yet received 8§ amount of service, the first packet in the queue
is served.

In [AABNO04] authors provide RuN2C, the scheduling algorithm based on the TLPS scheme.
RuN2C takes the decision of the packet service according to the packet sequence number. In
the current work we do not use the packets sequence numbers to take the scheduling decision,
but we keep the track of the attained service for every flow in the system.

The simulation topology is the following. The files are generated by the FTP sources which
are connected to the TCP senders. All TCP senders send files to the TCP destination nodes
using the same bottleneck link. Every FTP source belongs to one of two sending classes in
the system. FEach class 7, ¢ = 1,2 sends files with Poisson process with rate A; and has the
exponential file size distribution with mean m;. We consider that all connection have the same
propagation delays. The bottleneck capacity is yu. We apply the TLPS scheduling algorithm to
schedule the packets in the queue of the bottleneck link.

The proposed scheme is equivalent to the case of hyper-exponential job size distribution with
two phases, where p1 = A1/A, p2 = Ao/A, 1/p1 = my/u, 1/pua = ma/p, p = Mp1/p1 + pa/p2).
Then we can use the approximated value of the optimal threshold given by (3.14)

: 1 (1= A) )
Oopt = In ;
P — o (Mz(l - p)

After we found the approximated value of the optimal threshold for the analytical model, we

have to multiply éopt by the bottleneck capacity to get the real threshold value we use in the

simulations, 93;;;*“ = Bopt/d.

For the simulations we select the following system parameters. The bottleneck capacity
p#=100 Mbit/s. All the connections have a Maximum Segment Size (MSS) of 540 B. The
propagation delay of every link equals to 2 ms. The duration of every simulation is 2000 s.
Other system parameters and the approximated value of the optimal threshold are given in
Table 3.1. In the current simulation model the short flows take p; = 0.25 and the long flows
p2 = 0.61 of the total bottleneck capacity. The total load in the system is p = 0.86.
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M M3 M| Ao P1 P2 P 3;:?“'!

1157 MSS | 11574 MSS | 5.0 | 1.22 | 0.25 | 0.61 | 0.86 | 7638 MSS

Table 3.1: Simulation parameters

We compare the mean waiting time in the system under TLPS, LAS and DropTail policies.
For the TLPS policy we provide the simulation results for different values of 8, which is varied
from 1157 MSS to 80000 MSS. The results are presented in Figure 3.3. As one can see the
found approximated value of the optimal threshold 6’”3;?”'! =7.6x10% MSS minimizes the mean
waiting time in the TLPS system between other threshold values. The mean waiting time in
the TLPS system is very close to the optimal value of the mean waiting time achieved with
the LAS policy. The maximal achieved relative gain with the TLPS policy when § = éj;;?“i in
comparison with the DropTail policy equals to 35.7%, while the relative gain with the optimal

LAS policy in comparison with the DropTail policy is 36.7%.

1.5

lap DropTail
13} '
1.2t
,")’
1.1
TLPS
1h
K ¥
0.9 ;‘Yg LAS
u'“1}; 76 14 20 34 46 70
Ak x10°
9 MSS

Figure 3.3: Mean waiting time in the system ( s): TLPS - solid line with stars, DropTail - dash line,
LAS - dash dot line.

3.5 Hyper-exponential job size distribution with more than two
phases

3.5.1 Notation and motivation

In the second part of the present work we analyze the TLPS discipline with the hyper-
exponential job size distribution with more than two phases. Using hyper-exponential distri-

bution with more than two phases we obtain a more realistic representation of the file size
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distribution in the Internet. In particular it was shown in [BM06, KSH03, FW98| that the
hyper-exponential distribution with a significant number of phases models well the file size
distribution in the Internet. Thus, we will use

N N
F(z)=1-) pie™?® > pi=1, >0 p>0, i=1...,N, 1<N<oo.
F=] i=1

It appears that in i#& case of many phases finding an explicit expression for the optimal
threshold value is quite a challenging problem. In order to deal with a general hyper-exponential
distribution we proceed with the derivation of a tight upper bound on the expected sojourn time
function. The upper bound has a simple expression in terms of the system parameters and can
lend itself to efficient numerical optimization.

In the following we write simply 3, instead of 3.7 ..

The mean job size m, the second moment d, the parameters ﬁ, fg, 5(?“ and py are defined
as in Section 3.3.1 and Section 3.3.2 by formulas (3.2), (3.3), (3.4), (3.5) for any 1 < N < oo.
The formulas presented in Section 3.3.2 can still be used to calculate b(8), B(z), W (8), v(f),
3,(8) TTLPS(w}, T(6). We also need the following operator notations:

H

81(8(z)) = 1(6) fo B F (e +y + 0)dy + 1(68) /0 B F(e -y +6)dy,
B(5(z)) = fD W) Fly + 0)dy,

for any function G(z). In particular, for some given constant c, we have

®1(c) = cv(8)(m — X}) = cq, (3.15)
2(c) = c(m — XJ), (3.16)
where —
Ty Mm—X5) _ p—pe
=v(0)(m— X}) = br = <1 3.17
7=(0)(m - XJ) = S{0 = 0 (3.17)
The integral equation (3.6) can now be rewritten in the form
/ ) b{0) =
o' (z) = @1 (a (y))—b—TF(sc +8)+1 (3.18)
and equation (3.8) for _TBPS(B) takes form
T575(0) = @y(c/ (). (3.19)

3.5.2 Linear system based solution

Using the Laplace transform based method described in [Ban03] we prove the following
proposition.
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Proposition 3.4 The following formula holds:

PR ZF* . (3.20)
weth

Ly=L; + - ¢l N

T 3 5‘0(6),&1‘ AeE Sy '

where the L7, i =1,...,N are the solution of the linear system

Fi FiL? 0 Fi

Li{1—~(8 = ( e p 6  p=1,...,N. (321
”( ()Zi:u;ﬂr ) )Z# “}“#z (6)¥f$p+m (3-21)

Proof. To find TBPS(H) we need to solve the integral equation (3.6). Let us recall that
v(8) = A/(1 — pg), then we can rewrite (3.6) in the following way

T

o () = 7(6) ]0 o )F(@+y + 0)dy +1(0) /0 o (9)F(e -y + 0)dy + b(O)B(z) + 1,

= O LB "o vy ++(6) [ 0)F (@ =y + 0y + H0)Ba) + 1

We note that in the latter equation [;° «/(y)e™#¥dy, i =1,..., N are the Laplace transforms of
o/ (y) evaluated at i, i = 1,..., N. Denote by La/(s) = [;° o/ (z)e*"dx the Laplace transform
of &/(x) and let L; = Lo/(u;), i=1,...,N. Then, we have

/() = 1(0) S FiLue ™ +5(6) [ @ @F( ~ y + O)dy + 56)Bla) + 1.

Now taking the Laplace transform of the above equation and using the convolution property,
we get

FiL. FiLy(s bH
Lar(s) =7(0) 3 42 1 0) 3 Sw ud st :

= Lal(s)(luv{ﬁ)zs ) )ZHM “))Zsfngr%'

Then, we substitute into the above equation s = p;, i =1,...,N and get L;, i =1,...,N as a

solution of the linear system

L,,(l-ﬂg)Z F _)—7(9)2 F‘;Li_+b($)z £ +l, p=1,...,N.

Hp =+ i Hp + [ Hp T i Hyp
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If now we set L, = L+ 5(0})—%’ p=1,...,N, then L} are the solutions of the linear system
BPS ()

PR o fo o (2)F(z + 6) do:uf o (z) ZF’@ #zwdx_ZF%

(3.21). Next we need to calculate T

Finally, we have (3.20). |

Unfortunately, the system (3.21) does not seem to have a tractable finite form analytic
solution. Therefore, in the ensuing subsections we propose an alternative solution based on an

operator series and construct a tight upper bound.

3.5.3 Operator series form for the expected sojourn time

Since the operator ®; is a contraction [AABN04, AABO5], we can iterate equation (3.18)
starting from some initial point ofy. The initial point can be simply a constant. As shown in
[AABNO4, AABO5] the iterations converge to the unique solution of (3.18). Specifically, we
make iterations in the following way:
Ok

* 50 Flz+0)+1, n=0,1,2,.... (3.22)

n+1 1( !(

; ; ; § . ~BPS .
At every iteration step we construct the following approximation of T~ ~ () according to (3.19):

ToE2(8) = @s(aly, (). (3.23)

Using (3.22) and (3.23), we construct the operator series expression for the expected sojourn
time in the TLPS system.

Theorem 3.3 The ezpected sojourn time T() in the TLPS system with the hyper-ezponential

job size distribution is given by

T(6) = X[+ WOFEO) , m-XF _ b(o) p)(""

1—pp T—p  F@O)(- > (‘Pi(F(:chG)))). (3.24)

i=0
Proof. From (3.22) we have

n—1
= (4 —qau+2q )Z@(F(He)) 20) 7z + )+
i=1

'tjl\

. (®)

and then from (3.23) and (3.15) it follows that

n—1
T27%(6) = (m - X7) (q a0+zq) (@2 (Z@i(?(ﬁe)))).

=0
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Using the facts (see (3.17)):

lg<p<l=q"—0asn— o0,

= 1 —pg
2. Zq .
i=0
we conclude that
_ _ b6 e G
T775(60) = lim T270) = m - X (122 ) + 2 (Y- 2 (2 Fle+0)) )
e —p/ FO)\iZ
Finally, using (3.7) we obtain (3.24). |

The resulting formula (3.24) is still difficult to analyze. Therefore, in the next subsection
using (3.24) we find an approximation, which is also an upper bound, of the expected sojourn

time function in a more explicit form.

3.5.4 Upper bound for the expected sojourn time
Let us start with auxiliary results. . ée 3
Lemma 3.2 For any function 3(z) > 0 with ﬁj— = fum B(z)e i dz,
ABin;)

au; >0, 7=1,...,N it follows that P2 (P1(F(z))) < qP2(8(x)).
i

if
Proof. See Appendix. [ |

Lemma 3.3 For the TLPS system with the hyper-ezponential job size distribution the following
statement holds:

Dy (1 () < P2 (o (2)) . (3.25)

Proof. We define o} = [(*o/(z)e™#i®dz, j=1,...,N. As was shown in [Osi08a], o/(z) has

the following structure:

(&) =ao+ Y are™™, a9 20,0520,b >0, k=1,...,N.

Then, we have that o'(z) > 0 and

ag Qg .
a_';:_"+z 3 .?:11"'1N1

i bi + p
d(c MJ QL by ;
| S —_—— >0, :l,...,N,
Zbkﬂia %: (br: + p15)? ; (br, + 1) g
asap = 0, b, >0, k=1,...,N. So, then, according to Lemma 3.2 we have (3.25). [ |

Let us state the following Theorem:
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Theorem 3.4 An upper bound for the expected sojourn time function T'(9) in the TLPS system
with the hyper-ezponential job size distribution function with many phases is given by Y(6):

T(6) <T(0) =

X} + W(0)F(6 - XTI FiFj
1=pp l=p  FO)A-p)57 ity
Proof. According to the recursion (3.22), we consider &'(z) as a candidate for the approxima-

tion of o (x). Namely, &' (z) satisfies the following equation:

o
—
[ s}

(9))]??"(:5 +0)+1

Then, using (3.15), we can find the analytic expression for & (z):

& (z) = & () 21(1) +

"rjl

& () = ¢@(z) + 2O Tz 1 6) + 1

F(6)
= @)= ( F((?) (z+6)+ 1)
We take T °(8) = ©2(& () as an approximation for T°"° (6) = @5(o/(z)). Then
T = @) = 55 Z?) +Ea B+ = 7 _);91> 70 2 fgf_i
Let us prove that
T (0) < T770),

or equivalently

T5(0) = T77°(6) = @a(c/ (2)) — 22(@ () < .

T
Let us look at

Ba(a(z)) — @2(& () =

= (@1 (e ())) + B2 ;f(?)ﬁ(wwm)—(q@z(a’m)wz (% (o:+e)+1))
= 03(®1(a’(2))) — qPa2(c (z)) + q (P2(d(z)) — B2(& (z)))

.

Ba(al (@) — Ba(d () = T (B2(21(0/(0))) - (e (@))

Now from Lemma 3.3 and formula (3.7) we conclude that (3.26) is true. |
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In this subsection we found the analytic expression of the upper bound of the expected
sojourn time in the case when the job size distribution is a hyper-exponential function with
many phases. In the experimental results of the following subsection we show that the obtained
upper bound is also a close approximation. The analytic expression of the upper bound which
we obtained is more clear and easier to analyze than the expression (326)) f_o\r the expected
sojourn time. It can be used in efficient numerical optimization of the TLPS perfo'f‘manceiﬁ ({F. 2¢,) &
3.5.5 Numerical results

We calculate T(f) and Y () for different numbers of phases N of the job size distribution
function. We take N = 10,100,500,1000. To calculate T(#) we find the numerical solution
of the system of linear equations (3.21) using the Gauss method. Then using the result of
Proposition 3.4 we find 7'(#). For T(#) we use qutlgu_q(Bééf)

As was mentioned in Subsection 3.3.1, by using the hyper-exponential distribution with
many phases, one can approximate a heavy-tailed distribution. In our numerical experiments
we fix p, m, and select p; and p; in such a way that by increasing the number of phases we let

the second moment d (see (3.2)) increase as well. Here we take
— —r = e

p:0909, m—1818, pi_:i?_j, .Pu’i“‘ﬁ'l 'E*l,...,N.

In particular, we have i

.H‘_-._v. A e F2 R o WY SV
?

1 : ) £ 9 &
— — — Leed («J\c ey N2 42
Zpl_l’ V_E 4‘72.5’
i i

bi & —1.3
— =m, — = — 1 -
?
In Figure 3.4 one can see the plots of the expected sojourn time and its upper bound as

functions of & when N equals to 10, 100 , 500 and 1000. In Figure 3.5 we plot the relative error
of the upper bound

_ T(8) —T(6)
T(B) ; b La .‘
when N equals to 10, 100 , 500 and 1000. As one can see, the upper bound (3.26) is very tight.
We find the maximum gain of the expected sojourn time of the TLPS system with respect

: . _ 7 7w =PS
to the standard PS system. As previously we denote the gain by ¢(8) = =P where T

(N
e
&
p—
L
.
o
>
],
~

A(6)

is the expected sojourn time in the standard PS system. The data and results are summarized
in Table 3.2.

We can make the following conclusions when increasing number of phases:

1. the maximum gain maxy g(f) in expected sojourn time in comparison with PS increases;
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N n d Oopt | maxg g(8) | maxg A(A)

10 1095 | 7.20 9 32.98% 0.0640
100 | 1.26 | 32.28 12 45.75% 0.0807
500 | 1.40 | 113.31 | 21 49.26% 0.0766
1000 | 1.44 | 200.04 | 26 50.12% 0.0743

Table 3.2: Increasing the number of phases

Figure 3.4: The expected sojourn time T(#) and Figure 3.5: The relative error A(6) for N = 10,

<’J‘ - = o :/":’.

its upper bound T(8) for N = 10, 100, 500, 1000. 100, 500, 1000.

2. therelative error A(#) of the upper bound according to the expected sojourn time decreases 3

after the number of phases becomes sufficiently large;

ol

(_»(i; /‘7 eita s e

3. the sensitivity of the system performance with respect to the selection of the sub-optimal

threshold value decreases.

Thus the TLPS system produces better and more robust performance as the variance of the

job size distribution increases.

3.6 Conclusion

We analyze the TLPS scheduling mechanism with the hyper-exponential job size distribution

function.

In Section 3.4 we analyze the system when the job size distribution function has two phases

and find the analytic expressions of the expected conditional sojourn time and the expected

sojourn time of the TLPS system.
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Connections in the Internet belong to two distinct classes: short HTTP and P2P signaling
connections and long downloads such as PDF, MP3, and so on. Thus, according to this observa-
tion, we consider a special selection of the parameters of the job size distribution function with
two phases and find the approximation of the optimal threshold, when the variance of the job
size distribution goes to infinity. We show that the approximated value of the threshold tends

to the optimal threshold, when the second moment of the distribution function goes to infinity.

We found that the ratio between the expected sojourn time of the TLPS system and the
expected sojourn time of the standard PS system can be arbitrary small for very high loads.
For realistic loads this ratio can reach 1/2. Also we show the system is not too sensitive to the

selection of the optimal value of the threshold.

With NS-2 simulator we implement TLPS scheduling scheme in the router of the bottle-
neck link. We show that the analytically found approximation of the optimal threshold value
minimizes the mean waiting time in the TLPS system between other threshold values. With
the simulation results we show that TLPS with the found approximated value of the optimal
threshold can give up to 35% gain in comparison with the DropTail policy and almost the same
gain as the optimal LAS policy.

In Section 3.5 we study the TLPS model when the job size distribution is a hyper-exponential
function with many phases. We provide an expression of the expected conditional sojourn time
as a solution of a system of linear equations. Also we apply the iteration method to find the
expression of the expected conditional sojourn time in the form of operator series and using the
obtained expression we provide an upper bound for the expected sojourn time function. With
the experimental results we show that the upper bound is very tight and can be used as an

approximation of the expected sojourn time function. We show numerically that the relative

error between the upper bound and the expected 50 journ time function decreases ‘when the

to 1dent1fy an appmmmatlon of the opt1mal threshold value for the TLPS system when the _]ob
size distribution is heavy-tailed.

We study the properties of the expected sojourn time function, when the parameters of the
job size distribution function are selected in such a way that it approximates a heavy-tailed
distribution as the number of phases of the job size distribution increases. As the number of
phases increases the gain of the TLPS system compared with the standard PS system increases

and the sensitivity of the system with respect to the selection of the optimal threshold decreases.
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3.7 Appendix: Proof of Lemma 3.2

Let us consider any function §(z) > 0 and define 3; = foooﬁ(x)e'”ﬂ‘"dm, j=1,...,N. Let
us show for @(x) > 0 that if

d—(gMZfLQ >0, j=1,...,N, thenit follows that @9 (P1(8(x))) < ¢P2(8(x)).
7
As
f h ] B F(z -y + 0)F(z + 0)dyde = f b f "B F (01 + 6)F (@1 + y + 0)dzrdy
0 4] 0 0
and
D(®1(B())) = 7(6) ] h f B F(@+y + O)F(z + O)dyde
0 03:
(8) fD fo B)F(z — y + 6)F(z + 0)dyda,
then
(1 (B(z))) = 29(6 / f Bz Fla S O)dyds =
FiFi
290) [ > i e *Lﬂdm—we);j g,

Also for @3 (8(x)), taking into account that ¢ = v(8) 3, %, we obtain

B [0 e
0@ (@) = AOF L F [ A@erids = oy s 52 '
i Tt 1,4 :
Thus, a sufficient condition for the inequality ®2 (®1(5(x))) < q®2 (5(z)) to be satisfied is

that for every pair 1, J:

2 2 1 1
Ay Bi + Y Mt_ﬁi < ‘!;;,Bj + #—jﬁi > —(Bip; — Bips) (s — i) £ 0.

The inequality is indeed satisfied when B;u; is an increasing function of p;. We conclude
that @2 ($1(6(x))) < ¢P2 (B(z)), which proves Lemma 3.2.
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CHAPTER 4

COMPARISON OF THE DISCRIMINATORY
PROCESSOR SHARING POLICIES

4.1 Summary

The DPS policy was introduced by Kleinrock. Under the DPS paolicy jobs are organized in
classes, which share a single server. The capacity that each class obtains depends on the number
of jobs currently presented in all classes and is controlled by the vector of weights. Varying DPS
weights it is possible to give priority to different classes at the expense of others, control their
instantaneous service rates and optimize different system characteristics as mean sojourn time
and so on. So, the proper weight selection is an important task, which is not easy to solve
because of the model’s complexity.

We study the comparison of two DPS policies with different weight vectors. We show the
monotonicity of tﬁe expected sojourn time of the system depending on the weight vector under
certain condition on the system. The restrictions on the system are such that the result is true
for systems for which the values of the job size distribution means are very different from each
other. The restriction can be overcome by setting the same weights for the classes, which have
similar means. The condition on means is a sufficient, but not a necessary condition. It becomes
less strict when the system is less loaded.

The results of the current work can be found in [Osi08b].
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4.2 Introduction

The Discriminatory Processor Sharing (DPS) policy was introduced by Kleinrock [Kle67].
Under the DPS policy jobs are organized in classes, which share a single server. The capacity
that each class obtains depends on the number of jobs currently presented in all classes. All
jobs present in the system are served simultaneously at rates controlled by the vector of weights
g >0, k=1,..., M}, where M is the number of classes. If there are Nj; jobs in class 7, then
each job of this class is served with the rate g;/ E,‘:f:l g Ni. When all weights are equal, DPS
system is equivalent to the standard PS policy.

The DPS policy model has recently received a lot of attention due to its wide range of
application. For example, DPS could be applied to model flow level sharing of TCP flows
with different flow characteristics such as different RTTs and packet loss probabilities. DPS
also provides a natural approach to model the weighted round-robin discipline, which is used
in operating systems for task scheduling. In the Internet one can imagine the situation that
servers provide different service according to the payment rates. For more applications of DPS
in communication networks see [AJK04], [BT01], [CvdBB*05], [GM02b], [HT05).

Varying DPS weights it is possible to give priority to different classes at the expense of
others, control their instantaneous service rates and optimize different system characteristics as
mean sojourn time and so on. So, the proper weight selection is an important task, which is not

easy to solve because of the model’s complexity.

first studying DPS. Then the paper of Fayolle et al. [FMI80] provided results for the DPS model.
For the exponentially distributed required service times the authors obtained the expression of
the expected sojourn time as a solution of a system of linear equations. The authors show that
independently of the weights the slowdown for the expected conditional response time under
the DPS policy tends to the constant slowdown of the PS policy as the service requirements
increase)gai to infinity.

Rege and Sengupta in [RS94] proved a decomposition theorem for the conditional sojourn
time. For exponential service time distributions in [RS96] they obtained higher moments of
the queue length distribution as the solutions of linear equations system and also provided a
theorem for the heavy-traffic regime. Van Kessel et al. in [KNQBO5], [KNQBO04] study the
performance of DPS in an asymptotic regime using time scaling. For general distributions of
the required service times the approximation analysis was carried out by Guo and Matta in
[GMO2b]. Altman et al. [AJKO04] study the behavior of the DPS policy in overload. Most of
the results obtained for the DPS queue were collected together in the survey paper of Altman
et al. [AAAQ6].

Avrachenkov et al. in [AABNQO5| proved that the mean unconditional response time of

The previously obtained results on DPS model are the following. Kleinrock in [Kle67] was ¢ ke



o
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4.3 Previous results and problem formulation

each class is finite under the usual stability condition. They determine the asymptote of the
conditional sojourn time for each class assuming finite service time distribution with finite
variance.

exponential was studied by Avrachenkov et al. in [AABNQO5] and by Kim and Kim in [KKO06].
In [KKO06] it was shown that the DPS policy reduces the expected sojourn time in comparison

with PS policy when the weights increase in the opposite order with the means of job classes.
Also in [KK06] the authors formulate a conjecture about the monotonicity of the expected
sojourn time of the DPS policy. The idea of “(/:on_}ecture is that comparing two DPS policies,
one which has a weight vector closer to the optimal policy, provided by cu-rule, see [Rig94|, has
smaller expected sojourn time. Using the method described in [KKO06] in the present chapter we
prove this conjecture with some restrictions on the system parameters. The restrictions on the
system are such that the result is true for systems for which the values of the job size distribution
means are very different from each other. The restriction can be overcome by setting the same
weights for the classes, which have similar means. The condition on means is a sufficient, but
not a necessary condition. It becomes less strict when the system is less loaded.

The chapter is organized as follows. In Section 4.3 we give general definitions of the DPS
policy and formulate the problem of expected sojourn time minimization. In Section 4.4 we
formulate the main Theorem and prove it. In Section 4.5 we give the numerical results. Some

technical proofs can be found in the Appendix.

4.3 Previous results and problem formulation

We consider the DPS model. All jobs are organized in M classes and share a single server.
Jobs of class k = 1,..., M arrive with a Poisson process with rate A; and have required service-
time distribution Fi(z) = 1 — e #* with mean 1/u. The load of the system is p = ch\il O
and pr = M/, k = 1,..., M. We consider that the system is stable, p < 1. Let us denote
A= Ziw:l Ak

The state of the system is controlled by a vector of weights ¢ = (¢1,...,ga), which denotes
the priority for the job classes. If in the class k there are currently Ny jobs, then each job of
class k is served with the rate equal to g;/ Zf’il gk Nk, which depends on the current system
state, or on the number of jobs in each class.

Let T°7° be the expected sojourn time of the DPS system. We have

TFOPS _ i Ak T
= 2 Nk

where Tk, are expected sojourn times for class k. The expressions for the expected sojourn times
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Tk, k=1,..., M can be found as a solution of the system of linear equations, see [FMI80],
w4 -‘ M M =
o 3 _ Aigs AigiT s 1
M N, T S S, - (4.1)
i1 Magi T+ Kk i1 Ha9i t Hkgk
k=1,...,M. Let us notice that for the standard Processor Sharing system TPS =

I—p
; ; il A A ~=DP
One of the problems when studying DPS is to minimize the expected sojourn time 7' <

with some weight selection. Namely, find g* such as

=DPS

7775 (g*) = min 777 (g).

g
This is a general problem and to simplify it the following subcase is considered. To find a set G
such that

DPS PS

T (@) <T ", Vg edG. (4.2)

For the case when job size distributions are exponential the solution of (4.2) is given by Kim and
Kim in [KKO06] and is as follows. If the means of the classes are such as 1 > po > ... > uum,
then G consists of all such vectors which satisfy

G={9lg1=2922... 2 gu}

4

Using the approach of [KK06] we solve more general problem about the monotonicity of the
expected sojourn time in the DPS system, which we formulate in the following section as The-
orem 4.1.

4.4 Expected sojourn time monotonicity

Let us formulate and prove the following Theorem.

s
Theorem 4.1 Let the job size distribution for every class be ezponential with means 1/p;,
i=1,...,M and we enumerate them in the following way

p1 2 e 2.2 g

Let us consider two different weight policies for the DPS system, which we denote as « and 3.
Let o, 3 € G, or

o = Qg 2 ... 2 ay,

BL2F=...2 0u.
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The expected sojourn time of the DPS policies with weight vectors « and (3 satisfies

=DPS —=DPS
T (@) <T " (p), (4.3)
if the weights a and 8 are such that:
LIy ST T (4.4)
8%} Bi
and the following restriction is satisfied:
B <1y, (4.5)
Hj

forevery 3=1,..., M.

Remark 4.1 If for some classes j and j + 1 condition (4.5) is not satisfied, then by choosing
the weights of these classes to be equal, we can still use Theorem 4.1. Namely, for classes j and
J 41 such as ﬁ.uj‘-?—l > 1—p, if we set aj11 = o and Bj+1 = B, then still the statement (4.3) of
Theorem 4.1 holds.

Remark 4.2 Theorem 4.1 shows that the expected sojourn time TDPS(Q) is monotonous ac-
cording to the selection of weight vector g. The closer is the weight vector to the optimal policy,
provided by cu-rule, the smaller is the expected sojourn time. This is shown by the condition
(4.4), which shows that vector « is closer to the optimal cp-rule policy than vector (3.

Theorem 4.1 is proved with restriction (4.5). This restriction is a sufficient and not a
necessary condition on system parameters. It shows that the means of the job classes have
to be quite different from each other. This restriction can be overcome, giving the same weights
to the job classes, which mean velues are similar. Condition (4.5) becomes less strict as the
system becomes less loaded.

To prove Theorem 4.1 let us first give some notations and prove additional Lemmas. Let
us rewrite linear system (4.1) in the matrix form. Let 7= [T(lg), - ,va.f[)]T be the vector of
Tf), k=1,...,M. Here by [ |7 we mean transpose sign, so [ ]7 is a vector. By [ ] we note
that this element depends on the weight vector selection g € G. Let us consider that later in
the chapter vectors g, «, 3 € G, if the opposite is not noticed.

Let us give the following notations.

. A
~ Higi + 1G5
(9)

Using the notation of ¢;;” let us define matrices A9 and DY in the following way.

A9 =o@, ij=1,...,M, (4.6)

pla) — i 0ot B = Tyes gl B=7%
- 0, Lwi=1,...,M, i#3].
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Then linear system (4.1) becomes

v
(E — D@ — AT _ [i . i] . (4.8)
p ey

Let us denote

'
Bl — Al _,_{3@), Yg. )(/

We need to find the expected sojourn time of the DPS system TDPS(Q). According to the
definition of TDPS(Q) and equation (4.8) we have

TDPS(Q) = )\_1[/\1, v o g )\M}T(g) I U-PU o
1 117 -lr,‘_\.\\'i LR
= AA,. . AM](BE - Bl)! [—, _ —] . S ¥
141 Y] ¥
Let us consider the case when A; = 1 for ¢ = 1,..., M. This results can be extended for the |
case when A; are different. We prove it following the approach of [KK06] in Proposition 4.1 at -
the end of the current Section. Then the previous equation becomes A susee e | :
=DPS — - - .
T (g) = AW(E-BD) oy, om]" (49) at
Let us show some properties of az(f). From the definition of Jﬁf) it follows \ weche
0P =ag;,
(g) ()
o T
L 4 = (4.10)
Hi Hj Hifbg
i, =1,..., M. Also we prove Lemma, 4.1.
Lemma 4.1 If a and B satisfy (4.4), then
agl Lol i< (4.11)
ol zall, izg (4.12)

Proof. If o and § satisfy (4.4), then for i = 1,...,M —1 2 < & 4 < j. From here
ajpifF < Bipicy, © < j. Adding to both parts a;u;3; and dividing both parts by (p:Bi + 1455;)
we get (4.11). We prove (4.12) in a similar way. |

Lemma 4.2 If a, 3 satisfy (4.4), then

—=DPS —DPS

T (o) <T7 7(B),

when the elements of vector y = 1'(E — B("‘))‘I‘@ are such that y1 > y2 > ... 2 ynm.

K L_,{) "_; K te—el, ¢ 6"-‘{,.\{ .

F )

/f U_J nAde maedl an "“*“L@/.\’ -
/

( o u._l-lﬂy Ly



4.4 Expected sojourn time monotonicity 59

Proof. Using expression (4.9) for g = a, 3 we get the following.

DPS

o FOPS

(8) = AT(E =BT — (B~ B Yo, om]
= AT((E - B®) (B - BEY(E - BEY ) [py,..., om]" .

Let us denote M as a diagonal matrix M = diag(u1, ..., ua) and

y=1(E-B)"'M. (4.13)
Then
TP () = TPP5(8) = V(B - B 1Mm—1(B@ — p@)T®)
— yM~YB@ — pENT®
_ Yi (@), ¥i (a) (yj @) | Yi (m))—(ﬁ)
— =Lt b St e [ Slg o Egey i
%:(ﬂ'j = pi Y ‘
(a) (8)
Oji O Yi , (a) (8)y | =(0)
- . — +_Ji' =g T
(o (F ) e o)
Pt i 9
As (410), 71"’—‘: = m — _,u,.iL7 g= CE,,B, then

FDPS D PS Yj Yi aite)
@) -T70) = 3 (-L (o) - o) + Lol - o)) T

¥ Hi i

1\ =(8

= > ( (e - o) s - yﬂ—_) T,
i H

Using Lemma 4.1 we get that expression (az-(;‘) - aif)) (i — ;) <0,4,5 =1,...,M when

Y1 = Y2 = ... 2 yp. This proves the statement of Lemma 4.2. [ |

Lemma 4.3 Vector y given by (4.13) satisfies

if the following is true:

Hitl <1-—p,
Hi
for everyi=1,...,M.
Proof. The proof clolﬂ'd be found in the appendix. u

£ P
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Remark 4.3 For the job classes such as '”L—“— > 1 — p we prove that it is sufficient to give this
/ : 5

classes the same weights, a1 = «; 10 to keep y1 = ya > ... = ya,. The proof cpu’ld be found

in the Appendiz. i

Combining the results of Lemmas 4.1, 4.2 and 4.3 we prove the statement of Theorem 4.1.
Remark 4.3 gives Remark 4.1 after Theorem 4.1. Now in Proposition 4.1 we prove the extension
of Theorem 4.1 ori the case when A; # 1.

v

Proposition 4.1 The result of Theorem 4.1 is extended to the case when A; # 1.

Proof. Let us first consider the case when all \; = ¢, 1 = 1,...,M. It can be shown that for
this case the proof of Theorem 4.1 is equivalent to the proof of the same Theorem but for the
new system with A} =1, u7 = qu;, i =1,..., M. For this new system the results of Theorem 4.1
is evidently true and restriction (4.5) is not changed. Then, Theorem 4.1 is true for the initial
system as well.

If A; are rational, then they could be written in A; = %, where p; and g are positive integers.
Then each class can be presented as p; classes with equal means 1/u; and intensity 1/g. So,
the DPS system can be considered as the DPS system Wi{tgl p1+ ...+ pi classes with the same
arrival rates 1/q. The result of Theorem 4.1 is extendedﬂpi{ this case.

If Ai, ¢ = 1,..., M are positive and real we apply the previous case of rational A; and use
continuity. |

In the following section we give numerical results on Theorem 4.1. We consider two cases,
when condition (4.5) is satisfied and when it is not satisfied. We show that condition (4.5) is a

sufficient and not a necessary condition on the system parameters.

4.5 Numerical results

Let us consider a DPS system with 3 classes. Let us consider the set of normalized weigh:[,s/
vectors g(z) = (g1(z), g2(2), 93(2)) , Ty (@) = 1, gila) = 2= /(X 27, 2 > L. Every
point © > 1 denotes a weight vector. Vectors g(x), g(y) satisfy property (4.4) when 1 < y < z,
namely gi+1(z)/g:(z) < giv1(¥)/9i(y), ¢ = 1,2, 1 < y < z. On Figures 4.1, 4.2 we plot
T Ps(g(:c)) with weights vectors g(x) as a function of z, the expected sojourn times T for
the PS policy and T for the optimal cu-rule policy.

On Figure 4.1 we plot the expected sojourn time for the case when condition (4.5) is satisfied
for three classes. The parameters are: A\; = 1,1 = 1,2,3, u1 = 160, po = 14, pz = 1.2, then
p = 0.911. On Figure 4.2 we plot the expected sojourn time for the case when condition (4.5)
is not satisfied for three classes. The parameters are: \; = 1,7 =1,2,3, iy = 3.5, pus = 3.2,
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DPS PS PS

Figure 4.1: T ~(g(z)), T" ~, T functions, Figure 4.2: TDPS(Q(J:)), T T functions,

condition satisfied. condition not satisfied

ps = 3.1, then p = 0.92. One can see that TDPS(Q(:B)) < TDPS(g(y)), 1 < y € o even when
the restriction (4.5) is not satisfied.

4.6 Conclusion

We study the DPS policy with exponential job size distribution. One of the main problems
studying DPS is the expected sojourn time minimization according to the weights selection.
In the present work we compare two DPS policies with different weights. We show that the
expected sojourn time is smaller for the policy with the weigh vector closer to the optimal
policy vector, provided by cu-rule. So, we prove the monotonicity of the expected sojourn time
for the DPS policy according to the weight vector selection.

The result is proved with some restrictions on system parameters. The found restrictions
on the system parameters are such that the result is true for systems such as the mean values
of the job class size distributions are very different from each other. We found, that to prove
the main result it is sufficient to give the same weights to the classes with similar means. The
found restriction is a sufficient and not a necessary condition on a system parameters. When
the load of the system decreases, the condition becomes less strict.

4.7 Appendix

In the following proof we do not use the dependency of the parameters on g to simplify the
notations. We consider that vector g € G, or g1 > g2... = gar. To simplify the notations let us
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use 3, instead of S0 .

Lemma 4.3. Vector y = 1'(E — B)™'M satisfies y1 > y2 > ... > yur, if % < 1—p, for every
i=1,...,M—1.

Proof. Using the results of the following Lemmas 4.4, 4.5, 4.6, 4.7, 4.8 we prove the statement
of Lemma 4.3 and give the proof for Remark 4.3. [ |

Let us give the following notations

p=u"(E- D), (4.14)
A=M"1T1AM(E - D)™.. (4.15)

We define f(z) = >, m and notice that 1 — >, ojx =1 — p+ f(i;jg;). Then

-1 1 1
E-Dyy = 1= O S T g %
(E-D);' = 0, i#j,
5 Higj -1
b = () =25
_ H395 >0
pi(pigi + 13 9;) (1 — p+ fpggs)) =
239 = Ly oM. List 18 provg,!additional Lemma.

Lemma 4.4 Matriz A= M~YAM(E — D)~! is a positive contraction.

Proof. Matrix A is a positive operator as its elements Af,\;j are positive. Let = {X|z; >
0,i=1,....,.M}. If X € Q, then AX € Q. Then to prove that matrix A is a contraction it is
enough to show that

3¢, 0<g<l1, [||AX[|<qllX]l, VX eQ (4.16)

As X € Q, then we can take || X|| =1X =3, ;. Then

A s Zi . ”Jr —
1'AX = _ A . 1 (1 97 +1297)
) Z Z N Z T =p+ flui05)

_ o 1159)
- ; "1 - p+ fluig;)

= ZCCJ‘ (11*,0_1%)

J

S . N
_ Zm f ool =il 3 L-ptf(uigs) |
Z ’ 225 T
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ZJ = p+f(1-= 95

Let us denote Ag = _ETJLL Then I’AX = >y (L = (1 —=p)hp)-

We need to find the value of g, which satisfies the following
TAX < ql'X,
21— (1-p)Ad) < g x5
g i
1 (1 ~ g% g

As f(p9;5) > 0,then 0 < 1 — (1 - p)Ag < 1. We define § = T“—”Em Let us notice that
max; f(u;g;) always exists as the values of p;g;, 5 = 1,..., M are finite. As § < Ay, then if

we select ¢ = 1 — (1 — p)d, then the found ¢ is 0 < ¢ < 1 and satisfies condition (4.16). This

completes the proof. |
Lemma 4.5 If
0
y™ =4y DA n=1,2,..., (4.18)

then y(”) — y, when n — 00,

Proof. Let us recall that y = 1(E — B)™'M and B=E — A - D, then

yM Y E-D~A) =1,
yM Y E-D)=yM™A+1,
y=yM 'A(E-D)"'M+ 1(E-D)"'M.

As matrices D and M are diagonal, the M D = DM and then
o -1 -1 -1
y=p (E-D)"" +yM"AM(E - D)

where p = [p1,..., pum]. According to notations (4.14) and (4.15) we have the following

_ y=j+yA
Let us denote g J [J ...,ygn)] n=20,1,2,... and let define y&‘” and 3™ by (4.17) and
( 4.18). According to Lemma 4.4 operator A is a positive reflexion and is a contraction. Also
ji; are positive. Then y™ — y, when n — 0o and we prove the statement of Lemma 4.5. |
i =

4

Lemma 4.6 Let y(”), n=0,1,2,... ar€ defined as in Lemma 4.5, then
Myl s sy 29 (4.19)

if%Sl—pforeveryizl,---,M—l-
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Proof. We prove the statement (4.19) by induction. For y(©) the statement (4.19) is true. Let
us assume that (4.19) is true for the (n — 1) step, ygn_l) > Yo P Y 7;_1) To prove the
induction statement we have to show that y(n) > y(n) >...> yﬁw , When ‘“‘“ < 1—p for every
i=1,...,M — 1. Let us consider y( o (n), j<p As

].
y_’,' _#J+Zytn 2.?’

then

IPR
ngﬂ) —y = =+ Z (A — Ay,

In Lemma 4.7 we show that fi; > fip, j < p, when ‘””‘ <l—pforeveryi=1,...,M — 1. Let

us regroup the sum {Lil J,fﬂ' 1)(Aza - Atp) in the followmg way

M-1 T

M
n—1) rt — i
ZJ(H 5 Aij — Aip) —yfw Z Akj"Akp)"‘ Z(yz(n Y yz(-tl : Z AkP
k=1 i=1 k=1

As yz-(n—l) > y_i(ifl), t =1,...,M — 1, according to the induction step, then to show that

Z?il y.gnkl)(A;j - A::p) >0, j < pitis enough to show that E:=1{ﬁiij -Ay)>0,7<p
r=1,..., M. We show this in Lemma 4.8. Using the previous discussion we prove the induction
step and so prove Lemma 4.6. |

Now let us prove L;l{nmas 4.7 and 4.8.
Z

Lemma 4.7

z’f%Sl—pforeveryi=1,---,M—1-

Proof. We consider fij — fip, j < p. Let us recall that g; > go... > gar and pq > fa ..o 2 g

Let us denote fa(z) = 3, 7%, then ji; = Tﬁfm and

Ty, S ;Uj_JUJp_(#jf?(ﬂpgp)_“ph(ﬂjgj))
R (1~ F2(159)) (1 — foltipgp))

Let us denote Ay = pj — pp — (15 fo(pipgp) — pfa(pig;)). As 0 < fo(z) < p, then

1
Ay > (g — pp) (1*9(1_—&)) 20,
Hj
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when

&Sl—p.
Hj

Let us consider Ay when p; > pp and g; = gp. In this case

M
ar(9i (g + pp) + prge)
Ar= (1= pp) | 1= '
1= (1 #p)( ;(upgj-i-#kgk)(ﬂpgj'i—“kgk)

We can show that

9r(95 (s + pp) + pkge) 1
(595 + tege) (pgj + 1egr) — fk

k=1,...,M.

Then
M

A1 > (g — pp) (1—2-1~) = (p5 — up)(1 = p) > 0.
ko

In the case when u; = pp and g; = gp, then fi; — i, = 0.
Then we have proved the following:

It gj = gp by = ip; then  fi; = fip,
If g;=gp 1 > lp, then [y > fip,
If g5 >0p 1y 2 ppy 22 <1—p, then [ij > fip.
Setting p = j + 1 and recalling that g1 > ... > ups, we get that 7 > fia... = fiag is true when

Hit1

s 1—pforeveryt=1,...,M — 1. That proves the statement of Lemma 4.7.

Returning back to the main Theorem 4.1, Lemma 4.7 gives condition (4.5) as a restriction
on system parameters.

Let us notice that if for the job classes 7 and ¢ + 1 % < 1 — p, then setting the weights
for these classes equal, still fi; > [i;4+1. This condition gives us as a result Remark 4.3 and

Remark 4.1. [ |

Lemma 4.8

Proof. Let us recall A = M~'AM(E — D)~! and let us fix  in the following proof. Let us
define

Eii o= B ha(x)

f3($): M T - 7
1—p+zk:1m 1—p+h1($)+h2(l)
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- .
where hi(z) = >°I_ 1 nGrmgy > O and ho(x) = 3057 ) dims > 0. Then 337, Ay =
f3(1495). To prove the statement of the Theorem it is enough to show that the function f3(x)

is increasing in x. For that it is enough to show that ﬂfi;—) > 0. Let us consider

dfs(x) _ hi(z)(1 — p) + hy(x)he(z) — hi(z)hy(x)
dx (1 —p+hi(z) + ha(z))? ’

We can show that

R (2)ha(z) — ha (2)RY( * (11391 = ixr) >
(@)ha(z) = ) ;kz;rl $+.U'191 2 4 prgr)® e pss

as (;9; = Wpgp, 7 < p. Since hi(z) > 0 and 1 — p > 0, then #?t_;(:) > 0, fa(z) is an increasing

function of z and we prove the statement of Lemma 4.8. |
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CHAPTER 5

OPTIMAL POLICY FOR MULTI-CLASS
SCHEDULING IN A SINGLE SERVER QUEUE

5.1 Summary

In this chapter we apply the Gittins optimality result to characterize the optimal scheduling
discipline in a wg@_ M/G/1 queue. We apply the general result to several cases of practical
interest where the service time distributions belong to the set of DHR distributions, like Pareto
or hyper-exponential. When there is only one class it is known that in this case the LAS policy
is optimal. We show that in the multi-class case the optimal policy is a priority discipline, where
jobs of the various classes depending on their attained service are classified into several priority
levels. Using a tagged-job approach we obtain, for every class, the mean conditional sojourn
time. This allows us to compare numerically the mean sojourn time in the system between the
Gittins optimal and popular policies like PS, FCFS and LAS.

Our results may be applicable for instance in an Internet router, where packets generated
by different applications must be served or service is non-preemptive. Typically a router does
not have access to the exact required service time (in packets) of the TCP connections, but it
may have access to the attained service of each connection. Thus we implement the Gittins’
optimal algorithm in NS-2 and we perform numerical experiments to evaluate the achievable

performance gain.

69
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5.2 Introduction

We are interested to schedule the jobs in the M/G/1 queue with the aim to minimize the
mean sojourn time in the system as well as the mean number of jobs in the system. In our
study we restrict ourselves to the non-anticipating scheduling policies. Let us recall that the
policy in non-anticipating if it does not use information about the size of the arriving jobs. In
[Git89] Gittins considered an M/G/1 queue and proved that the so-called Gittins index rule
minimizes the mean delay. At every moment of time the Gittins rule calculates, depending
on the service times of jobs, which job should be served. Gittins derived this result as a
byproduct of his groundbreaking results on the multi-armed bandit problem. The literature
on multi-armed bandit related papers that build on Gittins’ result is huge (see for example
[VWBS85, Whi88, Web92, Tsi93, DGNM96, FW99, BNM00]). However, the optimality result of
the Gittins index in the context of the M/G/1 queue has not been fully exploited, and it has

not received the attention it deserves.

In the present work we generalize the Gittins index approach to the scheduling of the multi-
class M/G/1 queue. We emphasize that Gittins’ optimality in a multi-class queue holdstl-r:&r
much more general conditions than the condition required for the optimality of the well-known
cp-rule. We recall that the cu-rule is the discipline that gives strict priority in descending or-
der of ¢y, where ¢ and g refer to a cost and the inverse of the mean service requirement,
respectively, of class k. Indeed it is known (see for example [BVW85, SY92, NT94|) that the
cp-rule minimizes the weighted mean number of customers in the queue in two main settings: (i)
generally distributed service requirements among all non-preemptive disciplines and (ii) expo-
nentially distributed service requirements among all preemptive non-anticipating disciplines. In
the preemptive case the cu-rule is only optimal if the service times are exponentially distributed.
On the other hand, by applying Gittins’ framework to the multi-class queue one can charac-
terize the optimal policy for arbitrary service time distributions. We believe that our results
open an interesting avenue for further research. For instance well-known optimality results in a
single-class queue like the optimality of the LAS discipline when the service times are of type
decreasing hazard rate or the optimality of FCFS when the service time distribution is of type
New-Better-than-Used-in-Expectation can all be derived as corollaries of Gittins’ result. The

optimality of the cu-rule can also easily be derived from the Gittins’ result.

In order to get insights into the structure of the optimal policy in the multi-class case
we consider several relevant cases where the service time distributions are Pareto or hyper-
exponential. We have used these distributions due to the evidence that the file size distributions
in the Internet are well presented by the heavy-tailed distributions such as Pareto distributions
with the infinite second moment. Also it was shown that the job sizes in the Internet are
well modelled with the distributions with the decreasing hazard rate. We refer to [NMM98,
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CB97, Wil01] for more details on this area, see also Subsection 1.1.3. In particular, we study
the optimal multi-class scheduling in the following cases of the service time distributions: two
Pareto distributions, several Pareto distributions, one hyper-exponential and one exponential
distributions. Using a tagged-job approach and the collective marks method we obtain, for
every class, the mean conditional sojourn time. This allows us to compare numerically the
mean sojourn time in the system between the Gittins optimal and popular policies like PS,
FCFS and LAS. We find that in a particular example with two classes and Pareto-type service
time distribution the Gittins’ policy outperforms LAS by nearly 25% under moderate load. We
demonstrate that in particular cases the PS has much worse performance than the Gittins policy.

From an application point of view, our findings could be applied in Internet routers. Imagine
that incoming packets are classified based on the application or the source that generated them.
Then it is reasonable to expect that the service time distributions of the various classes may
differ from each other. A router in the Internet does not typically have access to the exact
required service time (in packets) of the TCP connections, but it may have access to the attained
service of each connection. Thus we can apply our theoretical findings in order to obtain the
optimal (from the connection-level performance point of view) scheduler at the packet level. We
implement the Gittins’ scheduling in the NS-2 simulator and perform experiments to evaluate
the achievable performance gain.

The structure of the chapter is as follows: In Section 2 we review the Gittins index policy
for the single-class M/G/1 queue and then provide a general framework of the Gittins index
policy for the multi-class M/G/1 queue. In Section 3, we study the Gittins index policy for the
case of two Pareto distributed classes. In particular, we derive analytic expressions for the mean
conditional sojourn times, study various properties of the optimal policy, provide numerical
examples and NS-2 simulations. At the end of Section 3 we generalized the results to multiple
Pareto classes. In Section 4 we study the case of two distributions: one distribution being
exponential and the other distribution being hyper-exponential with two phases. For the case of
exponential and hyper-exponential distributions, we also obtain analytical results and provide

numerical examples. Section 5 concludes the chapter.

5.3 Gittins policy in multi-class M /G /1 queue

Let us first recall the basic results related to the Gittins index policy in the context of a
single-class M/G/1 queue.

Let II denote the set of non-anticipating scheduling policies. Popular disciplines such as PSS,
FCFS and LAS, also called FB, belong to II. Important disciplines that do not belong to II are
SRPT and Shortest Processing Time (SPT).

We consider a single-class M/G/1 queue. Let X denote the service time with distribution
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P(X < z) = F(z). The density is denoted by f(z), the complementary distribution by F(z) =
1 — F(z) and the hazard rate function by h(z) = f(x)/F(z). Let T  (z), = € II denote the mean
conditional sojourn time for the job of size x in the system under the scheduling policy m, and
Tw, 7 € II denote the mean sojourn time in the system under the scheduling policy 7.

Let us give some definitions.

Definition 5.1 For any a,A >0, let

_ Jo fla+t)dt _ F(a)-Fla+ A)

(@ 4) JEF@+t)dt  [PF(a+t)dt

(5.1)

For a job that has attained service a and is assigned A units of service, equation (5.1) can be
interpreted as the ratio between (i) the probability that the job will complete with a quota of
A (interpreted as payoff) and (ii) the expected processor time that a job with attained service

a and service quota A will require from the server (interpreted as investment). Note that for

every a > 0
J(a,0) = ;((“;)) — Kifal,
_ F(a) B 7
J(a,oo)—ﬁm—ﬁ*foooﬁ(a_”)dt—l/E[X | X > a].

Note further that J(a, A) is continuous with respect to A.

Definition 5.2 The Gittins indezx function is defined by

G(a) = AS;;I()) J(a,A), (5.2)

for any a = 0.

We call G(a) the Gittins indez after the author of book [Git89], which handles various static
and dynamic scheduling problems. Independently, Sevcik defined a corresponding index when
considering scheduling problems without arrivals in [Sev74]. In addition, this index has been

dealt with by Yashkov, see [Yas92] and references therein, in particular the works by Klimov
[K1i74, KIi78].

Definition 5.3 For any a = 0, let
A*(a) =sup{A > 0| J(a,A) = G(a)}. (5.3)

By definition, G(a) = J(a, A*(a)) for all a.



5.3 Gittins policy in multi-class M /G /1 queue 73

Definition 5.4 The Gittins index policy wy is the scheduling discipline that at every instant
of time gives service to the job in the system with highest G(a), where a is the job’s attained

SETVICE.

Theorem 5.1 The Gittins index policy minimizes the mean sojourn time in the system between

all non-anticipating scheduling policies. Otherwise, in the M/G/1 queue for any © € 11,

T

T <T",

Proof. See [Git89]. |

Note that by Little’s law the Gittins index policy also minimizes the mean number of jobs
in the system.

We generalize the result of Theorem 5.1 to the case of the multi-class single server queue.
Let us consider a multi-class M/G/1 queue. Let X; denote the service time with distribution
P(X; < z) = Fi(z) for every class ¢ = 1,...,M. The density is denoted by fi(z) and the
complementary distribution by F;(z) = 1 — Fj(z). The jobs of every class-i arrive with the
Poisson process with rate A;, the total arrival rate is A = Zfﬁl Ai. Foreveryclassi=1,..., M
we define J;(a, A) = f:{."‘(&:?)i and then the Gittins index of a class-i job is defined as G;(a) =
SUPA>0 Jila, A). C

The mean conditional sojourn time T, (x) for the class-i job of size 2, 4 = 1,..., M, and the
mean sojourn time 7" in the system under the scheduling policy m € II are defined as in the
previous section.

Proposition 5.1 In a multi-class M/G/1 queue the policy that schedules the job with highest
Gittins index Gi(a), i = 1,...,M in the system, where a is the job’s attained service, is the

optimal policy that minimizes the mean sojourn time.

Proof. The result follows directly from the application Gittins Index Definition 5.2 and The-
orem 5.1 to a multi-class M/G/1 queue. n

Let hi(z) = fi(z)/Fi(x) denote the hazard rate function of class ¢ = 1,...,M. Let the
service time distribution of class-i have a decreasing hazard rate. It is possible to show, see
[AAOQT7], that if 2;(z) is non-increasing, the function J;(a,A) is non-increasing in A. Thus

Gi(a) = Ji(a,0) = hi(a). (5.4)
As a consequence we obtain the following proposition.

Proposition 5.2 In o multi-class M/G/1 queue with non-increasing hazard ratef functions
hi(z) for every class i = 1,...,M, the policy that schedules the job with highest hi(a), i =
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1,..., M in the system, where a is the job’s attained service, is the optimal policy that minimizes

the mean sojourn time.

Proof. Follows immediately from the Gittins policy Definition 5.4, Proposition 5.1 and equa-
tion (5.4). |

The policy presented in Proposition 5.2 is an optimal policy for the multi-class single-server
queue. Let us notice that for the single class single server queue the Gittins policy becomes
a LAS policy, as the hazard rate function is the same for all the jobs and so the job with the
maximal value of the hazard rate function from attained service is the job with the least attained
service. When we serve the jobs with the Gittins policy in the multi-class queue to find a job
which has to be served next we need to calculate the hazard rate of the attained service of every
job in the system. The job which has the maximal value of the hazard rate function from it’s
attained service is served the next.

Now let us consider several subcases of the described general approach. Depending on the
behavior of the hazard rate functions of the job classes the policy is different. We consider the
case with two job classes in the system and two subcases: (a) both job classes are distributed
with Pareto and the hazard rate functionydo not cross and (b) job size distributions are hyper-
exponential with one and two phases and they cross at one point. Then we extend the case of
two Pareto job classes to the case of N Pareto job classes. We provide the analytical expressions
for the mean conditional sojourn times in the system and numerical results. We implemented

the algorithm for the case of two Pareto classes with the NS-2 simulator on the packet level.

5.4 Two Pareto classes

Let us first present the case when job sizes are distributed according to Pareto distribution.

5.4.1 Model description

We consider the case when the job size distribution functions are Pareto. We consider the
two-class single server M/G/1 queue. The jobs of each class arrive to the server with Poisson
process with rates A1 and Ag. The job sizes are distributed according to the Pareto distributions,
namely
bi

Fi(z) =1~ @Eb)e

i=1,2. (5.5)

Here b; = m;(c; — 1), where m; is the mean of class-i, ¢ = 1,2. Then fi(z) = bfic;/(z + b))%+,

i = 1,2 and the hazard rate functions are

hi(e) = ——

-

|

x+h, x4h,
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Without loss of generality suppose that ¢; > ¢o. Then the behavior of the hazard rate functions
depends on the values of b; and bs. _Let us first consider the case when the hazard rate function

do not cross, so ™ < 0. This happens when by /bs < ¢1/ea. Then the hazard-r'ate functions are
EC UL ETORs B
decreasing and never cross and hy(z) > ha(z), for all z > 0.

Let us denote 6 and function g(z) in the following way that

hi(z) = ha(g(z)),  hi(8) = ha(0).

We can see that g(f) = 0. For given expressions of h;(x), i = 1,2 we get

c c1by — cob
g(z) = —2(z+b1) b, e “v2 — el
Loy €2

According to the definition of function g(x), the class-1 job of size = and the class-2 job of size
g(z) have the same value of the hazard rate when they are fully served, see Figure 5.1. Then

the optimal policy structure is the following. The optimal policy scheme is given on Figure 5.2.

5.4.2 Optimal policy

The jobs in the system are served in two queues, low and high priority queues. The class-1
jobs which have attained service a < # are served in the high priority queue with LAS policy.
When the class-1 job achieves # amount of service it is moved to the second low priority queue.
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The class-2 jobs are moved immediately to the low priority queue. The low priority queue is
served only when the high priority queue is empty. In the low priority queue the jobs are served
in the following way: the service is given to the job with the highest h;(a), where a is the job’s
attained service. So, for every class-1 job with a attained service the function hy(a) is calculated,
for every class-2 job with a attained service the function ha(a) is calculated. After all values of
hi(a) are compared‘aﬁd the job which has the highest h;(a) is served.

Now let us calculate the expressions of the mean conditional sojourn time for the class-1 and
class-2 jobs.

5.4.3 Mean conditional sojourn times

Let us denote by indices | and [|®) the values for class-1 and class-2 accordingly.

Let us define as X_l’}(i) the n-th moment and ,ol(f) be the utilization factor for the distribution
Fi(x) truncated at y for 2 = 1, 2. The distribution truncated at y equals to F(z) for z < y and
equals to 1 when = > y. Let us denote Wy, the mean workload in the system which consists
only of class-1 jobs of size less than x and of class-2 jobs of size less than y. According to the

Pollaczek-Khinchin formula

) )

+ )\2}?3(2
201 — o5 — 68

anxz!
T

Now let us formulate the following Theorem which we prove in the Appendix.

Theorem 5.2 In the two-class M/G/1 queue where the job size distributions are Pareto, given
by (5.5), and which is scheduled with the Gittins policy described in Subsection 5.4.2, the mean
conditional sojourn times for class-1 and class-2 jobs are

_ T+ Wﬂ;,o

)= o £< 9, (5.6)
L—p3
&+ We, .
B (a)= 1—(1)1_&%“’ &= b (8.7)
TPz T Py(a)
9(x) + Wa g
To(g(e)) = =g @26, (5.8)
L=pz" = py)

Proof. The proof is very technical and is given in the Appendix. Let us give a very general
idea of the proof. To obtain expressions (5.7), (5.8) we use the fact that the second low priority
queue is the queue with batch arrivals. To obtain expressions of the mean batch size with
and without the tagged job we apply the Generating function analysis using the method of the
collective marks. O
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The obtained expressions (5.6), (5.7) 4(5.8) can'be interpreted using the tagged-job and
mean value approach. Z

Let us consider class-1 jobs. For the-job of size x < & the mean conditional sojourn time is
known, [Kle76a, Sec. 4.6], T1(z) = ﬂz—;
the mean load in the system for cl

p;(rl) consider only the jobs of the high priority queye of class-1.

h < ¢, where Wy p is the mean workload and ,O(zl) is
=l

ss-1 job of size{z)) The mean workload W, and mean load

For the jobs of size x > 0 the expression ( jgi can be presented in the following way,

Ti(z) =24+ Wy gz) + Tl(m)(pg) + péz(i)), where |

B z is time which is actually spent to serve the job;

B W, g(x) is the mean workload which the tagged job finds in the system and which has to
be processed before it;

] Tl(:c){p;(,,-l) + pé?x)) is the mean time to serve the jobs which arrive to the system during

the service time of the tagged job and which have to be served before it.

Let us provide more explanations. Let us find the expression for the mean workload in the
system for the class-1 job of size x, which is the tagged job. According to the PASTA property
\, of Poisson arrivals, all jobs arriving to the system see the system in the same steady state. So,
class-1 and class-2 jobs see the same mean workload in the system when they arrive. As we need
to take into account only the mean workload which is served before the tagged job, then for
each job the mean workload W, 4,y depends on the size of the tagged job, z. The jobs which
have to be served before the tagged job of class-1 of size x are the class-1 jobs of size less than
z and class-2 jobs of size less than g(x). Then using Pollaczek-Khinchin formula (5.6) for the
class-1 jobs of size less than x and class-2 jobs less than g(z) we conclude that W g(x) 8ives
the mean workload in the system for the class-1 job of size x, which has to be done before it.
Let us notice that the mean workload in the system for the class-2 job of size g(z) is the same,
Weg(e):

Now let us find the mean workload which arriv?/ during the service time of the tagged job.
The service time of the tagged job is Ti(z). The mean load of jobs arrival to the system is:

for the class-1 of size less than z is AlX_%(l) = pg) and for the class-2 with size less than g(z)

—(2
is )\gX;(z)( . Pé%)m)' Then Ty(z)(p" + ,of(l)) is the mean workload which arrive during the

service time of the tagged job of class-1 of size z.

Now we use the similar analysis to give_"fnterpretation to the expression of T3(g(z)) for
the class-2 job of size g(x). We can rewrite expression (5.8) in the following way T(g(z)) =
9(2) + Wi g(a) + Talg(2)) (08 + p2),).

In the case of the tagged job of class-2 of size g(x) the jobs which have to be served before
the tagged job are jobs of class-1 of size less than  and jobs of class-2 of size less than g(x).



78 Chapter 5: Optimal policy for multi-class scheduling in a single server queue

Then in the previous expression g(x) is the time to serve the class-2 job of size g(z); Wy g(x) is
the mean workload in the system for the class-2 job of size g(x) which has to be served before it;
Tg(g(m))(pgcl) + p(gr‘zi)) is the mean work which arrives during the service time T(x) and which
has to be served before class-2 job of size g(x).

Let us describe several properties of the optimal policy.

5.4.4 Properties of the optimal policy

Property 5.1 When the class-2 jobs arrive to the server they are not served immediately, but
wazt until the high priority queue is empty. The mean waiting time is the limit lim g,y o T2(g(x)).
As limg_,p g(x) = 0, then

—=(1
Wig  MEE

= Ak
1—py)  (L—pfY)?

lim Ty(g(x)) =
s b(g(x))

Let us notice that

. 8+ Wy
lim Ty(g(z)) # T1(6) = ——5-
g(z)—0 1— Po

That means that the mean waiting time of the class-2 jobs is not equal to the time which the

parts of the class-1 jobs of size more than 6 wait in the system before start to be served.

Property 5.2 Let us consider the condition of no new arrival. According to the optimal policy
structure in the low priovity queue the jobs are served according to the LAS policy with different
rates, which depend on the number of jobs in each class and hazard rate functions. For the case
when there are no new arrivals in the low priority queue we can calculate the rates with which
the class-1 jobs and class-2 jobs are served in the system at every moment of time. We consider
that all the class-1 jobs and all the class-2 jobs already received the same amount of service. Let
n1 and na be the number of jobs in class-1 and class-2 and let x1 and xo be the attained services

of every job in these classes. Then at any moment
h] (:131) = h,z(.’L‘Q).

If the total capacity of the server is A, then let A1 and Ag be the capacities which each job of
class-1 and class-2 receives. Then

mA] +nolg = Al
Also

hi(z1 + Ar) = ha(za + Ag).
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As A is very small (and so as well Ay and Ag) according to the LAS policy, then we can

approrimate
hi(fL‘ =+ AI) = hl(:l’:) + AJLQ(I), i=1,2.
Then from the previous equations we have

/ _ /
Alhl(:cl)—AQhQ('I"Q)' % 4 1,;”[3 ]11"T€.A ?.;

Then }
A By ¥
A nihh(xa) + nohl (1)’
As B (2)

A nlhg(azg} I 'ngh"l(ﬂjl)'

This result is true for any two distributions for which the hazard rates are decreasing and never

cross. For the case of two Pareto distributions given by (5.5) we have the following:

Ay co A c1

A nicatnee’ A nica+nacr

So, for the case of two Pareto distributions the service rates of class-1 and class-2 jobs do not

depend on the current jobs’ attained services.

Property 5.3 As one can see from the optimal policy description, the class-1 and class-2 jobs
quit the system together if they have the same values of the hazard rate functions of their sizes
and if they find each other in the system. According to the definition of the g(x) function we
can conclude that the class-1 job of size © and class-2 job of size g(x), if they find each other
in the system, quit the system together. But these jobs do not have the same conditional mean
sojourn time,

Ti(z) # Ta(g(x)).

Let us prove this fact formally. Let 71(z|P) be the sojourn time of class-1 job of size z, given
the sample-path P. By sample-path we understand the jobs (and their residual service times)

present when the job arrives, and also all the future arrivals and service times. It holds that:

T1(x|P) # T2(g(z)| P). (5.9)

This is true as if we consider P the sample-path such as the system is empty and there is no
arriving jobs during the serving time. Then 71(z|P;) = = and 72(g(z)|P1) = g(z), so they are
not equal at least on one sample path. The probability that the sample-path P; takes place is
non-zero. That proves (5.9).
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By unconditioning on the sample-path that the job finds upon arrival, we can define the

mean conditional sojourn time as:
Tiw) = [ n(lP)R(P), (5.10)
PeQ

where dFj(P) is the probability that the sample path upon arrival is P € Q equals to all possible

sample-paths. Similarly
Talo@) = [ nalo@IP)dFAP) (5.11)
Pef

Now, by the PASTA property of Poisson arrivals, job arrivals see the steady state of the system,
which means that class-1 and class-2 jobs see the same system upon arrival. This implies that
dFy(P) = dF3(P), for all P. Now, in view of (5.9), this implies that Ty(z) # T2(g(z)), which

proves the property.

5.4.5 Two Pareto classes with intersecting hazard rate functions

h yl

l\ U = g(z)
.\:/' a* >

0" y=ua

Figure 5.3: Two Pareto extension classes, hazard Figure 5.4: Two Pareto extension classes, g(z)

rates function behavior > wn Fig.n2 b (0
Now let us consider the case when the hazard rate function cross, then a™ = (c2by — .,.:H\”

c1bz)/(c1—c2) > 0, see Figure 5.3. As we considered ¢; > cq, thenC}ilr(O) < ha(0))and then class-
2 jobs are served in the high priority queue until they receive 6* = (¢1ba — @2b1)/co amount of
service. Here 8* is such that ha(8*) = h1(0) and g(6*) = 0. In this case the g(x) function crosses
the y = z function at point a**, see Figure 5.4, and so in the low priority queue the class-2 jobs
are served with higher priority with comparison to the class-1 jobs until they receive a** amount
of service. After class-1 and class-2 jobs received a™* amount of service the priority changes and

At A,
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class-1 jobs receive more capacity of the server in the system. According to this analysis we

can rewrite the expressions of mean conditional sojourn times of Section 5.4 Theorem 5.2 in the
following way

Corollary 5.1 In the two-class M/G/1 queue where the job size distributions are Pareto, given
by (5.5) such that the hazard rate functions cross, and which is scheduled with the Gitiins optimal

policy, the mean conditional sojourn times for class-1 and class-2 jobs are

T+ Wm,g(m)
T](ﬁ) = 1 ) ) x>0,
T Pe T Py(z)
x4+ Wg P
Tye) = ——35 o<,
1—pz
9(z) + Wg otz .
Th(g(z)) = Tli(;))’ z = 8%
1= pz" = Py
Proof. The proof follows from the previous discussion. |

5.4.6 Numerical results
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Figure 5.5: Two Pareto classes, mean sojourn

Figure 5.6: Two Pareto classes, mean sojourn
times comparison, V}

times comparison, Vs

We consider two classes with parameters presented in Table 5.1. We provide the results for
two different parameters sets, which we call V) and V5



W
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Table 5.1: Two Pareto classes, parameters
Vi a c2 | m1 | m2 | ;1 p2 p
Vi 25.0212 1004|089 0.1 0.4.0.85 | 0.5..0.95
Ve | 10.0 | 1.25 | 0.05 | 1.35 | 0.25 | 0.06..0.74 | 0.31..0.99

It is known that in the Internet €ff most of the traffic is presented by the large files (80%),
while most of the files are very small (90%). This phenomenon is referred to as “mice-elephant”
effect. Also it is known that the file sizes are well presented by the heavy-tailed distributions like
Pareto. Here the class-1 jobs represent "mice" class and class-2 jobs "elephants". We consider
that the load of the small files is fixed and find the mean sojourn time in the system according
to the different values of the "elephant" class arrival rate.

We compare the mean sojourn time for the Gittins policy, PS, FCFS and LAS policies.
These policies can be applied either in the Internet routers or in the Web service. The expected
sojourn times are

TPS _ p/)\’
l—p
TFOFS _ 13 4 W o)

here Wy, o means the total mean unfinished work in the system.

—LAS 1 *®° —LAS
FLAS _ / T (@) (0 fi(2) + Mo folz))da,
A1+ A2 Jo
where
—=LAS z+ Wyz
P gt
1= 0 P

The results are presented on Figures 5.5,5.6. For the results of V3, we do not plot the mean
sojourn time for the FCFS policy as class-2 has an infinite second moment. As one can see
Gittins policy minimizes the mean sojourn time. In particular, it outperforms the LAS policy
by almost 25 — 30% when the system is loaded by around 90%. We note that surprisingly the
PS policy produces much worse results than the LAS and Gittins policies.

5.4.7 Simulation results

We implemented Gittins policy algorithm for the case of two Pareto distributed classes with
NS-2 simulator. The algorithm is implemented in the router queue. In the router we keep the
trace of the attained service for the flows in the system. We keep the trace during some time

interval after which there are no more packets from the flow in the queue.
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Figure 5.7: NS-2 simulation scheme.

It is possible to select the packet with the minimal sequence number of the flow which has
to be served instead of selecting the first packet in the queue. In the current simulation this
parameter does not play a big role according to the selected model scheme and parameters.
(There are no drops in the system, so there are no retransmitted packets. Then all the packets
arrive in the same order as they were sent.)

The algorithm which is used for the simulations is as follows:

Algorithm

on packet dequeue
select the flow f with the max h;(ays), where
ay is the flow’s attained service
select the first packet py of the flow f in the queue
dequeue selected packet py
set ag =ayp+1

To compare Gittins policy with the LAS policy we also implemented LAS algorithm in the
router queue. According to the LAS discipline the packet to dequeue is the packet from the flow
with the least attained service.

The simulation topology scheme is given in Figure 5.7. The jobs arrive to the bottleneck
router in two classes, which represent mice and elephants in the network. The jobs are generated

by the FTP sources which are connected to TCP senders. The file size distributions are Pareto,
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‘kih.ﬂ

F;=1-=0;"/(z+b;)%, i=1,2. The jobs arrive according to the Poisson arrivals with rates A

and Ag. For the simulations we selected the scenario described in Subsection 5.4.5.

We consider that all connectiorf have the same propagation delays. The bottleneck link
capacity is g. The simulation run time is 2000 seconds. We provide two different versions
of parameters selection, which we call Vs; and Vsa. In Vsy first class takes 25% of the total
bottleneck capacity and in Vsy it takes 50%.

The parameters we used are given in Table 5.2.

Table 5.2: Two Pareto classes, simulation parameters
Ver. | ¢ Coa | M1 | ma2 | Py P2 P

Vsp | 10.0 | 1.25 | 0.5 | 6.8 | 0.25 | 0.50 | 0.75
Vsg | 10.0 | 225 | 0.5 | 4.5 | 0.50 | 0.37 | 0.87

The results are given in Table 5.3. We provide results for the NS-2 simulations and the

values of the numerical mean sojourn times with the same parameters. We calculate the related

=DT ==Gitt
gain of the Gittins policy in comparison with DropTail and LAS policies, g1 = T—50— and
TLAS__TG'LH &
2= TLAS

Table 5.3: Mean sojourn times
Ver. 70T TLAS | it G o
Vs NS-2 18.72 2.10 | 2.08 | 88.89% | 0.95%
Vsy theory | PS: 4.71 | 1.58 1.01 | 78.56% | 36.08%
Vsg NS-2 6.23 2.03 1.83 | 70.63% | 9.85%

Vso theory | PS: 6.46 | 3.25 | 2.19 | 66.10% | 32.62%

We found that with the NS-2 simulations the gain of the Gittins policy in comparison with
LAS policy is not so significant when the small jobs do not take a big part of the system load.
As one can see in Vsp when the class-1 load is 50% the related gain of the Gittins policy in
comparison with LAS policy is 10%. In both versions the relative gain for the corresponding
analytical system is much higher and reaches up to 36%. We explain this results with the

phenomena related to the TCP working scheme.

5.4.8 Multiple Pareto classes

We consider a multi-class single server M/G/1 queue. The jobs arrive to the system in N
classes. Jobs of i-th class, i = 1,..., N arrive according to the Poisson arrival processes with
rates A;. Jobs size distributions are Pareto, namely

1

Fi(z)=1- ———, i=1,...,N.
Z(CE) (x‘i‘l)c'i ¢
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Figure 5.8: N Pareto classes, hazard rates Figure 5.9: N Pareto classes, policy scheme
Then, the hazard rates
Ci .
hi(z) = ———, ¢=1,..., N,
?( ) (:E + 1)7 4 ’

never cross. Without loss of generality, let us consider that ¢; > ¢o > ... > cy. Let us define

the values of 6, ; and g; ;(x), 4,5 =1,..., N in the following way

hi(0i;) = h;(0),
hi(z) = hj(g:5()).

Then we get

&
gij(@) = Z(z +1), b

Let us notice that Hk,i <9k,i+1 and 91",13 > 9i+1,k-, k=Ll vV, 2= 1 00 N =1, 15 k05 b+ 1.

see Figure 5.8.

The optimal policy is the following. The scheme of the optimal policy is given on Figure 5.9.

Optimal policy.

There are NV queues in the system. The class-1 jobs arrive to the system and go to the
first-priority queue-1. There they are served until they get 612 of service. Then they are moved
to the queue-2, which is served only when the queue-1 is empty. In the queue-2 the job of class-1
are served with the jobs of class-2 with the Gittins policy. When the jobs of class-1 attain service

613 they are moved to the queue-3. When the jobs of class-2 attain service f2 3 they are also

moved to the queue-3. And so on.
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To find the expressions for the mean conditional sojourn times in the system we use the
analysis which we used in interpretation of the mean conditional sojourn times expressions in
the case of two class system, see Section/ For job of every class its mean conditional sojourn
time consists if the time which is spent to serve the job when the system is empty, the mean
workload in the system which has to be done before the tagged job and the mean workload
which arrives during the service time of the tagged job and has to be served before it.

Let the tagged job be from class-1 of size . The jobs which have the same priority in the
system and which have to be served before the tagged job are: class-1 jobs of size less than z,
class-i jobs of size less than g; ;(x).

We denote Yf(i) the n-th moment and p_gf) the utilization factor for the distribution F;(z)
of the class-i, i = 1,..., N truncated at . The mean workload in the system which has to be
done before the tagged job is then found with Pollaczek-Khinchin formula and equals to

N 3y y2
iz M Xy, )

W, - :
B3y Pg1.i(r))

z,91,2(x),.01 N (2) =

Then we formulate the theorem.

Theorem 5.3 For the class-1 jobs of size © such as 01p < z < O1p+1, p = 1,...,N and
corresponding class-k jobs with sizes g1 x(x), k = 2,..., N the mean conditional sojourn times
are given by

x4+ W(I,glj(ﬂf); tr x ng,P(:‘g))

Tl = ;
M) = T ) — palgra(@) = - - ploip @)
gLk(x) + Wiz, g12(x),...,01p(x))
Ty (g1,k(z)) = : ‘ : )
S i v e s SRR P
where 01 5 < x < 01141 and we consider that 6; 41 =00, 1 =1,..., N,
Proof. It is similar to the proof of Theorem 5.2. |

5.5 Hyper-exponential and exponential classes
“
We conside;‘ two class M/G/1 queue. The jobs of each class arrive with the Poisson arrival
process with rates A\; and A2. The job size distribution of class-1 is exponential with mean 1/p1,
and hyper-exponential with two phases for class-2 with the mean (ugp + (1 — p)ua)/(paps).

Namely,

Fi(z) =1-e"M7% Fy(z) =1 —pe 2% —(1 — p)e 37, (8.12)
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Figure 5.10: Exponential and HE classes, hazard Figure 5.11: Exponential and HE classes, policy
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*

Note that the hazard rates are

proe” M + (1 — p)uge”H3®

hi(z) = m, ha(z) = pe#at 4 (1 — ple=es

x> 0.

b

The hazard rate function of class-1 is a constant and equals to k1 = f4;. The hazard rate function
ha(z) of the class-2 is decreasing in @. As both hazard rate functions are non-increasing the
optimal policy which minimizes the mean sojourn time is Gittins policy based on the value of
the hazard function, which gives service to the jobs with the maximal hazard rate of the attained
service.

For the selected job size distributions the hazard rate functions behave in different ways
depending on parameters p1, po, p3 and p. The possible behaviors of the hazard rate functions
determine the optimal policy in the system. If the hazard rate functions never cross, the hazard
rate of class-1 is higher than the hazard rate of class-2, then the class-1 jobs are served with
priority to class-2 jobs. This happens when hy > ho(z), x € (0,00). As ho(z) is decreasing, then
this happens when g1 > ha(0). Let us consider that us > ug, then as ha(0) = pus + (1 — p)us
and p1 > ho(0) if p1 > pa > ps. For this case it is known that the optimal policy is a strict
priority policy, which serves the class-1 jobs with the strict priority with respect to the class-2
jobs. From our discussion it follows that this policy is optimal even if pg > p1 > pg, but still
> pra + (1 = p)us.

Let us consider the case when pe > 1 > pg and g1 < pus + (1 — p)us. Then it exists the
unique point of intersection of hs(z) and hi. Let us denote a* the point of this intersection.
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2e” H2¥+(1—p)uge”H3%
pe~H2¥+(1—p)e~Ha®

a*: 1 ].n( p MQ_,UI)
Mo — U3 l—pp ~ s

The hazard rate function scheme is given on Figure 5.10. Then, the optimal policy is the

The value of a* is the solution of 2£

= p1. Solving this equation, we get that

following.

5.5.1 Optimal policy.

There are three queues in the system, which are served with the strict priority between
them. The second priority queue is served only when the first priority queue is empty and the
third priority queue is served only when the first and second priority queues are empty. The
class-2 jobs arrive to the system are served in the first priority queue with the LAS policy until
they get a* amount of service. After they get a* amount of service they are moved to the third
priority queue, where they are served according to the LAS policy. The class-1 jobs arrive to
the system and go to the second priority queue, where they are served with LAS policy. Since
hi(x) = 1, class-1 jobs can be served with any non-anticipating scheduling policy. The scheme
of the optimal policy is given on Figure 5.11.

According to this optimal policy we find the expressions of the expected sojourn times for
the class-1 and class-2 jobs.

5.5.2 Expected sojourn times

Let us recall that the mean workload in the system for the class-1 jobs of size less than z and

class-2 jobs of size less than y is W, , and is given by (5.6). We prove the following Theorem.

Theorem 5.4 The mean conditional sojourn times in the M/G/1 queue with job size distribu-

tion given by (5.12) under Gittins optimal policy described in subsection5.5.1 are given by

T+ Wz,a*

L—pz’ — pys
Wo .
@)= =2, ze,q’) (5.14)
1— px
x+ W, N
TZ(DC) = —ﬁa (/S (a ,OO). (515)
1 —ps’ — px

Proof. To find expressions of the mean conditional sojourn times we use the mean-value
analysis and tagged job approach. The mean conditional sojourn time for the class-1 job of size

x consists of the following elements.

B z, time need to serve the job itself.
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B W, mean workload in the system which has to be served before the tagged job.

® 7", mean time to serve the jobs which arrive to the system during the service time of the

current job and which have to be served before the tagged job.

When the tagged job is a class-1 job of size = the jobs which have to be served before it are all
class-1 jobs of size = and all class-2 jobs of size less than a*. Then the mean workload which the
tagged job finds in the system and which has to be done before it is W = Wy 4+. To find the
mean work which arrive to the system during the service time of the tagged job, which is T ()
we take into account only the jobs which have to be served before it. So, T~ = Tl(a:)(p_g) -I-p,(ﬁ)).

For the tagged job of class-2 of size x < ax the jobs which have to be served before it are
the class-2 jobs of size less than x. Then the mean workload which the tagged job finds in the
system and which has to be done before it is Wy, and the mean time to serve the jobs which
arrive to the system during Ts(z) is Tg(z)pg:z).

For the class-2 job of size @ > o* the jobs which have to be served before it are all class-1 jobs
and class-2 jobs of size less than . Then the mean workload which has to be done before the
tagged job is Wy, and the mean time spend to serve the jobs which arrive during the service
time of the current job is Tg(:c)(pgé) + pg)).

Summarizing the results of the previous discussion we get

Ti(2) = 2+ W + Th(@) (00 + o)z € [0,00),
To(z) =y+ Woz + T2($),0§32), z € [0,a"],
Ty(z) = Y + Woou + Ta(z)(p) + p1?)  z € (a*, 00).

from here we get the proof of the Theorem. |

5.5.3 Numerical results

Let us calculate numerically for some examples the mean sojourn time in the system when
the Gittins policy is used. We consider two classes with the parameters given in Table 5.4. Also
here p = 0.1 and the threshold value is a* = 7.16. We compare the obtained results with the
mean sojourn times when the system is scheduled with FCFS, PS and LAS policies, the results

are given on Figure 5.12.

Table 5.4: Exponential and HE classes, simulation parameters
M1 | M2 | H3 | My | M2 | P P2 P
06 (100516 |11]0.1)04..085|0.5..0.95
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Figure 5.12: Exponential and HE classes, mean sojourn time

5.5.4 Pareto and exponential classes

We can apply the same analysis for the case when class-1 job size distribution is exponential
and class-2 job size distribution is Pareto. Let us consider the case when the hazard rate
functions of class-1 and class-2 cross at one point.

Let Fi(z) = 1—e™% and Fa(x) = 1 —ba/(z+b2)®. Then hy = py and he(z) = ca/(z + ba).
The crossing point is a* = ca/p1 — bo. When a* < 0 the hazard rate functions do not cross
and then the optimal policy is to give strict priority to the class-1 jobs. If a* > 0 then the
hazard rate functions cross at one point and the optimal policy is the same as in the previous
section. Then the expressions of the mean conditional sojourn timed of class-1 and class-2 are
also (5.13), (5.14) and (5.15).

5.6 Conclusions

In [Git89] Gittins considered an M/G/1 queue and proved that the so-called Gittins index
rule minimizes the mean delay. The Gittins rule determines, depending on the service times
of jobs, which job should be served next. Gittins derived this result as a by-product of his
groundbreaking results on the multi-armed bandit problem. Gittins’ results on the multi-armed
bandit problem have had a profound impact and it is extremely highly cited. However, and in
despite of the big body of literature on scheduling disciplines in single server queues, Gittins
work in the M/G/1 context has not received much attention.
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where ay(z — 6, 9(x)) /(1 — pé,l)) and as(z — 6,g(x))/(1 — pél)) are the times spent in the low
priority queuve by the class-1 and class-2 jobs respectively and equal to
_ $”9+A1($)+Wb

Oi](.il’) - 91 g(m))

bl

az(x — 6, 9(z)) =

where Wy, is the mean workload in the low priority queue which the tagged batch sees when arrive
to the low priority queue, py is the mean load in the low priority queve and A;(x), 1 = 1,2 are

the mean works which arrive to the low priority queue with the tagged job in the batch.

Proof. Let us consider that the tagged job is from class-1 and has a size z > #. The time it

spends in the system consists of the mean time it spends in the high priority queue. This time

0+Wa o
1-pg

the tagged job is moved to the low priority queue after waiting while the high priority queue

is as it has to be served only with the class-1 jobs until it gets § amount of service. After
becomes empty. This is the time aq(z)/(1 — pél)). The time a(z — 6) is the time spent by the
tagged job in the low priority queue. This time consists of the time spent to serve the job itself,
x — 0, of the mean workload in the low priority queue which the tagged job finds, W}, of the
mean work which arrives in the batch with the tagged job, A;(z) and of the mean work which
arrive during the service time of the tagged job, a1(z — 8)pp.

We use the same analysis for the mean conditional sojourn time of the class-2 job of size
g(z). L

Now let us find the expressions for the Wy, py, A1(x) and As(z). Let us define the truncated
distribution 1 p.(%) = Fi(y),0 <y <z and F1 p.(y) =0,y < 6,y > z. Let X;’E(i) be the n-th
moment and pg“l, ¢ = 1,2 be the utilization factor for this truncated distribution. We use this
notation because the jobs of class-1 which find themselves in a batch are already served until .

Let N; be the random variable which denotes the number of jobs in a batch of class-i,7 = 1, 2.

We define Xé,lli, as the random variable which denotes the size of class-1 job in a batch. Let

X;?i) be the random variable which corresponds to the size of the class-2 job in a batch. Then

) L A @)
Vo= Xigat D Xigay
=1

=1
is the random variable which denotes the size of the batch. Let us denote as Ay the batch arrival

rate. We know that A, = A1 + A2. According to the previous notations we can write
po = M E[Y3],
here E[Y}] is the mean work that a batch brings and by Pollaczek-Khinchin

ME[Y]]

Wy, = :
TR
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Let us note that Wy does not depend from which class the tagged job comes. As we know the
first and the second moments of ng,li, Xé?;), to find pp and Wj, we need to know the first and
the second moments of N;, i = 1,2. To find this values we we use the method of the Generating

functions, which is described in the following section.

22 o
.. 1F
5.7.1 Generating function calculation Lf/-t et i / -
) & o 5 pre s ‘
Lemma 5.2 The Generating function equals to ¥ 3 "—"“"L_ A é-“',' v
A [? ¢ e PR
Glosts) = _(f e ME-Giaa)daz(l-m)gp () 4 . s ©
M Jo )
s A
4 Zle—)\lﬂ(l—Gl(zl,zg))—AgB(l—zg)Fl(g)) b A_zz?' (518)

Proof. We propose a two dimension generating function G(z1,22), which we obtain using
collective marks method. The method of the collective marks is described in [Kle76b, Ch. 7).

Let us mark the jobs in a batch in the following way. We mark the job of class-1 with a
probability 1 — 21, then z; is a probability that the job of class-1 is not marked. The same is
defined for the jobs of class-2 as z2. Let pn, n, be the probability that n; class-1 and ng class-2
jobs arrive in the batch. Then

Glznzm) = 3> A 8 b,

nl n2

is a generation function and it gives a probability that there are no marked jobs in the batch.

Let us define as a "starter" or S a tagged job. Let us distinguish the cases when the starter
S belongs to class-1 or class-2 and denote by G1(z1,22) and Ga(z1,22) the probabilities that
there are no marked jobs in the batch if the starter is from the class-1 and class-2. When the
S € class-1, we consider two cases depending on the size of the starter (S <,> ). Then

A A
G(21,22) = /\—i({al(zl,zz),s < 0]+ [Gi(21,22), 8 > 0]) + A—icz(zl,zg).

Let us calculate G1(z1, 22). When the class-1 job arrives to the system it creates the busy period.
Still this job does not receive 8 amount of service the low priority queue is not served. So, the
jobs which arrive to the low priority queue and the jobs which are already in the low priority
queue are waiting and so they create a batch. The probability that there are no marked job in
this batch is G1(21, 22).

Let the class-1 job of size x arrive to the system. Let z < #. The probability that k;
class-1 jobs arrive in the period (0,z) is Pi(z) = e"M%(A\;z)*1 /k!. The probability that all
the batches generated by this arrived k; jobs of class-1 is G1(z1,22)*, because each of them
generates the batch which does not have marked jobs with probability G1(z1, 22). During time
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(0, z) the probability that ko class-2 jobs arrive to the system is Pa(z) = e™*2%(Aaz)*2 /ks!. The
probability that this jobs are not marked is not included in G1(z1, z2) and equals to zg’?. Then
we summarize on k1 and kg, integrate on z in (0, #) with dFj(z), as only the class-1 jobs generate
busy periods. We get that the probability that there are no marked jobs in the batch is

g oC
[G1(21,22),8 < 6] /D > Pi(2)Gi(z1, 22)" Pa(2) 24" | dFy(2) =

k1=0

= fge—xlx(l—cl(zl.zzn—mu—zz)dpl(x)_
0

Let class-1 job of size & > 6 arrive to the system. The class-1 job is first served in the high
priority queue until it gets € of service. Then it is moved to the low priority queue. The
probability that k; class-1 jobs arrive in the period (0,8) is P1(8) = e %(\0)*1 /k;!. The
probability that there are no marked jobs in all the batches generated by this arrived ki class-1
jobs is G1(z)*1. The probability that ks class-2 jobs arrive to the system in the period (0,8) is
Py(0) = e *2%(\aB)*2 /kp!. The probability that all this jobs are not marked is z*2.

We have to take into account the "starter" itself, as it has the size more than € and it comes
in the batch. The probability that the starter is not marked is z;. Then we summarize on ky
and kg, integrate on z on (@, 00) with dFi(x), as only the class-2 jobs generate busy periods.
We get

[G’1(31,22),S > 9] /OO Z P1(9)G1(z1,zz)klzlpg(g)z;cl dFl(:[:) =
k1=0

st Zle_Alﬁ(l—'Gl(z]»22))_A29(1u32)F1 (9)'

Let us find Ga(z1, 22). When the job of the second class arrives to the system it generates the
batch of size one, then the probability that the jobs of this batch are not marked is z3. Then
Ga(21, 20) = 2o.

[GQ(Z:[,ZQH = ‘/OOO ngFg(m) = Z9.

Finally
A A
Glz1,22) = =-G1(21, 22) + > Ga(21, 22),
Ap Ab
and we get (5.18). Let us notice that G(1,1) = 1. |

Now we can calculate E[Ny], E[Ns] and so py and W;. After some mathematical calculations

we get the following result.
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Lemma 5.3

L—gz” — o,
oy = i 0 g( ),
o) — g
Wy = Wy g(z) — Wal(l + pp) — 8 (19)
Proof. We use the following equations. For i = 1,2
_ 0G(z1,2)
E[N;] = 02 1,1
82G(z1, 2
BV (N~ 1) = BN - Bl = T80,
892G (21, 22)
E[N1 Ny = ———1=4| 4.
[ 1 2] 82716212 h,l

2
Using b; = %[%}Z—% — 1 after some mathematical calculations we obtain the result of the current

Lemma. [ |

Now let us find expressions for A;(z) and As(x).

Lemma 5.4 The mean workload which comes with the tagged job of class-1 of size x in the

batch and has to be done before it equals to

@)
Po(a
Ar(z) = 2(Wy + 0)py — 0—22.
1=

0

Proof. The term A;(x) is the work that arrives with the tagged job of class-1 of size z and
that gets served before its departure. Since the tagged job arrives from class-1 only when the
batch is started by a class-1 job, the calculations now will depend on Gp(z1,22). We denote
b1|1 and by the mean number of jobs of class-1 and class-2 which arrive in the batch with the
tagged job of class-1 when the batch is initiated by a class-1 job. Then

Ar() = by BEX) + by (X)) - E[X$).

Here

niP(ny) E[leu]
b n )
ik Z IE[Nm] E[Ny]

where Nyj; is the random variable which corresponds to the number of jobs of class-1 in the
batch when the batch is initiated by the class-1 job. So the number of class-1 jobs that arrive
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N2
in addition to the tagged job is (E{N_E]][ = l). Note that since we condition on the fact that

the starter is a class-1 job, Ny|; is now calculated from G1(z1, 22) so:
aGl(zlu ‘22) |
621 151

82G1 (21, 22) |
Oz102 Ll

Then we can find (by; —1). Now we need to calculate b1, that is, the mean number of class-2

E[Ny] =

E[Nljl(NHl -1)] =

jobs that the tagged job of class-1 job see. We have that from the Generating function G (21, 22)
by conditioning on the number of class-1 jobs:

mny ne n n2
Gl Zl 2,‘2 E E Zl 22 pnl,m 2 E Zl 2y an‘nlpnl,

nl n2 nl n2
&G (21, 22) —
s = EIN P _ prar .
821822 |1’1 [ 1} g ; M2Pns|ny E[Nl] [ 1]b2|1
Then we can calculate by

% _ 1 6261(21, Zg)|
2|1 o E[Nl[l} 821_32’2 (1'1).

Finally we find the expression for A;(x). | |

Lemma 5.5 The mean workload which comes with the tagged job of class-2 of size g(x) in the
batch and has to be done before it equals to

Pyiz
Ax(9(a)) = 2(Wa + 0)ps = b~ 12— op.

Proof. The term Az(g(z)) is the work that arrives with the tagged job of size g(x) of class-2
and that gets served before its departure. When the tagged job arrives from class-2 the batch
can be started by a class-1 or by a class-2 job, so the calculations depend on G(zy,z2). We
denote byy and byp the mean number of jobs of class-1 and class-2 which arrive in the batch
with the tagged job of class-2. Then

Ag(9(z)) = bipEX5)] +bopBIX O] - BIXE) ] =
= bipE[X g,x]'f‘ b2|2—1)E[X5(,2)]-

As the tagged job is from class-2, then byjs = ba. We need to find the value of bij2- We use the
fact that the jobs of class-1 and class-2 arrive independently from each other.

n no
Zl 2'2 Z Z 21 122 pn1 o Z Z z] 2'2 pn1{ngpn2

nl n2 nl n2
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092Gz, T
T2, = BN Y S rabrog 22202 = E[Nolby

0z10z il E[N,]
Then
1 32G(21, Zg)
byjp = sl
E[NQ] 621822
From here we get the expression for As(g(z)). [ |

Now we can prove the result of Theorem 5.2.
Lemma 5.6 Ezpressions (5.16), (5.17) and (5.7), (5.8) are equal.

Proof. After simplification of the expressions (5.16), (5.17) we get equations (5.7), (5.8). N



98

Chapter 5: Optimal policy for multi-class scheduling in a single server queue




CHAPTER 6

IMPROVING TCP FAIRNESS WITH THE
MARKMAX PoOLICY

6.1 Summary

We introduce MarkMax a new flow-aware AQM algorithm for Additive Increase Multiplica-
tive Decreases protocols (like TCP). MarkMax sends a congestion signal to a selected connection
whenever the total backlog reaches a given threshold. The selection mechanism is based on the
state of large flows. Using a fluid model we derive some bounds that can be used to analyze
the behavior of MarkMax and we compute the per-flow backlog. We conclude the chapter with
simulation results, using NS-2, comparing MarkMax with Drop Tail and showing how Mark-
Max improves both the fairness and link utilization when connections have significantly different
RTTs.

The results of this work are published in [OBAO08].

99
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6.2 Introduction

It has been known for a long time that if TCP connections with different RTTs share a
bottleneck link, TCP connections with smaller RTTs take a larger share of the bandwidth
[Flo91, Man90]. In [LM97] the authors have observed that under synchronization assumptions
a TCP connection obtains a share of the link capacity proportional to RTT® with 1 < o < 2.
In [Bro00] the author has used a fluid approximation to derive a more rigorous model for the
case when connections have different RT'Ts. Then, in [ABL*00] it was observed that in the case
of not complete synchronization and, especially when RED [FJ93] is used, the distribution of
the link capacity is more fair. In particular, the experiments of [ABL00] have suggested that
a TCP connection obtains a share of the link capacity proportional to RTT%®. This was later
justified by an analytical model for the case of two competing TCP connections [AJN02]. In
[AARTO06] the authors have used a fluid model to analyze what happens if only one connection
reduce‘{its sending rate when multiple connections share the same bottleneck link but they have
ignored backlog dynamics: whenever the total arrival rate at the bottleneck link is equal to its
capacity one of the connection reduces its sending rate, so that the backlog is always zero. In
[SS07] the authors have proposed an MLC(l) AQM algorithm to approach maxmin fairness. In
particular, for { = 1 the MLC(I) algorithm performs similar to RED and for [ = 2 the MLC(1)
algorithm performs similar to CHOKe [PPP00]. The authors of [SS07] argue that by choosing
a significantly large parameter [ one can be arbitrary close to the maxmin fairness. The present

work indicates that this does not appear to be the case.

Building upon [AFG06, AART06] and [Sta07] we propose a new flow-aware active queue
management packet dropping scheme (MarkMax). The main idea behind MarkMax is to iden-
tify which connection should reduce its sending rate instead of which packets should be dropped.
To improve fairness we propose to cut flows with the largest sending rate during the congestion
moments. Several AQM schemes previously proposed do not discriminate between flows. Typi-
cally they drop every incoming packet with a certain probability that is a function of the state
of the queue.

When AQM was first introduced in the 1990s it was unfeasible to classify incoming packets in
real time for high speed links but with technological advances this is now possible. Furthermore,
to reduce the numbers of flows that need to be tracked, it is possible to concentrate on the
larger flows using the heavy-hitter counters of [Sta07] to identify large flows. Then, according
to [AABNO04] we suggest to treat short flows with priority and mark large flows which have
the largest backlog during the congestion moments. We also suggest to use ECN [RFB01] to
minimize the number of dropped packets.

The chapter is organized as follows: In the next Section 6.3 we specify the algorithm. Then,

in Section 6.4 we perform its theoretical analysis. We conclude the chapter with a section on
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NS-2 simulations illustrating the performance of MarkMax.

6.3 The MarkMax algorithm

The algorithm has three parameters: the thresholds €, 8, 8, selected in such a way that
6 < 8 < 8. The threshold @ acts as a “trigger,” whenever the queue size is above this value
one connection is cut. We propose two different ways of selecting which connection to cut, as
described later on. The other two thresholds are needed because we are dealing with a packet
based system with non-zero propagation and queueing delays.

Let g be the queue size and flag be a Boolean variable initialized to TRUE. The following

algorithm is executed every time a new packet arrives:

enqueue packet
if ¢ <6 0r gz 0y
then flag «— TRUE
if g > 68 and flag=TRUE
then a. select connection with MarkMax-B (full backlog based MarkMax) or
MarkMax-T (backlog tail based MarkMax)
b. set the ECN flag in the first packet of the selected connection from
the head of the queue
c. flag < FALSE

The 6y, and 6, thresholds are used do determine whether a congestion signal should be sent
or not, if ¢ > 6. After a congestion signal is sent the algorithm will not send another one as
long as the queue remains in the interval [0}, 6}].

The 6y, threshold acts as a safety mechanism covering the cases when a single cut in the
sending rate of the selected connection might not be enough to reduce the total arrival rate to
a value smaller than the capacity of the outgoing link. Whenever the queue size is above 6y, we
keep sending congestion signals to the selected connection. This does happen especially during
the slow start phase.

Given that the system has non-zero propagation and queueing delays whenever we set the
ECN bit of a certain connection we need to wait for the sender to receive the corresponding
acknowledgment before it reduces its sending rate. Before such reduction is noticeable at the
bottleneck link we still need to wait for the propagation and queueing delay between the sender
and the bottleneck link. During this time the sending rate and the queue will keep growing
so that, at the bottleneck link, it is not immediately possible to conclude whether a single cut

is enough or not. Clearly if we set f, too high the system will respond slowly, whenever one
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cut 1s not enough, and the queue will be larger. On the other hand if we set 8}, too close to f
unnecessary multiple cuts can take place.

The lower threshold 6 is needed because the queue size can oscillate around €, due to the
arrival and departure of single packets and to the bursty nature of the arrival flows. If the
queue size is close to 6 the threshold can be crossed multiple times, so if we use only one
threshold € this could generate multiple congestion signals, potentially causing the sender to
reduce its sending rate multiple times'. Furthermore it could happen that different connections
are selected, causing, again, multiple and unnecessary cuts. Because of these oscillations using
f) is the only way to determine whether the selected connection has reacted to the congestion
signal.

Even if a single cut is enough to reduce the total sending rate to a value smaller than the
capacity of the outgoing link the additive increase aspect of TCP will increase the sending rate
again so that the backlog will, eventually, start to increase again. Clearly if we set 6} too low
the backlog might never reach it forcing the algorithm to use only the #, threshold and to send
multiple spurious congestion signals.

In the next section we use a fluid approximation to further discuss the selection of 8 and
fn. Based on the simulations we run it looks reasonable to suggest that 8, and 6, can be set as
follows: @, = 1.15-8 and 6, = 0.85- 0.

After enqueueing the arriving packet the algorithm sets the flag variable to TRUE if the
queue size has grown too large or has sufficiently decreased. In both cases the queue size is
sufficiently far from € so that we should send a new congestion signal if ¢ > 6. This is done
by the last if statement: at first a connection is selected, then the ECN flag is set in the first
packet from the head of the queue of the selected connection. Finally the flag is set to FALSE
to indicate the fact that one congestion signal has already been sent.

We propose two different criteria for selecting the connection to be cut: MarkMax-B selects
the connection with the biggest (per connection) backlog and MarkMax-T selects the connection
with the biggest backlog in the final part of the queue (the tail). As such the MarkMax-T variant
has one extra parameter, expressed as a percentage, indicating the portion of the queue that
will be considered.

The per connection backlog is related to the sending rate of each connection. Clearly a larger
sending rate will result in larger backlog. More precisely the connection with the biggest backlog
is the connection with the largest average sending rate since the beginning of the current busy
period. Larger values of 0 and corresponding larger queues lead to a larger averaging window,
basically increasing the “memory” of the system. The idea behind MarkMax-T is to reduce the

averaging window in order to identify the connection with the biggest instantaneous rate.

'The ECN specification does mention that senders should reduce the sending rate only once per round trip
time, but this is not enough to guarantee that multiple cuts will not take place if we mark multiple packets.
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6.4 Fluid model

Consider NV TCP connections sharing a single bottleneck link with capacity p. Let RTT; be
the round trip time of the é-th connection (¢ = 1,...,N) and A;(t) its sending rate at time ¢.
We approximate the behavior of the system using a fluid model. Data is represented by a fluid
that flows into the buffer with rate A(t) = >, Ai(¢), and it leaves the buffer with rate u if there
is a non-zero bhacklog. Fluid models have been successfully used to model TCP connections. In
[AABOO] it is shown that such a model adequately describes the behavior of a TCP connection,
provided the average sending rate is large enough.

As in [AAPO05] we assume that, between congestion signals, senders increase their sending
rate linearly. If at time fo the sending rate of the i-th sender is Ap; then at time t > iy its
sending rate is A;(f) = Ag; + a;t, where oy = 1/(RTT;)?. For the sake of simplicity we assume
that RTT; is a constant, as if it often done (see, for example, [ABN195, SZC90, AAP05|).

It is not too hard to see that, if at time tg the sending rates are Ag; and the total backlog
is g, the backlog z(t) is given by:

2(t) = 2o + (Mo — )t + %t? (6.1)

Where Ao = 3>, Ao and & = Y, a4, provided zp and g are such that zo > (’\D"“)z. If

2a
—)2
Ty < ()‘Oza”‘ ) and Ao < p then, after a decreasing phase, the buffer will be empty for a certain

time and will finally start increasing again. In this case

mo+ (ho —pt+ &£, ift <ty

z(t) = {0, if ) <t <420 (6.2)
2
g(e-ee), ifr>ugh

_ p=Ao—/{p—X0)?—2axg

where t1 = =
Solving A(t) = Ao + at for ¢ and substituting in (6.1) we have that

A pho A

$<A)=§'&"?+$D+T— (6.3)

2a
provided xg > W A similar expression can be obtain substituting the value of ¢ in (6.2).

Figure 6.1 shows some of the possible trajectories of the system. Note that all these parabolas
have the same shape in the sense that as xg and Ag vary the only thing that changes is the height
of the vertex on the A = p line.

One possible way of adapting the MarkMax algorithm to the fluid case is as follows: every
time the total backlog x(t) reaches § we can “send a congestion signal” to the corresponding
connection by multiplying its sending rate by 8 (0 < 8 < 1). Throughout the chapter we will
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)\:' AF P: A~ \max A

Figure 6.1: Some of the possible trajectories in the state space

use § = 1/2 (to model TCP New Reno) unless otherwise stated. The two selection methods
previously discussed can easily be adapted as well: for MarkMax-B we select the connection with
the biggest backlog, while for MarkMax-T we pick the connection with the biggest instantaneous
sending rate. Recall that the idea behind MarkMax-T was exactly this and, with the fluid model,

we know A;(t) exactly so there is no need to approximate it.

To simplify the analysis, unless otherwise specified, we assume that the source reacts imme-
diately to the congestion signals. Combining this with the fact that we know the sending rate
after a cut and thelare no short term oscillations in the queue size, it suflices to use only one
threshold (f). As a consequence whenever the backlog reaches 6 the chosen connection, say 7,
immediately changes its rate to 8A;. If Zi#j Ai+BA; > u (that is the arrival rate is still greater
than u) the procedure is repeated by selecting a new connection to cut (it can be the same
one or not, depending on the specific case) until the total sending rate is less than u. For the
MarkMax-T version this procedure is guaranteed to terminate: eventually all connections will
be cut. While for MarkMax-B this is not the case: if multiple cuts are needed the algorithm will
always pick the same connection. As there is no feedback delay the backlog does not change.
If the sum of the rates of the other connections is greater than p even an infinite number of
cuts will not suffice and the algorithm will not terminate. Given that this happens only in the
fluid model and only for very large (and unrealistic) values of § we decided not to address the
problem.

It is worth noting that using this fluid model it is also possible to exactly compute the per
connection backlog, at any given time ¢, using an approach based on network calculus [Cru91].
Let R;in(t) be the total amount of traffic sent by the i-th connection until time ¢ (this is generally
called a “process” in network calculus), that is R;(t) = fé Ai(u)du. Similarly let R;out(t) be
the total amount of traffic of connection ¢ that has left the buffer until time ¢. Clearly the
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backlog at time ¢ is @;(t) = R in(t) — Riou(t) so that we need to compute R;in(t) and Ry out(2)
to find x;(¢). Let ¢1,...,¢, be the times at which a congestion signal was sent (to any of the
connections). Between two congestion signals, say t; and t;41, we know that if A;(t) = A; j +a;t
then Rijn(t) = Sij + Aij(t —t;5) + St — ¢5)* where Aij = Ai(t;) and Sij £ Rijin(t;). This way
we can also compute R;in(7) for any 7 < ¢.

To compute R;oui(t) we can take advantage of the fact that we are dealing with a fluid
FCFS queue with continuous inputs (the arrival rate is bounded) so that the delay for all the
bits exiting at time ¢ is the same and it is equal d(t) = inf {u > 0| R (¢ — u) < Rout(t)} where
Rin(t) = 3, Riin(t) and Rout(t) = 3_; Riout(t). This implies that R;out(t) = Riin(t — d(t)). As
we know R;in(7) for any 7 < ¢ we only need to find d(t) to compute R; oy (2).

Let v £ t — d(t), that is the bits that are exiting at time ¢ joined the queue at time v. We
can find v exploiting the fact that R;;,(v) = Royi(t) and that Roy(t) = pu(t —u), where u is the
beginning of the system busy period containing ¢ and can be found because R;;,(7) is known
for all = <t. We also have that, if {5 <7 <{p41:

Rin(r) = S+ Mo(r = te) + 5 (1 = ta)?, (6.4)

where k = max {j|S; < S} and S; £ 3,5, ;. That is the traffic exiting at time ¢ entered in the
buffer between & and fr1. As ty < v <tg41 we can use (6.4) to solve Ry (v) = p(t — ) for v
and finally compute d(t) = ¢t —v. Knowing d(t) we can use R; out(t) = Riin(t —d(t)) to compute
zi(t) = Rijin(t) — Ri,out(t).

Using this method we wrote a simulator for the fluid model (in Python) that implements
both variants of MarkMax. Using this simulator we have noticed that, provided the value of 6
is not too big, MarkMax-B and MarkMax-T behave in a very similar way. In the remainder of

this section we present some results that can be derived using the fluid model.

6.4.1 Guideline bounds

Let tg be such that z(tg) = 6. Let A~ and AT be, respectively, the total sending rate before
and after the cut(s) at time ¢y3. Let

0, iftA<pu

g(A) = ;
G

(marked as (2.2) in Figure 6.1) and let A = {(A,z)|lz > g(A\)}. It is easy to verily that if
(Ao,zo) € A, then any trajectory starting at (Ag,zg) stays in A. Furthermore, given that
we send the congestion signal(s) whenever z(¢) = 6 and that there is no feedback delay, the

maximum rate A™® corresponds to intersection between g(A) and = = 6 in Figure 6.1. It is
easy to see that A™* = ;4 v/2a4.
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Clearly all the trajectories described by (6.3) intersect the z =  line twice, once to the left
of the A = p line and once to the right. Only the intersection points to the right correspond
to an increasing backlog phase so that A~ is always between p and A™#*, We can also bound
AT: as we keep sending congestion signals until the arrival rate is less than u we have AT < p.
The fact that A~ > p implies that A™ cannot be smaller than Sy (this happens when At = u
and either there is only one connection or, in the case of multiple connections, the biggest one
is significantly bigger than the others). Combining all this we have:

B <AT < p+ V208, (6.5)
Bu AT < . (6.6)

After the cut(s) the total sending rate will be reduced by a factor 8 £ At /A~ which is
always smaller than /3.

Lemma 6.1 If we use MarkMaz-T then:

B

_ B8 N+s—l1
14+ v2al/p '

< B <
<p< N

(6.7)

Proof. Let A; be the sending rate of i-th connection at time tg so that A~ =3, A7, And let
7 be such that A; = max;{A;}, then:

5 AT )\j“
f=1-s1-(-p)5E
X W1

Where the first equality is the definition of /3, the first inequality follows from the fact that
AT < BA; + Zi# A; = AT = A7 (1 — B); this inequality is true because the right hand side
corresponds to the case where there is only a single cut and in this case A" is largest. The
second the inequality follows from the fact that A; = max;{\;} > /\W_

By (6.6) and (6.5) we have that A™ > Bu and A~ < 4+ v/2af, combining these inequalities
with the definition of B we have the lower bound. [ ]

Using the upper bounds in (6.5) and (6.7) we have:

N+pg-1

=0 < (ut+ Jza—a)T. (6.8)

As the upper bound on 3 corresponds to the case where only one connection is cut, if the right
hand side of (6.8) is less than u then a single cut of the connection with the biggest rate will be
enough. The following lemma follows immediately by setting the right hand side of (6.8) less
than or equal to p and solving for 8.
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Lemma 6.2 If we use MarkMaz-T and +f

1 gl -4
0% N1+ 07 (6:4)

then AT = B\; + Z#j Ai < (that is after a single cut A < (1), where A\j = max;{\;}.

Using the lower bound in (6.8) we can find a lower bound on € so that there will be no underflow.
That is the backlog is always positive and the link is fully utilized.

Lemma 6.3 If we use MarkMaz-T and if

JE L~

6>
20

) (6.10)
where ( = ﬁw\/%—m, then the backlog is positive.

Proof. We have that:

At =62 > ¢p
0 k. L PR
M

where the first inequality follows from (6.7) and (6.5) and the second from (6.10). It is easy to
see that if AT > A\ = u — v2a0 then the backlog is always positive (see Figure (6.1): we want
the vertex of the parabola (6.3) to be on the & = 0 axis), which completes the proof. |

We conclude with a bound that can be used as a guideline to set 6y,.
Lemma 6.4 At time t =ty + RTT}
x(t) < 0+ vV2aBRTT; + %RTTf (6.11)
where RTT; = max; RTT;.

Proof. Consider a cycle that start at time ¢y then at time ¢ = ty + RT'T;

2(t) = 6+ (A" = w)(t —to) + 5

t —tg)?
=8+ (A~ — W)RTT, + %RTTE
< 0+ v2af max{RTT;} + -;f max{RTT?},
1 1
where the first equality follows from (6.1), and the inequality from the upper bound in (6.5). B

Using (6.11) it is possible to know by how much the queue could grow between the time
the threshold € is reached and the time the “slowest” of the connections (i.e. the one with the

biggest RTT) reacts to a congestion signal.
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6.5 Simulation results

We have modified the NS-2 simulator in order to simulate the behavior of the proposed
algorithm. We have implemented both the MarkMax-B and the MarkMax-T, referred to as
MM-B and MM-T, respectively, in this section. For MM-T we only consider the last 10% of
the queue (recall that for this version we are considering only the final part of the queue when
determining the connection with the biggest backlog). We have compared MarkMax with the
standard DropTail (DT) policy, by setting the queue size for DT equal to #. For the MM case
the buffer size was large enough to be considered unlimited so that we could verify that MM
can stabilize the queue size.

We consider three scenarios, the corresponding topologies are presented in Figures 6.2,6.3.
Each node s; has a TCP connection with node d;. All the connections have a Maximum
Segment Size (MSS) of 540 B. The bottleneck link is the link between the nodes S and D and
has capacity ¢ and propagation delay apnx. The links (s;,S) and (D, d;) have capacity p; and
propagation delay a;. For the first scenario (see Figure 6.2) there are only two sources and two
destinations while for the second scenario there is an additional TCP connection sending traffic
in the opposite direction on the bottleneck link in order to introduce some variability in the flow
of the acknowledgments for connections 1 and 2. The links used by this additional connection
are represented as dotted lines in Figure 6.2. In the third scenario we consider 10 connections
(see Figure 6.3) with all the traffic going in one direction. In all cases only the link (S, D) uses
MM while all the other links use DT.

Let ¢ be the average queue size at the bottleneck link and ¢; (i = 1,..., V) be the average
queue sizes for the i-th connection. Using Little’s formula we have that the average queueing
delay at the bottleneck link is T = G/ . We can express the round trip time of the i-th
connection as: RTT; = da; + 2apyn, + T, assuming the service time of each packet is negligible.
Let &; 2 RTT; — T = 4a; + 2apynk. By increasing &; for some connections we model different
propagation and queueing delays of multiples links that, for the sake of simplicity, are not
explicitly considered.

Let ¢r be the total simulation time. Given that all the sources start sending data at time 0
we have that the bottleneck link could transmit at most ut; units of data. Let D(t¢) be the total
amount of data actually transmitted during the simulation so that the utilization of the link is
p = D(t)/(ute). Let D;(t;) be the total amount of data received by the i-th connection so that
g; = D;(t¢) /s is the corresponding goodput. To compare the fairness of different solutions we

use Jain’s fairness index which is defined as:
5 2
(Ei:l Q’z‘)
—— ——-‘—-——'—-‘—"N v
N Zi:l Q'E?

Note that —f{,— < J <1 and that bigger values indicates greater fairness.
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Figure 6.2: Scenarios 1 and 2

6.5.1 Fluid model

Figure 6.3; Scenario 3

Using the fluid model simulator we investigate the behavior of MarkMax-B for different

values of 8. In this case p =70 Mbit/s, RTT; =12 ms, «;

__ 540-10-6
RTT?

MB/s, i = 1,2. Table 6.1

shows the values of Jain’s index and bottleneck link utilization for this case. As € increases

the utilization increases as well, due to the increase in the average backlog size. When 6 is not

sufficiently large the utilization is less than one due to periodic underflows. For each value of @

Jain’s index decreases but it is not too far from 1.

0 =60MSS || 6=240 MSS 6 = 960 MSS

g g p J p J p
3| 0.9893 || 0.890 || 0.9906 | 0.9500 | 0.9815 | 0.9964
7 | 0.9874 || 0.892 || 0.9874 | 0.9401 || 0.9788 | 0.9990
10 || 0.9861 || 0.890 || 0.9869 | 0.9400 || 0.9760 | 0.9990
20 || 0.9846 || 0.889 || 0.9863 | 0.9440 || 0.9754 | 0.9990
50 | 0.9836 || 0.899 || 0.9821 | 0.9433 || 0.9664 | 0.9925

Table 6.1: Fluid Model: Jain'’s index, utilization.

6.5.2 Scenario 1

For Scenario 1 we set p =70 Mbit/s, 1 = pg =300 Mbit/s, §; =12 ms, § =240 MSS, §; =200 MSS

1

Oy, =280 MSS, 6p =240 MSS. Table 6.2 gives the values of Jain’s index and link utilization

for different values of d5/8; and different queue management algorithms. Both MM variants

outperform DT except in the first case when d3/d; = 3. In this case Jain’s index for DT is
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bigger but the utilization is somewhat lower. At the same time the difference between Jain’s
index for DT and MM is significantly large for larger values of d5/81. Table 6.3 shows that the
average queue size for the MM algorithms is somewhat larger than for DT. This is due to the
increased link utilization obtained by MM.

We have verified that in this case the hypothesis of Lemma 6.2 are satisfied and in the
simulations it is indeed the case that one cut is always enough to reduce the total sending rate
to a value less than pu.

As the difference between MM-B and MM-T is not significant we only use MM-B in the
remaining scenarios.

DT MM-B MM-T
g—f J p J p J p
3 || 0.9893 | 0.9751 || 0.9853 || 0.9999 || 0.9633 | 0.9999
7 || 0.7540 | 0.9720 || 0.9625 || 0.9999 || 0.9515 | 0.9999

10 || 0.5361 | 0.9563 || 0.9494 || 0.9999 || 0.9501 | 0.9997
20 || 0.5484 | 0.9993 || 0.9561 || 0.9994 || 0.9258 | 0.9997

Table 6.2: Scenario 1: Jain’s index, utilization.

DT MM-B MM-T
G/B | T/ms| g/ B | T/ms || g/ B | T/ms
3 || 78373 8.9 87257 9.9 86753 9.9
7 || 74802 8.5 81723 9.3 81547 9.3
10 || 69219 7.9 80019 9.1 79502 9.1
20 || 68268 7.8 74297 8.4 74189 8.4

sk

Table 6.3: Scenario 1: average queue size and delay.

6.5.3 Scenario 2

The only difference between the first and second scenario is that there is one additional
TCP connection (s3,d3) sending data in the opposite direction on the bottleneck link. All the
parameters are the same as in scenario 1 with the only difference being that the buffer size for
the DT queue between D and S (that is the queue used by the data traffic of connection 3 and
the acknowledgments of connections 1 and 2) is set to 240 MSS and the §3 = do. Table 6.4
shows that as in the previous scenario MM-B outperforms DT. Not surprisingly the presence of
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traffic competing with the acknowledgments on the (D, .S) link does alter the performance of
MM-B, for lower values of d2/d1 there is a slight increase in Jain’s index but for higher values it
decreases and the utilization is always lower than in the previous case. Most likely this is due
to the fact that the presence of traffic disrupting the flow of the acknowledgments increases the
round trip time.

DT MM-B
&l J p | @B J p | a/B
7 || 0.8561 | 0.9338 | 34443 || 0.9637 | 0.9600 | 41966

10 || 0.7769 | 0.9497 | 32174 || 0.9632 | 0.9510 | 39486
20 || 0.6910 | 0.9146 | 28699 || 0.9228 | 0.9702 | 41350
o0 || 0.5244 | 0.9262 | 29021 || 0.8572 | 0.9937 | 50408

Table 6.4: Scenario 2: Jain’s index, utilization and average queue size.

6.5.4 Scenario 3

In the last scenario we have 10 connections sharing the (S, D) link and no connections
using the reverse link, g =70 Mbit/s, p; =300 Mbit/s, i = 1,...,10, & =12 ms, §;i+1 = /25,
t=1,...,9, 0 =240 MSS, 6, =200 MSS, 6, =280 MSS, ¢ =240 MSS. Table 6.5 shows that
MM-B has a significantly higher Jain’s index, and slightly higher utilization, at the expenses of
a moderate increase in the average queue size.

J P g/ B | T/ms
1BHE 0.5848 | 98,91 | 65207 7
MM-B || 0.9313 | 99,99 | 98913 11

Table 6.5: Scenario 3: Jain’s index, utilization and average queue size and delay

6.6 Conclusion and future work

We have introduced MarkMax: a simple flow-aware AQM algorithm. We have used a fluid
model to set the parameters of the algorithm as well as to analyze its behavior. We have also
shown how to compute the per-flow backlog using such a model. We have simulated the two
proposed variants (MarkMax-B and MarkMax-T) using NS-2, showing how they improve the
fairness and link utilization compared to the standard DropTail algorithm.
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These results are definitely promising and warrant further analysis. Of all the issues that
we plan on addressing we would like to mention performance and queue stability with large
number of connections and comparison between MarkMax-B and MarkMax-T. So far we have
conducted simulations with up to 10 connections but it is not immediately clear if the algorithm
would perform equally well with more connections. It is conceivable that, at least in some cases,
cutting a single connection could n6 be enough to bring the total sending rate to a value smaller
than p. We would also like to determine whether MarkMax-B always outperforms MarkMax-T
as indicated by the simulations we run so far or if it the situation can be reversed by properly
selecting the fraction of the queue that is considered while computing the per-connection backlog
in MarkMax-T.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

In the current thesis we propose several new contributions to improve the performance in
computer networks. The obtained results concern the resource sharing problems in the Internet
routers, Web servers and operating systems. We study several algorithms which decrease the
mean waiting time in the system with efficient resource sharing, provide the possibility to intro-
duce the Quality of Service, Network Pricing and flow differentiation to the networks. We show
the effectiveness of the proposed algorithms and study the possibility of their implementation in
the router queues. The studied problems open several directions for future work, some of which
are the topics of our current research.

In Chapter 3 we study the TLPS scheduling scheme for the case of hyper-exponential job
size distribution and find an approximation of the optimal threshold for the case of two phase
job size distribution. We show that the mean waiting time in the system with the use of the
found threshold approximation can be reduced up to 36% in comparison with the DropTail
policy. Still the question of the threshold selection in the case when the job size distribution
is hyper-exponential with many phases or has a different distribution stays open. We consider
this to be an important topic future studies.

In Chapter 4 we prove the monotonicity of the mean conditional sojourn time in the DPS
system under a restriction on the system parameters. As we did not find a counter-example
and therefore the found restriction is probably not a necessary condition, we think that it is
possible to prove the theorem for the general case without additional system constraints. Also
the investigation of the system parameters to find the cases when the DPS system gives a
significant gain in comparison with PS system is an interesting topic for future research.

In Chapter 5 we study the optimal Gittins policy in the multi-class single server queue.

This topic opens a large area for future research, as we studied several particular cases of the
115
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Gittins policy application. Taking into account the Internet traffic structure, we study the case
when the jobs arrive to the system in two classes, which are Pareto distributed and represent
“mice” and “elephants” in the Internet. For this case we describe the optimal system policy,
find the analytical expression of the mean waiting time and implement the algorithm in the
router queue. With the simulation results we show that with the found optimal policy the
gain in the system can reach 10% in comparison with the LAS policy and 36% in comparison
with the DropTail policy. Also we study several cases of particular interest when jobs arrive in
classes with exponential distributions. As a future research we propose to consider the cases
with more than two job classes in the system, also we may consider other types of service times
distributions. It is important to investigate the system parameters to find when the Gittins
policy gives a significant gain in comparison with the LAS policy. The applicability of our
results in real systems like the Internet should also be more carefully evaluated.

In Chapter 6 we introduce a new flow-aware AQM scheme, MarkMax, which reduces the
sending rate of the connection with the largest sending rate when the router buffer reaches
some given threshold. With the fluid model we found the guidelines for the threshold selection.
Using the NS-2 simulator we implement MarkMax in the router queue and show that it im-
proves fairness in the system and provides better performance than the DropTail policy. As a
future research topic we propose to study more complex system topologies and cases with the
large number of connections share the bottleneck link. For this case we propose to cut several
connections at once. The selection of the number of connections to cut and its dependency on
the number of connections present in the network constitute a challenging study.

A possible research direction is a combination of MarkMax and a flow differentiation schedul-
ing policy like TLPS or Gittins policies. Development of the new algorithm which gives priority
to the short flows and at the same time improves fairness between the long flows can be an
interesting and nontrivial task. We think that such an algorithm can improve both, fairness and

mean waiting time in the system and provide better system performance.
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LIST OF ACRONYMS

ACK
AQM
DNS
DPS
DT
FB
FCFS
FTP
HTTP
HE
ICMP
IP
LAN
LAS
MIME
MLPS
MM
MSS
MTU
NS
081
PASTA
PS
RED
RFC
RTT

Acknowledgment

Active Queue Management
Domain Name System
Discriminatory Processor Sharing
DropTail

Foreground Background

First Come First Served

File Transfer Protocol

Hypertext Transfer Protocol
hyper-exponential

Internet Control Message Protocol
Internet Protocol

Local Area Network

Least Attained Service

Multipurpose Internet Mail Extension

Multi Level Processor Sharing
MarkMax

Maximum Segment Size
Maximum Transmission Unit
Network Simulator

Open Systems Interconnection
Poisson Arrivals See Time Averages
Processor Sharing

Random Early Dropping
Request for Comment
Round-Trip Time
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SMTP
SRPT
SPT
TCP
Telnet
TLPS
UDP
WAN
WWWwW

Simple Mail Transfer Protocol
Shortest Remaining Processing Time
Shortest Processing Time
Transmission Control Protocol
remote terminal protocol

Two Level Processor Sharing

User Datagram Protocol

Wide Area Network

World Wide Web
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