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The Halfin-Whitt regime



Heavy traffic

John Kingman

Consider stochastic processes in their most
critical regimes

Heavy-traffic theory , launched by
Kingman in the 1960’s: system utilization ≈ 100%

Space-time scaling:

- Speed up time, while shrinking space, so that the CLT kicks in
- Apply functional limit theorems to obtain the scaling limit



Erlang B and C formulas

Consider Poisson arrivals with rate λ and exponential service times
with mean 1/µ. Erlang (1917) obtained the blocking probability in
the M/M/s/s queue:

B(s, λ) =
P(Pois(λ) = s)

P(Pois(λ) ≤ s)

For the delay probability in the M/M/s queue, denoted by C (s, λ),
it holds that

C (s, λ)−1 = ρ+ (1− ρ)B(s, λ)−1



Large systems

For a constant β ∈ R such that s = λ+ β
√
λ it holds that

B(s, λ) =
P(Pois(λ) = s)

P(Pois(λ) ≤ s)
∼ φ(β)

Φ(β)
√
s

where φ(x) = 1√
2π
e−

1
2
x2 and Φ(x) = 1√

2π

∫ x
−∞ e−

1
2
u2du

CLT: When λ is a positive integer Pois(λ) can be seen as the sum
of λ Poisson random variables with mean one

P(Pois(λ) ≤ s) = P
(∑

Pois(1)− λ√
λ

≤ s − λ√
λ

)
= Φ(β) +O(λ−1/2)







A balance act

Three regimes for large system (λ and s large):

1 Efficiency driven (ED): Fix β > 0 and take s = λ+ β

2 Quality driven (QD): Fix β > 0 and take s = (1 + β)λ

3 Quality & Efficiency Driven (QED): Fix β > 0 and take

s = λ+ β
√
λ

Halfin-Whitt (1981) derived that

lim
λ→∞

C (λ+ β
√
λ, λ) =

[
1 +

βΦ(β)

φ(β)

]−1
This is exactly the right scaling!



Consider the normalized process Xs(t) = X (t)−s√
s

with infinitesimal

mean ms(x) that converges as

ms(x) =
−s√
s

+
λ√
s
→ −β, x > 0

= −b
√
sx + sc√

s
+

λ√
s
→ −x − β, x < 0

Theorem
(Halfin-Whitt 1981) Under square-root staffing, Xs(t)⇒ X̂ (t)
where X̂ is a diffusion process with drift

m(x) =

{
−β, x > 0,
−x − β, x < 0,

(1)

and variance 2.

This diffusion process behaves like a Brownian motion with drift
above zero and like an Ornstein-Uhlenbeck process below zero.



The number of customers is roughly s +
√
sX̂ (t) for s

sufficiently large

The boundary between the Brownian motion and the OU
process can be thought of as the number of servers, and X̂
will keep fluctuating between these two regions.

The process mimics a single server queue above zero, and an
infinite server queue below zero, for which Brownian motion
and the OU process are indeed the respective heavy-traffic
limits.

As β increases, capacity grows and the Halfin-Whitt diffusion
will spend more time below zero.



The Halfin-Whitt diffusion X̂ is a Markov process on the real line
with continuous paths and density p = p(x , t) that satisfies the
forward Kolmogorov equation

∂

∂t
p(x , t) = − ∂

∂x
[m(x)p(x , t)] +

∂2

∂x2
[p(x , t)]. (2)

with initial condition p(x , 0) = δ(x − x0) (the Dirac function) and
the boundary conditions p(∞, t) = p(−∞, t) = 0.



Heavy-traffic scheme

Xs(t) ⇒ Xs(∞) M/M/s queue
⇓ ⇓ ⇓

X̂ (t) ⇒ X̂ (∞) hybrid diffusion process



Heavy-traffic scheme

X (t) ⇒ X (∞) queueing process
⇓ ⇓ ⇓

X̂ (t) ⇒ X̂ (∞) diffusion or limit process



Literature

Contributions for square-root staffing (Halfin-Whitt regime):

M/M/s/s Erlang (1917)
M/D/s Pollaczek (1930)
G/M/s Halfin-Whitt (1981)
G/PH/s Puhalskii-Reiman (’00)
G/D/s Jelenković-Mandelbaum-Momčilović (’04)
G/G/s Gamarnik-Momčilović (’07)
G/G/s Reed (’07), Kaspi-Ramanan (’08)

Many other applications/extensions including reneging, multi-class
customers, control and optimization problems, loss and queueing
networks



The M/D/s queue: some history



Godfathers of queueing

A.K. Erlang F. Pollaczek
1878-1929 1892-1981



A bulk service queue

Both Erlang (1917) and Pollaczek (1930) studied the queue

Qn+1 = (Qn + An − s)+, n = 0, 1, . . .

An i.i.d. copies of a Poisson random variable A with mean λ

Assume that λ < s

Let Q = limn→∞Qn

Then it comes down to finding the solution to

Q
d
= (Q + A− s)+
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Roots

The equation
zs = eλ(z−1)

has s complex roots in the unit disk |z | ≤ 1 (usually proved
using Rouché’s theorem and λ < s)

Denote the s roots by z0 = 1, z1, . . . , zs−1

Exact expressions:

zk =
∞∑
n=1

e−nρ
(nρ)n−1

n!
(e

2πi
k )n, k = 0, 1, ..., s − 1



Two solutions

The pgf of Q is then given by (Crommelin 1932)

E(zQ) =
(z − 1)(s − λ)

zs − eλ(z−1)

s−1∏
k=1

z − zk
1− zk

One readily obtains, for instance,

P(Q = 0) = eλ(−1)s−1(s − λ)
s−1∏
k=1

zk
1− zk

(Erlang 1917)

= exp
{
−
∞∑
l=1

1

l

∞∑
m=1

e−lλ
(lλ)ls+m

(ls + m)!

}
(Pollaczek 1930)



The Erlang D formula

Consider the M/D/s queue: Poisson arrivals with rate λ,
deterministic service times, and s servers

We have considered Q
d
= (Q + A− s)+, and

D(s, λ) = P(no waiting time) ≈ P(Q = 0)

Some further reasoning yields

D(s, λ) =
s − λ∏s−1

k=1(1− zk)
(Erlang 1917, Crommelin 1932)

= exp
{
−
∞∑
l=1

1

l

∞∑
m=0

e−lλ
(lλ)ls+m

(ls + m)!

}
(Pollaczek 1930)

Computational burden increases with s and ρ = λ/s



Dealing with large-capacity systems

Pollaczek (1930) obtained the asymptotic result

D(s, λ) = 1− 1

1− ρ
(ρe1−ρ)s√

2πs

(
1 +O(s−1)

)
Pollaczek comments:

Cette formule approximative devient inutilisable dans le
cas le plus important où, le nombre s des lignes parallèles
étant grand, le coefficient de rendement ρ tend vers
l’unité, c’est-à-dire où, pour un grand faisceau de lignes,
l’on tend à approcher de l’état idéal d’une utilisation
parfaite.



Heavy traffic

Pollaczek proposed to scale the system such that ρ = 1− γ/
√
s,

with γ kept constant, and proves

D(s, λ) =
1

2πi

∮
C

log
(

1− ez
2/2+γz

) dz

z
+O(s−1)

with C a contour to the left of and parallel to the imaginary axis

An equivalent scaling is s = λ+ β
√
λ (square-root staffing), β

fixed and λ→∞

β =
s − λ√
λ
, γ =

s − λ√
s

= βρ
1
2



The heavy-traffic limit

Set s = λ+ β
√
λ, β > 0 fixed, and again start from

Qλ
d
= (Qλ + Pois(λ)− s)+

Then

1√
λ
Qλ

d
=

1√
λ

(Qλ + Pois(λ)− s)+

=

(
1√
λ
Qλ +

Pois(λ)− s√
λ

)+

=

(
1√
λ
Qλ +

∑
Pois(1)− λ√

λ
− β

)+

Hence, for Q∗ = limλ→∞Qλ/
√
λ we have Q∗

d
= (Q∗+ N(−β, 1))+



Gaussian random walk

Q∗
d
= (Q∗ + N(−β, 1))+

d
= max{0,X1,X1 + X2, . . .} =: Mβ

with X1,X2, . . . independent and normally distributed random
variables with mean −β < 0 and variance 1. This implies

lim
λ→∞

D(λ+ β
√
λ, λ) = P(Mβ = 0)

and Pollaczek already proved that

P(Mβ = 0) =
1

2πi

∮
C

log
(

1− ez
2/2+βz

) dz

z



Qλ,n ⇒ Qλ,∞ M/D/s queue
⇓ ⇓ ⇓
Q∗n ⇒ Q∗∞ Gaussian random walk



The Gaussian random walk



An open problem

Despite the apparent simplicity of the problem, there does
not seem to be an explicit expression even for EMβ...,
but it is possible to give quite sharp inequalities and
asymptotic results for small β (John Kingman, 1965).

Kingman showed that for β ↓ 0

EMβ =
1

2β
− c +O(β)

where

c =
1√
2π

∞∑
n=1

1√√
n(
√
n +
√
n − 1)2

= 0.5826...



Riemann zeta function

The Riemann zeta function ζ is defined as

ζ(s) =
∞∑
n=1

n−s , Re s > 1

This definition is extended by analytic continuation to the entire
complex plane except s = 1, where ζ has a simple pole



In Janssen-JvL (’07) we derived for 0 < β < 2
√
π

EMβ =
1

2β
+
ζ(12)
√

2π
+

1

4
β +

β2√
2π

∞∑
r=0

ζ(−1
2 − r)

r !(2r + 1)(2r + 2)

(
−β2

2

)r

Chernoff (1965) and Kingman (1965) identified ζ(1/2)/
√

2π

Siegmund (1985) identified β/4

Chang & Peres (1997) identified β2ζ(−1/2)/2(2π)1/2



Sampled version of Brownian motion

Brownian motion with negative drift −β:

EMBM =
1

2β

EMβ =
1

2β
+
ζ( 1

2 )
√

2π
+

1

4
β +

β2

√
2π

∞∑
r=0

ζ(− 1
2 − r)

r !(2r + 1)(2r + 2)

(
−β2

2

)r



The Gaussian random walk gives heavy-traffic approximations for
the bulk service queue. We know that

Q∗ ≈
√
λMβ

and
Mβ

d
= Exp(2β)



Corrected diffusion approximations
(with Janssen and Zwart (OR, 2011))



A close look at the Poisson distribution

A well known relation:

P(Pois(λ) ≤ s) =
s∑

j=0

e−λ
λj

j!
=

Γ(s + 1, λ)

Γ(s + 1)
=

1

s!

∫ ∞
λ

e−ttsdt

We want to bring this into Gaussian form...

P(Pois(λ) ≤ s) =
1

s!

∫ ∞
λ/s

e−su(su)ssdu

=
ss+1e−s

s!

∫ ∞
λ/s

es(1−u)usdu

=
p(s)
√
s√

2π

∫ ∞
ρ

es(1−u+ln u)du

with ρ = λ/s and p(s) = sse−s
√

2πs/s!



P(Pois(λ) ≤ s) =
p(s)
√
s√

2π

∫ ∞
ρ

es(1−u+ln u)du

Define y as the solution of y + ln(1− y) = −1
2x

2, x ∈ C

Let α =
√
−2s(1− ρ+ ln ρ) with sign(α) = sign(1− ρ)

We get

P(Pois(λ) ≤ s) =
p(s)√

2π

∫ α

−∞
e−

1
2
x2y ′(x/

√
s)dx



We can show that

y(x) =
∞∑
n=1

anx
n, |x | < 2

√
π

with

a1 = 1, a2 = −1

3
, a3 =

1

36
, a4 =

1

270
, a5 =

1

4320



Combining

P(Pois(λ) ≤ s) =
p(s)√

2π

∫ α

−∞
e−

1
2
x2y ′(x/

√
s)dx

with y(x) =
∑∞

n=1 anx
n and p(s) = sse−s

√
2πs

s! ∼ 1− 1
12s + . . .

yields

P(Pois(λ) ≤ s) ∼ Φ(α) +
2

3
√
s
φ(α)− 1

12s
αφ(α) + . . .



From

P(Pois(λ) ≤ s) =
p(s)√

2π

∫ α

−∞
e−

1
2
x2y ′(x/

√
s)dx

and P(Pois(λ) = s) = p(s)φ(α) we get

B(s, λ)−1 =

√
s

φ(α)

1√
2π

∫ α

−∞
e−

1
2
x2y ′(x/

√
s)dx

If we use y ′(x) ≈ 1 and α ≈ β, we obtain

B(s, λ)−1 ≈
√
s

φ(α)
Φ(α) ≈

√
s

φ(β)
Φ(β)

Both approximations can be justified



A real benefit of our approach is that it is possible to obtain
bounds for y ′

Appropriate bounds for y ′ can be guessed from the series expansion

y ′(x) = 1− 2

3
x +

1

12
x2 +

2

135
x3 +

1

864
x4 + . . . , |x | < 2

√
π

We can for instance prove that, for x ≤ 0,

y ′(x) ≤ 1− 2

3
x +

1

12
x2

y ′(x) ≥ 1− 2

3
x +

1

12
x2 +

2

135
x3



Implications for Erlang B

1 Full asymptotic series expansions for the regime
s = λ+ β

√
λ, s →∞. For example:

B(s, λ)−1 =

√
sΦ(α)

φ(α)
+

2

3
+

1

12
√
s

(
Φ(α)

φ(α)
− α

)
+O(1/s)

2 Bounds that hold for all values of s and λ. For example:

B(s, λ)−1 ≥
√
sΦ(α)

φ(α)
+

2

3
,

B(s, λ)−1 ≤
√
sΦ(α)

φ(α)
+

2

3
+

√
s

φ(α)(12s − 1)



Numerical illustration

Values for s = λ+ β
√
λ with β = 1

s λ B(s, λ) Erlang LB UB

1 0.38 0.2764 0.4653 0.2627 0.2870
2 1.00 0.2000 0.2876 0.1953 0.2044
3 1.69 0.1645 0.2208 0.1620 0.1671
5 3.20 0.1282 0.1606 0.1270 0.1294

10 72.9 0.0910 0.1065 0.0906 0.0914
20 16.0 0.0644 0.0719 0.0643 0.0646
30 25.0 0.0526 0.0575 0.0525 0.0527
50 43.4 0.0407 0.0437 0.0407 0.0408

100 90.5 0.0288 0.0302 0.0288 0.0288
200 186 0.0204 0.0211 0.0204 0.0204
300 283 0.0166 0.0171 0.0166 0.0166
500 478 0.0129 0.0132 0.0129 0.0129



Insights

A major difference between our approximation and Erlang’s is
the replacement of β by α =

√
−2s(1− ρ+ ln ρ)

Note that

1
2α

2 = s
∞∑
n=2

(1− ρ)n

n
⇒ α ≈

√
s(1− ρ) = γ ≈ β

We can show that γ < α < β, and α→ β in the HW regime

α seems most robust choice among the three



Erlang D formula

The no wait probability in the M/D/s queue is known to be

D(s, λ) = exp
{
−
∞∑
l=1

1

l

∞∑
m=0

e−lλ
(lλ)ls+m

(ls + m)!

}
(Pollaczek 1930)

The CLT says for the HW regime that

D(s, λ) = exp
{
−
∞∑
l=1

1

l
P(Pois(λl) ≥ ls)

}
≈ exp

{
−
∞∑
l=1

1

l
Φ(−β

√
l)
}

=: P(Mβ = 0)

Our expansion P(Pois(λ) ≤ s) ∼ Φ(α) + 2
3
√
s
φ(α)− 1

12sαφ(α) + . . .

yields D(s, λ) ≈ P(Mα = 0) and arbitrarily many refinements



Erlang C formula

Erlang (1917) obtained the delay probability in the M/M/s queue
C (s, λ) for which

C (s, λ)−1 = ρ+ (1− ρ)B(s, λ)−1

Halfin-Whitt (1981) derive

lim
λ→∞

C (λ+ β
√
λ, λ) =

(
1 +

βΦ(β)

φ(β)

)−1
=: C∗(β)

For λ < s and s ∈ N we have (Janssen-JvL-Zwart ’08)

C (s, λ)−1 ≤ ρ+ γ

(
Φ(α)

φ(α)
+

2

3

1√
s

+
1

φ(α)

1

12s − 1

)
C (s, λ)−1 ≥ ρ+ γ

(
Φ(α)

φ(α)
+

2

3

1√
s

)



S. Ramanujan (1887-1920)



A famous problem

In 1911 Ramanujan set the following problem:

ξ(n) =
n!

nn

(
1

2
en −

n−1∑
k=0

nk

k!

)
, n = 1, 2, . . .

lies between 1
2 and 1

3
⇒ Proofs published by Szegö (1928) and Watson (1929)

In his first letter to Hardy in 1913 Ramanujan asserted:

1

3
+

4

135(n + 8/45)
≤ ξ(n) ≤ 1

3
+

4

135(n + 2/21)

⇒ Proved by Flajolet et al. in 1995 using singularity analysis
⇒ We can derive an alternative proof and sharper results



A famous problem

ξ(n) =
n!

nn

(
1

2
en −

n−1∑
k=0

nk

k!

)

=
1

P(Pois(n) = n)

(
1

2
− P(Pois(n) ≤ n)

)
+ 1

=
1

2P(Pois(n) = n)
− B(n, n)−1 + 1

This is the case λ = s = n and so α = 0. We have

B(s, λ)−1 ≤ Φ(α)
√
s

φ(α)
+

2

3
+

Φ(α)− αφ(α)

12φ(α)
√
s

B(s, λ)−1 ≥ Φ(α)
√
s

φ(α)
+

2

3
+

Φ(α)− αφ(α)

12φ(α)
√
s
− 4 + 2α2

135s



A famous problem

ξ(n) =
n!

nn

(
1

2
en −

n−1∑
k=0

nk

k!

)

=
1

P(Pois(n) = n)

(
1

2
− P(Pois(n) ≤ n)

)
+ 1

=
1

2P(Pois(n) = n)
− B(n, n)−1 + 1

This is the case λ = s = n and so α = 0. We have

B(n, n)−1 ≤
√

2πn

2
+

2

3
+

√
2π

24
√
n

B(n, n)−1 ≥
√

2πn

2
+

2

3
+

√
2π

24
√
n
− 4

135n



A famous problem

ξ(n) =
n!

nn

(
1

2
en −

n−1∑
k=0

nk

k!

)

=
1

P(Pois(n) = n)

(
1

2
− P(Pois(n) ≤ n)

)
+ 1

=
1

2P(Pois(n) = n)
− B(n, n)−1 + 1

This is the case λ = s = n and so α = 0. We have

B(n, n)−1 ≤
√

2πn

2
+

2

3
+

√
2π

24
√
n

B(n, n)−1 ≥
√

2πn

2
+

2

3
+

√
2π

24
√
n
− 4

135n

The bounds are not sharp enough. The ones doing the trick follow
from...



y ′(x) ≤ 1− 2

3
x +

1

12
x2 +

2

135
x3 +

1

864
x4 − 1

2835
x5, x ≤ 0

y ′(x) ≥ 1− 2

3
x +

1

12
x2 +

2

135
x3 +

1

864
x4 − 1

2835
x5 − 139

777600
x6

− 1

25515
x7 − 571

261273600
x8 +

281

151559100
x9, x ≤ 0



Refined square root staffing
(with Janssen and Zwart (OR, 2011) and Bo Zhang (OR, 2012))



Square root staffing principle

C∗(β) is easier to work with than C (s, λ), especially for large λ

Example: How many agents are necessary so that at least 50
percent of calls are answered immediately?

The Halfin-Whitt result can be applied as follows: Determine
β so that C ∗(β) = 0.5

Choose the number of agents s = dλ+ β
√
λe

The same β can be used for different values of the traffic
volume λ



Possible issue

Square root staffing is based on asymptotic theory. How large
should a system be before the asymptotics kick in?



Refined square root staffing

The Halfin-Whitt approximation suggests to use β∗ which
satisfies C∗(β∗) = ε and staffing level s∗ = λ+ β∗

√
λ

We don’t take β∗, but

β = β∗ +
β•√
λ

This leads to a refinement of the form

s• = λ+

(
β∗ +

β•√
λ

)√
λ = λ+ β∗

√
λ+ β•

The correction term β• follows from the refinements of the
Halfin-Whitt approximation for C (s, λ):

β•(ε) = β∗(ε)
(1− ε)

(
1
2β∗(ε) + 1

6β∗(ε)
3
)

+ ε
(
1
3β∗(ε) + 1

6β∗(ε)
3
)

1− ε+ β∗(ε)2



λ Exact s∗ Difference s• Difference
1 3 2.4 0 2.9 0
2 5 4.0 0 4.5 0
5 9 8.1 0 8.7 0

10 16 14.4 −1 15.0 0
20 27 26.3 0 26.9 0
50 61 60.0 0 60.6 0

100 115 114.2 0 114.7 0
200 221 220.0 0 220.6 0
500 533 531.7 −1 532.3 0

1000 1046 1044.9 −1 1045.4 0

Results for ε = 10−1; β∗ = 1.4202 and β• = 0.5666.



λ Exact s∗ Difference s• Difference
1 6 4.1 −1 6.0 1
2 9 6.4 −2 8.3 0
5 14 11.9 −2 13.8 0

10 22 19.8 −2 21.7 0
20 36 33.9 −2 35.8 0
50 74 72.0 −1 73.9 0

100 134 131.1 −2 133.0 0
200 246 244.0 −1 245.9 0
500 572 569.6 −2 571.5 0

1000 1101 1098.5 −2 1100.4 0

Results for ε = 10−3; β∗ = 3.1153 and β• = 1.9197.



λ Exact s∗ Difference s• Difference
1 10 5.7 −4 9.8 0
2 13 8.7 −4 12.8 0
5 20 15.6 −4 19.7 0

10 29 25.0 −3 29.1 1
20 46 41.2 −4 45.3 0
50 88 83.6 −4 87.7 0

100 152 147.6 −4 151.7 0
200 272 267.3 −4 271.4 0
500 611 606.4 −4 610.5 0

1000 1155 1150.5 −4 1154.6 0

Results for ε = 10−6; β∗ = 4.7615 and β• = 4.0979.



Some sort of summary




