Assignment 2

Let us consider the production system in figure 1 .

Figure 1: Closed production system with 4 stations and N circulating pallets
Station 1 is the Load/Unload (LU) station and there are N circulating pallets (carrying jobs). In the LU station, finished jobs are removed from the pallet, and a new (raw) job is attached to the pallet and send to one of the two workstations for processing. Station 2 models the transportation time from the LU station to the two workstations; it is an infinite server station. Workstations 3 and 4 can process one job at a time; both stations have ample buffer space. The processing (or transportation) times in station i are exponential with rate μ_{i} per hour. The processing rates are listed in table 1 .

Station i	μ_{i}
1	8
2	10
3	4
4	5

Table 1: Processing rates

Performance characteristics of interest are:

- Throughput: Number of pallets leaving the LU station per unit of time;
- WIP of station i : Mean number of jobs (or Work In Process) in workstation i.

This production system can be described by a Markov process with states $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where n_{i} denotes the number of jobs in station i. So $n_{i} \geq 0$ for all i and $n_{1}+\cdots+n_{4}=N$. (So what is the total number of states?) The equilibrium distribution is given by the product form

$$
p\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=C\left(\frac{1}{\mu_{1}}\right)^{n_{1}} \frac{1}{n_{2}!}\left(\frac{1}{\mu_{2}}\right)^{n_{2}}\left(\frac{0.45}{\mu_{3}}\right)^{n_{3}}\left(\frac{0.55}{\mu_{4}}\right)^{n_{4}}
$$

where C is the normalization constant.
a. Determine numerically, for various values of N, the equilibrium distribution by using the iterative method with bounds, as well as its Gauss-Seidel variant, and compare the number of iterations required by both iteration schemes to produce estimates for performance characteristics (WIP and throughput), the error of which is at most 0.1%.
b. Calculate, for $N=10$, performance characteristics as a function of time (and show the result in a graph). How fast does the system reach equilibrium, assuming that at time 0 all pallets are located at the LU station? Is the rate of convergence affected by the initial state?

