
FITTING DISCRETE DISTRIBUTIONS ON THE FIRST TWOMOMENTSIVO ADAN, MICHEL VAN EENIGE AND JACQUES RESING�Abstract. In this paper we present a simple method to �t a discrete distribution on the �rst twomoments of a given random variable. With the �tted distribution we solve approximately Lindley'sequation for the discrete-time D=G=1 queue using a moment-iteration method. Numerical resultsshow excellent performance of the method.Key words. two-moment �ts, discrete distributions, Lindley's equation, moment-iteration methodAMS subject classi�cations. 60K25, 90B221. Introduction. A common way to �t a continuous distribution on the mean,EX , and the coe�cient of variation, cX , of a given non-negative random variable isthe following (see e.g. Tijms [9]). In case 0 < cX < 1 one �ts a mixture of Erlangiandistributions with the same scale parameter. More speci�cally, if 1=k � c2X � 1=(k�1),for certain k = 2; 3; : : : ; one �ts an Ek�1;k distribution. A random variable having thisdistribution is with probability q (respectively 1� q) distributed as the sum of k � 1(respectively k) independent exponentials with common mean. In case cX � 1 one�ts a hyperexponential distribution with balanced means. A random variable havingthis distribution is with probability q1 (respectively q2) distributed as an exponentialwith parameter �1 (respectively �2) where q1 + q2 = 1 and q1=�1 = q2=�2.Many applications involve discrete random variables. In such cases it is, of course,more natural to �t discrete distributions instead of continuous ones. The aim of thispaper is to construct a discrete analogue of the method described above. It turns outthat this problem is not trivial. In fact, in order to �t all possible values of EX andcX , we need four classes of distributions instead of only two. Ord [8] treats a problemrelated to the present one. However, Ord �ts discrete distributions not on the �rsttwo moments, but on two parameters depending on the �rst three moments of a givenrandom variable.After the construction of the discrete �ts on the �rst two moments, we use these�ts for approximating the waiting-time characteristics of the discrete-time D=G=1queue. This queueing model naturally arises, for example, in the analysis of a periodicreview (R; S) inventory system and in the analysis of a �xed-cycle tra�c light queue.We use a discrete version of the moment-iteration method of de Kok [5], originallyintroduced for the continuous-time case. Furthermore, we will check the quality ofthis method by comparing it, for several service-time distributions, with an exactnumerical analysis, with Fredericks' approximation (see Fredericks [4]), and with itscontinuous-time version.The rest of the paper is organized as follows. In Section 2 we answer the questionhow to �t a discrete distribution on the �rst two moments of a given random vari-able. Next, in Section 3 we describe the discrete version of de Kok's iteration methodfor approximating the waiting-time characteristics of the discrete-time D=G=1 queue.Finally, Section 4 is devoted to numerical results.� Eindhoven University of Technology, Department of Mathematics and Computing Science,P.O.Box 513, 5600 MB - Eindhoven, The Netherlands.1



2 I. ADAN, M. VAN EENIGE AND J. RESING2. Fitting discrete distributions. Consider an arbitrary pair of non-negative,real numbers (EX; cX). Before we come to the issue of how to �t a distributionwith mean EX and coe�cient of variation cX , let us �rst answer the question whichcombinations (EX; cX) are possible for discrete distributions on the non-negative in-tegers. Clearly, for continuous distributions on the non-negative real numbers, allcombinations (EX; cX) with EX � 0 and cX � 0 are possible. However, for discretedistributions this turns out to be not the case.Lemma 2.1. For a pair of non-negative, real numbers (EX; cX), there exists arandom variable X on the non-negative integers with mean EX and coe�cient ofvariation cX if and only if c2X � 2k + 1EX � k(k + 1)(EX)2 � 1;(1)where k is the unique integer satisfying k � EX < k + 1.Proof. For a given value of EX , there exists a unique random variable, concen-trated on the integers k and k + 1 only, with mean EX . For this random variablewe have equality in (1) and its coe�cient of variation is less than that of any otherinteger-valued random variable with mean EX . Hence (1) is a necessary condition.That (1) is also a su�cient condition is easily checked.If we de�ne a := c2X � 1=EX , then it follows from Lemma 2.1 that for all ran-dom variables on the non-negative integers a � �1. Lemma 2.2 shows how to �t adistribution with mean EX and coe�cient of variation cX depending on the value ofa. We use four classes of distributions: Poisson, mixtures of binomial, mixtures ofnegative-binomial and mixtures of geometric distributions with balanced means.Let us �rst introduce some notation. A GEO(p) random variable has probabilitydistribution pi = (1 � p)pi, i = 0; 1; 2; : : :, and an NB(k; p) variable is the sum of kindependent GEO(p) variables. A POIS(�) random variable is Poisson distributedwith mean �, and aBIN(k; p) variable is binomially distributed, where k is the numberof trials and p the success probability.Lemma 2.2. Let X be a random variable on the non-negative integers with meanEX and coe�cient of variation cX and let a = c2X�1=EX. Then the random variableY matches the �rst two moments of X if Y is chosen as follows:1. If �1=k � a � �1=(k + 1) for certain k = 1; 2; 3; : : : ; thenY = ( BIN(k; p) w.p. q,BIN(k+ 1; p) w.p. 1� q,where q = 1 + a(1 + k) +p�ak(1 + k)� k1 + a ; p = EXk + 1� q :2. If a = 0, then Y = POIS(�) with � = EX.3. If 1=(k+ 1) � a � 1=k for certain k = 1; 2; 3; : : : ; thenY = ( NB(k; p) w.p. q,NB(k+ 1; p) w.p. 1� q,where q = (1 + k)a�p(1 + k)(1� ak)1 + a ; p = EXk + 1� q + EX:



FITTING DISCRETE DISTRIBUTIONS 34. If a � 1, then Y = ( GEO(p1) w.p. q1,GEO(p2) w.p. q2,where p1 = EX [1 + a+pa2 � 1]2 +EX [1 + a+pa2 � 1] ; q1 = 11+ a+pa2 � 1 ;p2 = EX [1 + a�pa2 � 1]2 +EX [1 + a�pa2 � 1] ; q2 = 11+ a�pa2 � 1 :It is straightforward to check that the given distributions indeed have the samemean and coe�cient of variation as X . Therefore, the proof of Lemma 2.2 is omitted.The fact that p � 1 in case 1 of this lemma is a consequence of equation (1). Theresults of the two lemmas above are illustrated in Figure 1.
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∅Fig. 1. The four classes of distributions used to match the �rst two moments of X.Note: If a > 0 (cases 3 and 4 in Lemma 2.2), then it is also possible to �tan NB(k; p) distribution with real-valued k. However, an advantage of the solutionproposed in Lemma 2.2 is that the �tted distributions allow a simple interpretationin terms of sums or mixtures of geometric distributions.3. Moment-iteration method. In this section, we describe a discrete versionof de Kok's moment-iteration method for approximating waiting-time characteristicsof the discrete-time D=G=1 queue. The present version is a re�nement of the one in [5]in the sense that in the iteration step a distribution is �tted on the �rst two momentsof the conditional waiting time instead of the unconditional waiting time plus theservice time. Our interest in the discrete-time D=G=1 queue arose out of work on the�xed-cycle tra�c light (see e.g. Darroch [2] and Newell [7]), and this queue also arises,



4 I. ADAN, M. VAN EENIGE AND J. RESINGfor example, in the analysis of a periodic review (R; S) inventory system with �niteproduction capacity (see e.g. de Kok [5]). For this reason we restricted our attentionto deterministic interarrival times, but of course the method can easily be extendedto more general interarrival-time distributions.The waiting-time characteristics considered here are the delay probability �W ,and the �rst two moments of the waiting time. The moment-iteration method is usedin the next section to illustrate the method of �tting discrete distributions as presentedin the previous section.Consider a discrete-time D=G=1 queue. Customers arrive at the server with �xedinterarrival time A. The service-time probability distribution is given by fbig1i=0 withmean b. The service times of customers are assumed to be mutually independent andcustomers are served in order of arrival. Furthermore, we assume that the queue isstable, i.e., � := b=A < 1.Let, for n = 0; 1; 2; : : :, the random variables Bn and Wn denote the service time,respectively, the waiting time of the n-th customer. Further, suppose that the 0-thcustomer arrives at an empty system, so that W0 = 0. Then, it is easily seen that thefollowing relation holdsWn = maxf0;Wn�1 +Bn�1 � Ag; n = 1; 2; 3; : : :.This relation is the starting point for the approximation of the delay probability andthe �rst twomoments of the waiting-time distribution. Let the generic random variableB have probability distribution fbig1i=0, then the moment-iteration method (for thediscrete-time D=G=1 queue) can be described as follows:Moment-iteration algorithm for the discrete-time D=G=1 queue.1. Initialization.Set W0 := 0, and compute exactlyP (W1 > 0) = P (B � A > 0);EW1 = E(B �A)+;EW 21 = E(B �A)2+;and set n := 1.2. Iteration.Set Vn := (WnjWn > 0)� 1, and computeEVn = EWnP (Wn > 0) � 1;EV 2n = EW 2nP (Wn > 0) � 2EWnP (Wn > 0) + 1:Fit a tractable probability distribution fvig1i=0 to the probability distribution of Vnby matching the �rst two moments as described in the previous section. ComputeEWn+1 = E(B �A)+P (Wn = 0) +E(1 + Vn +B �A)+P (Wn > 0)= P (Wn = 0) 1Xi=A+1 bi(i�A) + P (Wn > 0) 1Xi=0 1Xj=0 vibj(1 + i+ j � A)+;(2)



FITTING DISCRETE DISTRIBUTIONS 5and alsoP (Wn+1 > 0) = P (Wn = 0)P (B �A > 0) + P (Wn > 0)P (1 + Vn + B � A > 0);EW 2n+1 = E(B �A)2+P (Wn = 0) + E(1+ Vn +B � A)2+P (Wn > 0);where the right-hand sides can be worked out similarly as in (2).3. Convergence.If it holds that jEWn+1 �EWnj < �1 and jEW 2n+1 � EW 2n j < �2;then stop, otherwise set n := n+ 1 and repeat step 2.4. Stop.Approximate �W by P (Wn+1 > 0), and the �rst two moments of the waiting-timedistribution by EWn+1 and EW 2n+1, respectively.In the next section, this algorithm will be applied to the D=G=1 queue for severaldiscrete service-time distributions.4. Numerical results. In this section we present numerical results to illustratethe quality of the approximations obtained with the moment-iteration method. In Ta-ble 1 we list the moment approximations (mit) and the exact values (exa) of the delayprobability �W and the mean waiting time EW for D=G=1 queues with binomial,negative-binomial and uniform service times, respectively. The performance charac-teristics �W and EW are evaluated for a range of values of the systems parameters.We also compared the moment approximation with the well-known approximation ofFredericks (Fred) for the D=G=1 queue (see [4]). The results in Table 1 are based onFredericks' approximation for discrete service-time distributions, which can easily bederived from the continuous version in [4]. The exact results for the D=BIN(k; p)=1queue have been obtained with use of the matrix-geometric approach developed byNeuts [6] (see also [3]). The D=NB(k; p)=1 queue has been analyzed exactly by usingan embedded Markov chain approach similar as in [1] and the exact results for theD=U(0; k)=1 have been obtained by numerically solving the embedded Markov chainusing the approach of Tijms and van de Coevering [10], where U(0; k) denotes theuniform distribution on 0; 1; : : : ; k.The results in Table 1 show good performance of Fredericks' approximation andexcellent performance of the moment approximation. Fredericks' approximation isexact for the D=GEO(p)=1 queue and the D=BIN(k; p)=1 and D=U(0; k)=1 queuewith k = A+ 1, since the waiting-time distribution for these queues is geometric.Since we �t a tractable distribution to the distribution of WnjWn > 0, we arealso able to compute an approximation for P (Wn+1 > i) for all i = 1; 2; : : : in thesame way as for P (Wn+1 > 0). From this, we can compute approximations for the�-percentiles of the waiting-time distribution. For each � with 0 � � � 1 the �-percentile is de�ned as the smallest i satisfying P (Wn+1 � i) � �. In Table 2 we listthe moment approximations and the exact values of the �-percentiles for the D=G=1queues of Table 1 with tra�c load 0:9 and 0:95, where � is varied from 0:5, 0:9, 0:95to 0:99. We see in Table 2 that the quality of the moment approximation is good.



6 I. ADAN, M. VAN EENIGE AND J. RESINGTable 1The delay probability �W and the mean waiting time EW .�W EWA k p � exa mit Fred exa mit FredD=BIN(k;p)=1 1 2 0.25 0.5 0.1111 0.1111 0.1111 0.1250 0.1250 0.12501 2 0.45 0.9 0.6694 0.6694 0.6694 2.0250 2.0243 2.02501 2 0.475 0.95 0.8186 0.8186 0.8186 4.5125 4.5099 4.51252 10 0.1 0.5 0.1025 0.1025 0.0998 0.1371 0.1371 0.13382 10 0.18 0.9 0.6885 0.6887 0.6802 3.0759 3.0756 3.04842 10 0.19 0.95 0.8324 0.8326 0.8270 7.0413 7.0396 7.00806 10 0.3 0.5 0.0112 0.0112 0.0111 0.0132 0.0132 0.01316 10 0.54 0.9 0.4701 0.4704 0.4579 1.2498 1.2497 1.22706 10 0.57 0.95 0.6873 0.6877 0.6762 3.1878 3.1873 3.153330 40 0.6 0.8 0.0163 0.0163 0.0161 0.0260 0.0260 0.025730 40 0.7125 0.95 0.3972 0.3975 0.3806 1.3393 1.3389 1.302830 40 0.735 0.98 0.6941 0.6948 0.6772 4.9204 4.9188 4.8484D=NB(k;p)=1 10 1 0.8333 0.5 0.2129 0.2129 0.2129 1.6232 1.6232 1.623210 1 0.9 0.9 0.8075 0.8075 0.8075 41.942 41.941 41.94210 1 0.9048 0.95 0.9018 0.9018 0.9018 96.472 96.467 96.47210 5 0.5 0.5 0.0760 0.0711 0.0690 0.2256 0.2077 0.202810 5 0.6429 0.9 0.7025 0.7006 0.6872 10.520 10.505 10.38310 5 0.6552 0.95 0.8433 0.8424 0.8337 25.279 25.268 25.114D=U(0; k)=1 5 6 { 0.6 0.1727 0.1727 0.1727 0.2087 0.2087 0.20875 8 { 0.8 0.5341 0.5362 0.5100 2.1274 2.1234 2.08145 9 { 0.9 0.7535 0.7564 0.7289 6.8230 6.8194 6.721610 15 { 0.75 0.4430 0.4439 0.4180 2.2113 2.2058 2.154510 18 { 0.9 0.7586 0.7615 0.7290 12.312 12.300 12.10710 19 { 0.95 0.8765 0.8785 0.8574 30.302 30.326 30.060Table 2The �-percentiles of the waiting-time distribution.�-Percentiles� 0:5 0:9 0:95 0:99A k p exa mit exa mit exa mit exa mitD=BIN(k;p)=1 1 2 0.45 1 1 5 5 7 7 11 111 2 0.475 3 3 11 11 14 14 23 222 10 0.18 2 2 8 8 11 11 17 172 10 0.19 5 5 17 17 23 22 35 346 10 0.54 0 0 4 4 5 5 8 86 10 0.57 2 2 8 8 11 11 18 1730 40 0.7125 0 0 4 4 6 6 10 10D=NB(k;p)=1 10 1 0.9 25 25 108 108 144 144 226 22610 1 0.9048 63 63 235 235 308 308 480 48010 5 0.6429 6 6 28 29 38 38 61 5910 5 0.6552 16 16 63 63 83 82 130 125D=U(0; k)=1 5 9 { 4 4 17 17 23 22 36 3310 18 { 8 8 31 31 42 40 66 6010 19 { 20 22 73 72 96 92 150 136



FITTING DISCRETE DISTRIBUTIONS 7Instead of using discrete distributions one may also �t a continuous distributionW (t) on the �rst two moments of WnjWn > 0 as described in the introduction. Thenequation (2) for EWn+1 becomesEWn+1 = E(B � A)+P (Wn = 0) + P (Wn > 0) Z 1t=0 1Xj=0 bj(t + j � A)+dW (t)and the equations for P (Wn+1 > 0) and EW 2n+1 have to be adapted accordingly. InTable 3 we compare for several examples the quality of discrete (disc) and continuous(cont) �ts. The results show that both �ts perform excellent for the mean waitingtime, but the discrete �ts yield a signi�cantly better approximation for the delayprobability. Table 3Comparison of the quality of discrete and continuous �ts.�W EWA k p � exa disc cont exa disc contD=BIN(k;p)=1 1 2 0.25 0.5 0.1111 0.1111 0.1484 0.1250 0.1250 0.13491 2 0.475 0.95 0.8186 0.8186 0.8704 4.5125 4.5099 4.55952 5 0.3 0.5 0.0815 0.0815 0.0988 0.0990 0.0990 0.10272 5 0.57 0.95 0.8081 0.8083 0.8486 5.2642 5.2630 5.29412 10 0.1 0.5 0.1025 0.1025 0.1233 0.1371 0.1371 0.14132 10 0.19 0.95 0.8324 0.8326 0.8651 7.0413 7.0396 7.0672D=NB(k;p)=1 10 1 0.8333 0.5 0.2129 0.2129 0.2198 1.6232 1.6232 1.619710 1 0.9048 0.95 0.9018 0.9018 0.9049 96.472 96.467 96.4645 3 0.4545 0.5 0.1302 0.1284 0.1381 0.3334 0.3283 0.32835 3 0.6129 0.95 0.8689 0.8688 0.8795 23.112 23.108 23.112D=U(0; k)=1 3 4 { 0.67 0.2757 0.2757 0.3076 0.3806 0.3806 0.38723 5 { 0.83 0.5955 0.5979 0.6394 2.0802 2.0788 2.08935 6 { 0.6 0.1727 0.1727 0.1859 0.2087 0.2087 0.21145 9 { 0.9 0.7535 0.7564 0.7764 6.8230 6.8194 6.8211Acknowledgment. The authors thank Ton de Kok for stimulating discussions.REFERENCES[1] I. Adan and Y. Zhao, Analyzing GIjErj1 queues, Memorandum COSOR 94-37, EindhovenUniversity of Technology, Dep. of Math. and Comp. Sci., 1994.[2] J. N. Darroch, On the tra�c-light queue, Ann. Math. Stat., 35 (1964), pp. 380{388.[3] M. J.A. van Eenige, J. A.C. Resing and J. van der Wal, A matrix-geometric analysis ofqueueing systems with periodic service interruptions, Memorandum COSOR 93-32, Eind-hoven University of Technology, Dep. of Math. and Comp. Sci., 1993.[4] A. A. Fredericks, A class of approximations for the waiting time distribution in a GI=G=1queueing system, Bell Syst. Techn. J., 61 (1982), pp. 295{325.[5] A. G. de Kok, A moment-iteration method for approximating the waiting-time characteristicsof the GI=G=1 queue, Prob. Engineer. Inform. Sci., 3 (1989), pp. 273{287.[6] M. F. Neuts, Matrix-geometric solutions in stochastic models, Johns Hopkins University Press,Baltimore, 1981.[7] G. F. Newell, Queues for a �xed-cycle tra�c light, Ann. Math. Stat., 31 (1960), pp. 589{597.[8] J. K. Ord, On a system of discrete distributions, Biometrika, 54 (1967), pp. 649{656.[9] H. C. Tijms, Stochastic modelling and analysis: a computational approach, John Wiley & Sons,Chichester, 1986.[10] H. C. Tijms and M. C.T. van de Coevering, A simple numerical approach for in�nite-stateMarkov chains, Prob. Engineer. Inform. Sci., 5 (1991), pp. 285{295.


