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Abstract. In this paper we present a simple method to fit a discrete distribution on the first two
moments of a given random variable. With the fitted distribution we solve approximately Lindley’s
equation for the discrete-time D/G/1 queue using a moment-iteration method. Numerical results
show excellent performance of the method.
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1. Introduction. A common way to fit a continuous distribution on the mean,
FE X, and the coefficient of variation, cx, of a given non-negative random variable is
the following (see e.g. Tijms [9]). In case 0 < cx < 1 one fits a mixture of Erlangian
distributions with the same scale parameter. More specifically, if 1/k < ¢4 < 1/(k—1),
for certain k = 2,3, ..., one fits an F;_ j distribution. A random variable having this
distribution is with probability ¢ (respectively 1 — ¢) distributed as the sum of £ — 1
(respectively k) independent exponentials with common mean. In case cx > 1 one
fits a hyperexponential distribution with balanced means. A random variable having
this distribution is with probability ¢; (respectively gq) distributed as an exponential
with parameter pq (respectively uy) where ¢1 + ¢z = 1 and ¢1/p1 = q2/ pio.

Many applications involve discrete random variables. In such cases it is, of course,
more natural to fit discrete distributions instead of continuous ones. The aim of this
paper is to construct a discrete analogue of the method described above. It turns out
that this problem is not trivial. In fact, in order to fit all possible values of FX and
cx, we need four classes of distributions instead of only two. Ord [8] treats a problem
related to the present one. However, Ord fits discrete distributions not on the first
two moments, but on two parameters depending on the first three moments of a given
random variable.

After the construction of the discrete fits on the first two moments, we use these
fits for approximating the waiting-time characteristics of the discrete-time D/G/1
queue. This queueing model naturally arises, for example, in the analysis of a periodic
review (R, S) inventory system and in the analysis of a fixed-cycle traffic light queue.
We use a discrete version of the moment-iteration method of de Kok [5], originally
introduced for the continuous-time case. Furthermore, we will check the quality of
this method by comparing it, for several service-time distributions, with an exact
numerical analysis, with Fredericks” approximation (see Fredericks [4]), and with its
continuous-time version.

The rest of the paper is organized as follows. In Section 2 we answer the question
how to fit a discrete distribution on the first two moments of a given random vari-
able. Next, in Section 3 we describe the discrete version of de Kok’s iteration method
for approximating the waiting-time characteristics of the discrete-time D/G/1 queue.
Finally, Section 4 is devoted to numerical results.
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2. Fitting discrete distributions. Consider an arbitrary pair of non-negative,
real numbers (FX,cx). Before we come to the issue of how to fit a distribution
with mean FX and coeflicient of variation cyx, let us first answer the question which
combinations (E X, cx) are possible for discrete distributions on the non-negative in-
tegers. Clearly, for continuous distributions on the non-negative real numbers, all
combinations (FX,cx) with £X > 0 and cx > 0 are possible. However, for discrete
distributions this turns out to be not the case.

LEmMA 2.1. For a pair of non-negative, real numbers (EX,cx), there exists a
random variable X on the non-negative integers with mean EX and coefficient of
variation cx if and only if
2k+1  k(k+1)

EX  (EX)? 7
where k is the unique integer satisfying k < KX < k + 1.
Proof. For a given value of X, there exists a unique random variable, concen-

trated on the integers k& and k£ 4+ 1 only, with mean FX. For this random variable
we have equality in (1) and its coefficient of variation is less than that of any other

(1) ck >

integer-valued random variable with mean EX. Hence (1) is a necessary condition.
That (1) is also a sufficient condition is easily checked. D

If we define a := ¢% — 1/EX, then it follows from Lemma 2.1 that for all ran-
dom variables on the non-negative integers ¢ > —1. Lemma 2.2 shows how to fit a
distribution with mean F X and coeflicient of variation ¢y depending on the value of
a. We use four classes of distributions: Poisson, mixtures of binomial, mixtures of
negative-binomial and mixtures of geometric distributions with balanced means.

Let us first introduce some notation. A GFEO(p) random variable has probability
distribution p; = (1 — p)p, i = 0,1,2,..., and an N B(k,p) variable is the sum of &
independent GEO(p) variables. A POIS(A) random variable is Poisson distributed
with mean A, and a BI N (k, p) variable is binomially distributed, where & is the number
of trials and p the success probability.

LemMA 2.2, Let X be a random variable on the non-negative integers with mean
EX and coefficient of variation cx and let a = ¢k —1/EX. Then the random variable
Y matches the first two moments of X if Y is chosen as follows:

1. If=1/k<a<—-1/(k+1) for certain k = 1,2,3,..., then

v — ) BIN(Ek,p) w.p. q,
| BIN(k+1,p) w.p. 1—gq,

where

14 a(l4+k)+/—ak(l+k)-k EX
1= 1+a ’p_k—l—l—q'
If a =0, then Y = POIS(A) with A = EX.
3. If1)(k+1)<a<1/k for certain k = 1,2,3,..., then

v ) NB(k,p) w.p. q,
| NBlk+1,p) w.p. 1-g,

to

where

I+ ka— VIt —ak) EX
14+a ’p_k+1—q+EX'
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4. If a > 1, then

- GEO(p1) w.p. ¢,
GEO(p2) w.p. ¢z,

where

_ EX[1+a+va?—1] 1

B EXlrarve—1 " T it veE—1r
 EX[1+a-+va?—-1] _ 1

P S EXlva—va—1 " lfa—va-1

It is straightforward to check that the given distributions indeed have the same
mean and coefficient of variation as X. Therefore, the proof of Lemma 2.2 is omitted.
The fact that p < 1 in case 1 of this lemma is a consequence of equation (1). The
results of the two lemmas above are illustrated in Figure 1.

[:  Binomial
EX [1: Poisson
4 [11: Negative-binomial
IV: Geometric
3 _|
H 1 i
m - v — EX=—— (Bernoulli)
. cx+l
2 — 1 .
,,,,,,,, EX=—-  (Poisson)
C
X
0 - 1 .
L I ."II‘\ EX:CZ—l (Geometric)
{ { { {

Fia. 1. The four classes of distributions used to match the first two moments of X.

Note: If @ > 0 (cases 3 and 4 in Lemma 2.2), then it is also possible to fit
an N B(k,p) distribution with real-valued k. However, an advantage of the solution
proposed in Lemma 2.2 is that the fitted distributions allow a simple interpretation
in terms of sums or mixtures of geometric distributions.

3. Moment-iteration method. In this section, we describe a discrete version
of de Kok’s moment-iteration method for approximating waiting-time characteristics
of the discrete-time D/G/1 queue. The present version is a refinement of the one in [5]
in the sense that in the iteration step a distribution is fitted on the first two moments
of the conditional waiting time instead of the unconditional waiting time plus the
service time. Our interest in the discrete-time D/G//1 queue arose out of work on the
fixed-cycle traffic light (see e.g. Darroch [2] and Newell [7]), and this queue also arises,
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for example, in the analysis of a periodic review (R,S) inventory system with finite
production capacity (see e.g. de Kok [5]). For this reason we restricted our attention
to deterministic interarrival times, but of course the method can easily be extended
to more general interarrival-time distributions.

The waiting-time characteristics considered here are the delay probability Iy,
and the first two moments of the waiting time. The moment-iteration method is used
in the next section to illustrate the method of fitting discrete distributions as presented
in the previous section.

Consider a discrete-time D/G/1 queue. Customers arrive at the server with fixed
interarrival time A. The service-time probability distribution is given by {b;}°2, with
mean b. The service times of customers are assumed to be mutually independent and
customers are served in order of arrival. Furthermore, we assume that the queue is
stable, i.e., p:=b/A < 1.

Let, for n = 0,1,2,..., the random variables B, and W, denote the service time,
respectively, the waiting time of the n-th customer. Further, suppose that the 0-th
customer arrives at an empty system, so that Wy = 0. Then, it is easily seen that the
following relation holds

W, = max{0,W,_1+ B,_1 — A}, n=1,2,3,...

This relation is the starting point for the approximation of the delay probability and
the first two moments of the waiting-time distribution. Let the generic random variable
B have probability distribution {b;}:2,, then the moment-iteration method (for the
discrete-time D/G//1 queue) can be described as follows:

Moment-iteration algorithm for the discrete-time D/G//1 queue.
1. Initialization.
Set Wy := 0, and compute exactly

P(W,>0)=P(B—-A>0),
EW, = E(B—A),,

and set n := 1.

2. Iteration.
Set V,, := (W,|W,, > 0) — 1, and compute

EW,
EV,= — " 1,
P(W,, > 0)
EW? 2EW,
EV? = Wo _ W + 1.

P(W, >0) P(W,>0)

Fit a tractable probability distribution {v;}:2, to the probability distribution of V,,
by matching the first two moments as described in the previous section. Compute

EW,11 = E(B—A)yP(W, =0)+ E(1+V, + B — A), P(W, > 0)

(2) = P(W, = 0) i bi(i — A) + P(W, > O)iimbju it Ay,
i=A+1 i=0 j=0
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and also

PWpp1 >0)=PW,=0P(B-A>0)+P(W,>0)P(1+V,+B—-A>0),
EW?2, = E(B-AYPW, =0)+E(1+V,+ B - A)FP(W, >0),

where the right-hand sides can be worked out similarly as in (2).
3. Convergence.

If it holds that
|EW,p1 — EW,| < e and  |EW2,, — EW2| < ¢,

then stop, otherwise set » := n + 1 and repeat step 2.

4. Stop.

Approximate Iy by P(W,41 > 0), and the first two moments of the waiting-time
distribution by EFW, 1, and EWTQLH, respectively.

In the next section, this algorithm will be applied to the D/G/1 queue for several
discrete service-time distributions.

4. Numerical results. In this section we present numerical results to illustrate
the quality of the approximations obtained with the moment-iteration method. In Ta-
ble 1 we list the moment approximations (mit) and the exact values (exa) of the delay
probability Iy and the mean waiting time EW for D/G/1 queues with binomial,
negative-binomial and uniform service times, respectively. The performance charac-
teristics Iy and FW are evaluated for a range of values of the systems parameters.
We also compared the moment approximation with the well-known approximation of
Fredericks (Fred) for the D/G/1 queue (see [4]). The results in Table 1 are based on
Fredericks’ approximation for discrete service-time distributions, which can easily be
derived from the continuous version in [4]. The exact results for the D/BIN(k,p)/1
queue have been obtained with use of the matrix-geometric approach developed by
Neuts [6] (see also [3]). The D/N B(k,p)/1 queue has been analyzed exactly by using
an embedded Markov chain approach similar as in [1] and the exact results for the
D/U(0,k)/1 have been obtained by numerically solving the embedded Markov chain
using the approach of Tijms and van de Coevering [10], where U(0, k) denotes the
uniform distribution on 0,1,..., k.

The results in Table 1 show good performance of Fredericks’ approximation and
excellent performance of the moment approximation. Fredericks’ approximation is
exact for the D/GEO(p)/1 queue and the D/BIN(k,p)/1 and D/U(0,k)/1 queue
with £ = A 4 1, since the waiting-time distribution for these queues is geometric.

Since we fit a tractable distribution to the distribution of W,|W, > 0, we are
also able to compute an approximation for P(W,4; > ¢) for all ¢ = 1,2,... in the
same way as for P(W,411 > 0). From this, we can compute approximations for the
a-percentiles of the waiting-time distribution. For each a with 0 < a < 1 the a-
percentile is defined as the smallest 7 satisfying P(W,41 < @) > a. In Table 2 we list
the moment approximations and the exact values of the a-percentiles for the D/G/1
queues of Table 1 with traffic load 0.9 and 0.95, where « is varied from 0.5, 0.9, 0.95
to 0.99. We see in Table 2 that the quality of the moment approximation is good.
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TABLE 1

Ty EW
Ak P p exa mit Fred exa mit Fred
D/BIN(k,p)/1 1 2 0.25 0.5 0.1111  0.1111  0.1111  0.1250 0.1250  0.1250
1 2 0.45 0.9 0.6694 0.6694 0.6694 2.0250 2.0243 2.0250
1 2 0.475 0.95 0.8186 0.8186 0.8186 4.5125 4.5099 4.5125
2 10 0.1 0.5 0.1025 0.1025 0.0998 0.1371 0.1371 0.1338
2 10 0.18 0.9 0.6885 0.6887 0.6802 3.0759 3.0756 3.0484
2 10 0.19 0.95 0.8324 0.8326 0.8270 7.0413 7.0396 7.0080
6 10 0.3 0.5 0.0112 0.0112 0.0111 0.0132 0.0132 0.0131
6 10 0.54 0.9 0.4701 0.4704 0.4579  1.2498  1.2497 1.2270
6 10 0.57 0.95 0.6873 0.6877 0.6762 3.1878 3.1873 3.1533
30 40 0.6 0.8 0.0163 0.0163 0.0161 0.0260 0.0260 0.0257
30 40 0.7125 0.95 0.3972 0.3975 0.3806 1.3393 1.3389 1.3028
30 40 0.735 0.98 0.6941 0.6948 0.6772 4.9204 4.9188 4.8484
D/NB(k,p)/1 10 1 0.8333 0.5 0.2129 0.2129 0.2129 1.6232 1.6232 1.6232
10 1 0.9 0.9 0.8075 0.8075 0.8075 41.942 41.941 41.942
10 1 0.9048 0.95 0.9018 0.9018 0.9018 96.472 96.467 96.472
10 5 0.5 0.5 0.0760 0.0711 0.0690 0.2256  0.2077 0.2028
10 5 0.6429 0.9 0.7025 0.7006 0.6872 10.520 10.505 10.383
10 5 0.6552 0.95 0.8433 0.8424 0.8337 25.279 25.268 25.114
D/U(0,k)/1 5 6 - 0.6 0.1727 0.1727  0.1727 0.2087 0.2087 0.2087
5 8 - 0.8 0.5341 0.5362 0.5100 2.1274 2.1234 2.0814
5 9 - 0.9 0.7535 0.7564 0.7289 6.8230 6.8194 6.7216
10 15 - 0.75 0.4430 0.4439 0.4180 2.2113 2.2058 2.1545
10 18 - 0.9 0.7586 0.7615 0.7290 12.312 12.300 12.107
10 19 - 0.95 0.8765 0.8785 0.8574 30.302 30.326 30.060
TABLE 2
The a-percentiles of the waiting-time distribution.
a-Percentiles
o 0.5 0.9 0.95 0.99
Ak P exa mit exa mit exa mit exa mit
D/BIN(k,p)/1 1 2 0.45 1 1 5 5 7 7 11 11
1 2 0.475 3 3 11 11 14 14 23 22
2 10 0.18 2 2 8 8 11 11 17 17
2 10 0.19 5 5 17 17 23 22 35 34
6 10 0.54 0 0 4 4 5 5 8 8
6 10 0.57 2 2 8 8 11 11 18 17
30 40 0.7125 0 0 4 4 6 6 10 10
D/NB(k,p)/1 10 1 0.9 25 25 108 108 144 144 226 226
10 1 0.9048 63 63 235 235 308 308 480 480
10 5 0.6429 6 28 29 38 38 61 59
10 5 0.6552 16 16 63 63 83 82 130 125
D/U(0,k)/1 5 9 - 4 4 17 17 23 22 36 33
10 18 - 8 8 31 31 42 40 66 60
10 19 - 20 22 73 72 96 92 150 136
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Instead of using discrete distributions one may also fit a continuous distribution
W(t) on the first two moments of W,|W, > 0 as described in the introduction. Then
equation (2) for EW, 41 becomes

EW,i1 = E(B — A)4 P(W, = 0) + P(W, > 0) /:; f: bi(t+j — A)LdW (1)

and the equations for P(W, 44 > 0) and EW?2, ;| have to be adapted accordingly. In
Table 3 we compare for several examples the quality of discrete (disc) and continuous
(cont) fits. The results show that both fits perform excellent for the mean waiting
time, but the discrete fits yield a significantly better approximation for the delay
probability.

TABLE 3
Comparison of the quality of discrete and continuous fits.

Ty EW
Ak P p exa disc cont exa disc cont
D/BIN(k,p)/1 1 2 0.25 0.5 0.1111  0.1111  0.1484 0.1250 0.1250 0.1349
1 2 0.475 0.95 0.8186 0.8186 0.8704 4.5125 4.5099 4.5595
2 5 0.3 0.5 0.0815 0.0815 0.0988 0.0990 0.0990 0.1027
2 5 0.57 0.95 0.8081 0.8083 0.8486 5.2642 5.2630 5.2941
2 10 0.1 0.5 0.1025 0.1025 0.1233 0.1371 0.1371 0.1413
2 10 0.19 0.95 0.8324 0.8326 0.8651 7.0413 7.0396 7.0672
D/NB(k,p)/1 10 1 0.8333 0.5 0.2129  0.2129 0.2198 1.6232 1.6232 1.6197
10 1 0.9048 0.95 0.9018 0.9018 0.9049 96.472 96.467 96.464
5 3 0.4545 0.5 0.1302 0.1284 0.1381 0.3334 0.3283 0.3283
5 3 0.6129 0.95 0.8689 0.8688 0.8795 23.112 23.108 23.112
D/U(0,k)/1 3 4 - 0.67 0.2757 0.2757 0.3076 0.3806 0.3806 0.3872
3 5 - 0.83 0.5955 0.5979 0.6394 2.0802 2.0788 2.0893
5 6 - 0.6 0.1727 0.1727  0.1859 0.2087 0.2087 0.2114
5 9 - 0.9 0.7535 0.7564 0.7764 6.8230 6.8194 6.8211

Acknowledgment. The authors thank Ton de Kok for stimulating discussions.

REFERENCES

[1] I. ADAN AND Y. ZHAO, Analyzing GI|F|1 queues, Memorandum COSOR 94-37, Eindhoven
University of Technology, Dep. of Math. and Comp. Sci., 1994.

[2] J. N. DARROCH, On the traffic-light queue, Ann. Math. Stat., 35 (1964), pp. 380-388.

[3] M. J.A. vaN EENIGE, J. A.C. RESING AND J. VAN DER WAL, A matriz-geometric analysis of
queueing systems with periodic service interruptions, Memorandum COSOR 93-32, Eind-
hoven University of Technology, Dep. of Math. and Comp. Sci., 1993.

[4] A. A. FREDERICKS, A class of approzimations for the waiting time distribution in a GI/G/1
queueing system, Bell Syst. Techn. J., 61 (1982), pp. 295-325.

[5] A. G. DE KoK, A moment-iteration method for approzimating the watting-time characteristics
of the GI/G[1 queue, Prob. Engineer. Inform. Sci., 3 (1989), pp. 273-287.

[6] M. F. NEUTS, Matriz-geometric solutions in stochastic models, Johns Hopkins University Press,
Baltimore, 1981.

[7] G. F. NEWELL, Queues for a fized-cycle traffic light, Ann. Math. Stat., 31 (1960), pp. 589-597.

[8] J. K. ORD, On a system of discrete distributions, Biometrika, 54 (1967), pp. 649-656.

[9] H. C. Tuwms, Stochastic modelling and analysis: a computational approach, John Wiley & Sons,
Chichester, 1986.

[10] H. C. Tums anD M. C.T. vaN DE COEVERING, A simple numerical approach for infinite-state
Markov chains, Prob. Engineer. Inform. Sci., 5 (1991), pp. 285-295.



