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1. Introduction

Discrete queues can be described in terms of lattice paths, and are therefore analyzable
through combinatorial methods. One popular such method is the so-called kernel method.
This method refers to a way of solving a functional equation for a multivariate generation
function by using couplings of the variables. These couplings arise naturally as those func-
tions for which the kernel (a part of the functional equation) vanishes. We shall demonstrate
the kernel method for a discrete queue that can be described the Markov chain {Qn, n ≥ 0},
where

Qn+1 = max{0, Qn +Xn}, n = 0, 1, . . . , (1)

with (Xn)n∈N a sequence of i.i.d. discrete random variables. Recursion (1) is exactly Lind-
ley’s recursion for the waiting time in the GI/G/1 queue. To see this, set Xn = Bn − Cn

with Bn the service time of customer n and Cn the interarrival time between customers n
and n+ 1. However, we shall exploit the additional feature that Xn is integer valued, and
hence, the random walks to be considered are on the set of integers.

Let X denote a generic random variable with X
d
= X1 and

X ∈ {−s,−s+ 1, . . . ,−1, 0, 1, . . . , d} (2)
1
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Figure 1. Sample path of the queueing process.

with P(X = −s) > 1, s some positive integer and d possibly infinite. This means that we
can write the probability generating function (pgf) of X as

E(zX) = A(z)z−s,

where A(z) is the pgf of a nonnegative integer-valued random variable A, i.e.,

Qn+1 = max{0, Qn +An − s}, n = 0, 1, . . . , (3)

where (An)n∈N consist of i.i.d. discrete random variables with A
d
= A1.

2. Nonnegative paths

Let us first consider paths {Q∗
0, Q

∗
1, . . . , Q

∗
n} that never go below the horizontal axis, in

the sense that the maximum operator in (3) is not needed. Let 1{·} be the indicator function
and (·)+ = max{0, ·}.

E(zQ
∗

n+1) = E(z(Q
∗

n+Xn)+1{Q∗

n+Xn≥0})

= E(zQ
∗

n+Xn)− E(zQ
∗

n+Xn1{Q∗

n+Xn<0}), (4)

where E(zQ
∗

n+Xn) = E(zQ
∗

n)E(zXn) = E(zQ
∗

n)A(z)z−s and

E(zQ
∗

n+Xn1{Q∗

n+Xn<0}) =
−1
∑

k=−s

P(Q∗
n +An − s = k)zk

=

s−1
∑

r=0

P(Q∗
n +An = r)zr−s. (5)

We thus obtain

E(zQ
∗

n+1) = E(zQ
∗

n)A(z)z−s −
s−1
∑

r=0

P(Q∗
n +An = r)zr−s. (6)
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Next introduce the bivariate generating function

F ∗(u, z) =
∑

n≥0

unE(zQ
∗

n).

We get

F ∗(u, z) = E(zQ
∗

0) + uA(z)z−sF ∗(u, z) − u

s−1
∑

r=0

zr−sF ∗
r (u) (7)

with F ∗
r (u) =

∑∞
n=0 P(Q

∗
n +An = r)un. Upon some rewriting we arrive at

F ∗(u, z) =
N∗(u, z)

zs − uA(z)
, (8)

where

N∗(u, z) = zsE(zQ
∗

0)− u
s−1
∑

r=0

zrF ∗
r (u). (9)

2.1. Starting from an empty queue. According to Rouché’s theorem, the denominator
zs−uA(z) of (8) has exactly s zeros within the unit disk denoted by z0(u), z1(u), . . . , zs−1(u).
The function F ∗(u, z) is analytic in the polydisk |u| < 1, |z| < 1. Therefore, the zeros in
|u| < 1 of the denominator in (8) should also be the zeros of the numerator.

If we set Q∗
0 = 0, i.e. E(zQ

∗

0) = 1, the numerator N∗(u, z) is a polynomial in z of degree
s, with leading monomial zs, so that the polynomial factorizes as

N∗(u, z) =
s−1
∏

k=0

(z − zk(u)). (10)

We thus find that

F ∗(u, z) =

∏s−1
k=0(z − zk(u))

zs − uA(z)
. (11)

2.2. Busy periods. We now consider those non-negative paths that end exactly at level
zero at step n. The generating function is given by E(u) = F ∗(u, 0) =

∑∞
n=0 u

n
P(Q∗

n = 0),
i.e.

E(u) =
(−1)s−1

uA(0)

s−1
∏

k=0

zk(u). (12)

Consider the case s = 1 and let BP denote the number of customers served in a busy period.
It is immediate that

E(uBP) = uA(0)E(u) = z0(u).

Example 1. (M/M/1 queue) Customers arrive according to a Poisson process with rate λ
and have exponential service requirements with mean 1/µ. We have

A(z) = p+ pqz + pq2z2 + . . . =
p

1− qz
with p =

µ

λ+ µ
, q =

λ

λ+ µ

and hence z0 is the solution in |z| < 1 of

z − uA(z) = 0 ⇔ qz2 − z + pu = 0.
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We thus find that

E(uBP) = z0(u) =
1−√

1− 4pqu

2q
=

λ+ µ−
√

(λ+ µ)2 − 4λµu

2λ
. (13)

Explicit inversion is possible since

1−√
1− 4pqu

2q
= p

∞
∑

n=1

1

n

(

2n− 2

n− 1

)

(pq)n−1un

and hence (let [un]f(u) denote the coefficient of un in f(u))

P(BP = n) = [un]E(uBP) =
1

n

(

2n − 2

n− 1

)

pnqn−1.

Example 2. (M/G/1 queue) Customers arrive according to a Poisson process with rate λ
and B denotes a generic service requirement with λEB < 1. The probability of having n
arrivals during a service time is

αn =

∫ ∞

0
e−λt (λt)

n

n!
dP(B < t)

and so
∞
∑

n=0

αnz
n = E(e−λ(1−z)B) = A(z).

Hence, E(zBP) in the M/G/1 queue is the solution, inside the unit circle, of

z − uE(e−λ(1−z)B) = 0. (14)

The reader can check that E(e−ωB) = µ
µ+ω again leads to (13).

Example 3. (M/D/1 queue) When the service requirements are deterministic and equal
to b, we have that E(e−ωB) = e−ωb and (14) becomes (with ρ = λb)

z(u) = ueρ(z(u)−1). (15)

This is a famous and well studied equation, as the pgf of the total progeny in a Poisson
branching process satisfies (evidently) the same equation. Moreover, (15) can be written
in terms of the Lambert W function (see De Bruijn (1981), p. 23), which is defined as

W (x)eW (x) = x. That is, z(u) = −ρ−1W (−uρe−ρ). Because

W (x) = −
∞
∑

n=1

nn−1

n!
(−x)n, (16)

we obtain that

P(BP = n) = [un]

(

−1

ρ
W (−uρe−ρ)

)

=
(ρn)n−1

n!
e−ρn.
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3. The queueing process

We see that

E(zQn+1) = E(z(Qn+Xn)+)

= E(z(Qn+Xn)+1{Qn+Xn≥0}) + E(z(Qn+Xn)+1{Qn+Xn<0})

= E(zQn+Xn)− E(zQn+Xn1{Qn+Xn<0}) + P(Qn +Xn < 0), (17)

where E(zQn+Xn) = E(zQn)A(z)z−s,

E(zQn+Xn1{Qn+Xn<0}) =
s−1
∑

r=0

P(Qn +An = r)zr−s (18)

and P(Qn +Xn < 0) =
∑s−1

r=0 P(Qn +An = r). We thus obtain

E(zQn+1) = E(zQn)A(z)z−s +
s−1
∑

r=0

P(Qn +An = r)(1− zr−s). (19)

For the bivariate generating function

F (u, z) =
∑

n≥0

unE(zQn)

we find that

F (u, z) = E(zQ0) + uF (u, z)A(z)z−s + u
s−1
∑

r=0

(1− zr−s)Fr(u) (20)

with Fr(u) =
∑∞

n=0 P(Qn +An = r)un. Upon some rewriting we arrive at

F (u, z) =
N(u, z)

zs − uA(z)
, (21)

where

N(u, z) = zsE(zQ0) + u

s−1
∑

r=0

(zs − zr)Fr(u). (22)

If we, as before, set Q0 = 0, the numerator N(u, z) is a polynomial in z of degree s, with
coefficients depending on u. Hence, for Q0 = 0, we have that

N(u, z) = γ(u)

s−1
∏

k=0

(z − zk(u)), (23)

where γ(u) follows from N(u, 1) = 1. We thus find that

F (u, z) =
1

zs − uA(z)

s−1
∏

k=0

z − zk(u)

1− zk(u)
. (24)

Denote by Q the limit of Qn as n goes to infinity (which exists if ρ = A′(1)/s < 1), and let
F (z) = E(zQ).

F (z) = lim
u→1

(1− u)F (u, z)
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= lim
u→1

1− u

1− z0(u)

z − z0(u)

zs − uA(z)

s−1
∏

k=1

z − zk(u)

1− zk(u)

=
(s−A′(1))(z − 1)

zs −A(z)

s−1
∏

k=1

z − zk
1− zk

, (25)

with zk ≡ zk(1) and where we have used that z′0(1) = 1/(s −A′(1)).

Example 4. (M/G/1 queue) For s = 1 and A(z) = E(e−λ(1−z)B) the expression (25)
reduces to

F (z) =
(1−A′(1))(1 − z)

A(z)− z
=

(1− ρ)(1− z)

E(e−λ(1−z)B)− z
, (26)

and represents the pgf of Qd, the steady-state queue length (without the customer in service)
just after a departure. PASTA and distributional Little’s law then say that E(zQd) =

E(e−λ(1−z)W ), with W the stationary waiting time, and hence

E(e−ωW ) =
(1− ρ)ω

ω − λ+ λE(e−ωB)
. (27)

This formula is known as the Pollaczek-Khintchine formula.

Example 5. (M/D/1 queue) A.K. Erlang’s 1909 paper introducing the M/D/1 queue is
generally considered to be the starting point of queueing theory. For Poisson arrivals with
rate λ, deterministic service requirements b, and first-come-first-served, Erlang’s result on
the stationary waiting time W reads (assuming λb < 1 for stability)

P(W < t) = (1− λb)eλt
⌊t/b⌋
∑

j=0

(−λe−λb)j
(t− jb)j

j!
, t ≥ 0. (28)

For a direct inversion of (27) for E(e−ωB) = e−ωb see Van Leeuwaarden, Löpker & Janssen
(2008).

4. Existence of the roots

From now on we shall focus on the steady-state analysis of the queue, which comes down
to studying the stochastic equation

Q
d
= (Q+A− s)+, (29)

whose solution is given by (25). What shall now investigate more closely the roots of
zs = A(z) in |z| < 1 (denoted by z1, . . . , zs−1). But before we do so, we first give a direct
derivation of (25).

From (25) we get

P(Q = 0) =
s

∑

j=0

P(Q+A = j), (30)

P(Q = k) = P(Q+A = s+ k), k ≥ 1. (31)
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Multiplying by zk and summing over all values of k yields

F (z) = z−s
∞
∑

k=1

P(Q+A = s+ k)zk+s +

s
∑

j=0

P(Q+A = j)

= z−s
[

F (z)A(z) −
s

∑

j=0

P(Q+A = j)zj
]

+
s

∑

j=0

P(Q+A = j)

= z−sF (z)A(z) +

s
∑

j=0

P(Q+A = j)(1 − zj−s) (32)

and hence

F (z) =

∑s−1
j=0 P(Q+A = j)(zs − zj)

zs −A(z)
. (33)

This description of F (z) still contains s unknowns. Here, the kernel zs − A(z) comes into
play. From F (1) = 1 we get

s−1
∑

j=0

P(Q+A = j)(s − j) = s−A′(1). (34)

Write
s−1
∑

j=0

P(Q+A = j)(zs − zj) = γ(z − 1)
s−1
∏

k=1

(z − zk), (35)

where the constant γ can be determined from differentiating both sides of (35) with respect
to z, and using (34). This gives

γ =
s−A′(1)

∏s−1
k=1(1− zk)

, (36)

and so (25) follows.

4.1. Classical approach. In the vast majority of queueing problems to which Rouché’s
theorem is applied, the analytic function of interest is given by zs −A(z), where s ∈ N and
A(z) is the pgf of a nonnegative discrete random variable A. Denoting P(A = j) by aj , we
have that

A(z) =
∞
∑

j=0

ajz
j, (37)

which is known to be analytic in the open disk {z ∈ C : |z| < 1} and continuous up to
the unit circle {z ∈ C : |z| = 1}. For continuous-time bulk service queues, M/G/1 and

G/M/1-type queues, the A(z) is typically of the form A(z) = B̃(λ(1 − z)), where B̃(s) is
the Laplace-Stieltjes transform of a continuous random variable and λ is some positive real
constant.

Let us first state Rouché’s theorem (see e.g. Titchmarsh (1939))
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Theorem 6. (Rouché) Let the bounded region D have as its boundary a simple closed
contour C. Let f(z) and g(z) be analytic both in D and on C. Assume that |f(z)| < |g(z)|
on C. Then f(z) − g(z) has in D the same number of zeros as g(z), all zeros counted
according to their multiplicity.

When A(z) has a radius of convergence larger than 1, we can prove the following result
concerning the number of zeros on and within the unit circle of zs−A(z) by using Rouché’s
theorem:

Lemma 1. Let A(z) be a pgf that is analytic in |z| ≤ 1+ ν, ν > 0. Assume that A′(1) < s,
s ∈ N. Then the function zs −A(z) has exactly s zeros in |z| ≤ 1.

Proof Define the functions f(z) := A(z), g(z) := zs. Because f(1) = g(1) and f ′(1) =
A′(1) < s = g′(1), we have, for sufficiently small ǫ > 0,

f(1 + ǫ) < g(1 + ǫ). (38)

Consider all z with |z| = 1 + ǫ, where 0 < ǫ < ν. By the triangle inequality and (38) we
have that

|f(z)| ≤
∞
∑

j=0

aj |z|j = f(1 + ǫ) < g(1 + ǫ) = |g(z)|, (39)

and hence |f(z)| < |g(z)|. Because both f(z) and g(z) are analytic for |z| ≤ 1+ ǫ, Rouché’s
theorem tells us that g(z) and f(z) − g(z) have the same number of zeros in |z| ≤ 1 + ǫ.
Letting ǫ tend to zero yields the proof. ✷

The application of Lemma 1 is limited to the class of functions A(z) with a radius of
convergence larger than 1. In case A(z) has radius of convergence 1, the results of the next
section can be applied.

4.2. Modified approach. We first prove a result on the number and location of zeros of
zs − A(z) on the unit circle. Thereto, we define the period p of a series

∑∞
−∞ bjz

j as the
largest integer for which its holds that bj = 0 whenever j is not divisible by p.

Lemma 2. Let A(z) be a pgf of some nonnegative discrete random variable with A(0) > 0
and A′(1) < s, where s is a positive integer. If zs −A(z) has period p, then zs − A(z) has
exactly p simple zeros on the unit circle given by the p-th roots of unity τk = exp(2πik/p),
k = 0, 1, . . . , p − 1.

Proof Obviously, any zero ξ of zs − A(z) with |ξ| = 1 is simple, since |A′(ξ)| ≤ A′(|ξ|) =
A′(1) < s and, thus, sξs−1 −A′(ξ) 6= 0. Furthermore, for any z with |z| = 1, |A(z)| = A(1)
iff zk = 1 whenever ak > 0. This easily follows from the fact that |a0 + akz

k| < a0 + ak if
zk 6= 1. So, for z with |z| = 1 and A(z) − zs = 0 it holds that zk = 1 for all ak > 0, and
zs = 1. This implies that zp = 1, which completes the proof. ✷

Note that the requirement a0 = A(0) > 0 involves no essential limitation: If a0 was zero
we would replace the distribution {ai}i≥0 by {a′i}i≥0 where a′i = ai+m, am being the first
non-zero entry of {ai}i≥0, and a corresponding decrease in s according to s′ = s−m.

We are now in a position to give the main result:
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Theorem 7. Let A(z) be a pgf of some nonnegative discrete random variable with A(0) > 0
and A′(1) < s, where s is a positive integer. Also, let zs − A(z) have period p. Then the
function zs−A(z) has p zeros on the unit circle given by τk = exp(2πik/p), k = 0, 1, . . . , p−1
and exactly s− p zeros in |z| < 1.

Proof Lemma 2 tells us that R(z) = zs −A(z) has p equidistant zeros on the unit circle,
and so it remains to prove that this function has exactly s− p zeros within the unit circle.
Thereto, define, for N ∈ N, the truncated pgf

AN (z) =

N−1
∑

j=0

ajz
j +

∞
∑

j=N

ajz
N , (40)

where N is a multiple of p. Then RN (z) = zs − AN (z) has obviously s zeros in z ∈ D =
{z ∈ C | |z| ≤ 1}, since AN (z) is a polynomial satisfying A′

N (1) < s, and Lemma 1 thus
applies. By Lemma 2 we know that RN (z) has p simple and equidistant zeros on the unit
circle. We further have that

|A(z)−AN (z)| ≤ 2

∞
∑

j=N

aj, |z| ≤ 1, (41)

|A′(z)−A′
N (z)| ≤ 2

∞
∑

j=N

jaj , |z| ≤ 1. (42)

Thus, AN (z) and A′
N (z) converge uniformly to A(z) and A′(z) on z ∈ D, respectively.

Moreover, if G : D → C is continuous, then G(AN (z)) is uniformly convergent to G(A(z))
on z ∈ D.

τ0 = 1

τ1

τ2

τ3

E

r ǫ

Figure 2. Graphical representation of the compact set E.
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For each z on the unit circle C = {z ∈ C | |z| = 1} there exists a D(z, η) := {ξ ∈ D |
0 < |ξ − z| < η}, such that R(ξ) 6= 0 for ξ ∈ D(z, η). Since C is compact, it can be covered
by finitely many D(z, η)’s. Hence, there is a 0 < r < 1 such that R(z) has has no zeros in
r ≤ |z| < 1.

Now we prove that for large N the function RN (z), as the function R(z), has no zeros
in r ≤ |z| < 1. Thereto, we show that there is an ǫ > 0 and M ∈ N such that RN (z) 6= 0
for all N ≥ M and 0 < |z − τk| < ǫ, k = 0, 1, . . . , p − 1. Because R′(z) is continuous and
R′

N (z) converges uniformly to R′(z) on z ∈ D, there is an ǫ > 0 and M ∈ N such that (for
k = 0, 1, . . . , p − 1)

|R′
N (z)−R′(τk)| < δ < |R′(τk)|, 0 < |z − τk| < ǫ, N ≥ M. (43)

Furthermore, we have (for k = 0, 1, . . . , p− 1)

|RN (z)−R′(τk)(z − τk)| =
∣

∣

∣

∫

[τk,z]
(R′

N (s)−R′(τk))ds
∣

∣

∣
, (44)

where the integration is carried out along the straight line that connects τk and z. Hence,
for 0 < |z − τk| < ǫ and N ≥ M , we obtain (for k = 0, 1, . . . , p− 1)

∣

∣

∣

∫

[τk,z]
(R′

N (s)−R′(τk))ds
∣

∣

∣
≤ |z − τk|max

[τk,z]
|R′

N (s)−R′(τk)| < |z − τk|δ. (45)

So, it follows that for 0 < |z − τk| < ǫ and N ≥ M (for k = 0, 1, . . . , p− 1)

|RN (z)| = |RN (z)−R′(τk)(z − τk) +R′(τk)(z − τk)| (46)

≥ |R′(τk)||z − τk| − |RN (z)−R′(τk)(z − τk)| (47)

> (|R′(τk)| − δ)|z − τk| > 0. (48)

Since RN (z) converges uniformly to R(z) and R(z) 6= 0 on the compact set (see Figure
2)

E = {z ∈ C | r ≤ |z| ≤ 1} \
p−1
⋃

k=0

D(τk, ǫ), (49)

there exists an K ∈ N such that RN (z) 6= 0 for all N ≥ K, where r ≤ z < 1. Hence, for all
N ≥ K the number of zeros of RN (z) with |z| < r is equal to s − p. This number can be
expressed by the argument principle (see e.g. Whittaker and Watson [?]) as follows

s− p =
1

2πi

∮

|z|=r

R′
N (z)

RN (z)
dz. (50)

The integrand converges uniformly to R′(z)/R(z), and thus

lim
N→∞

1

2πi

∮

|z|=r

R′
N (z)

RN (z)
dz =

1

2πi

∮

|z|=r

R′(z)
R(z)

dz = s− p. (51)

Hence, the number of zeros of R(z) with |z| < r is also s− p. This completes the proof. ✷

Example 8. Due to Theorem 7, the A(z) with a radius of convergence of 1 do not have
to be excluded from the analysis of the zeros of zs − A(z). This further means that these
pgf’s can be incorporated in the general formulation of the solution to the queueing models
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of interest. The A(z) that have radius of convergence 1 are typically those associated with
heavy-tailed random variables. Some examples are given below.

(i) The discrete Pareto distribution (e.g. Johnson et al. [?]), defined by

aj = c
1

jp+1
, j = 1, 2, . . . , (52)

with

c =
(

∞
∑

j=1

aj

)−1
= ζ(p+ 1)−1, (53)

ζ(·) the Riemann zeta function and p > 1. For k < p, the kth moment µk of the
discrete Pareto distribution is given by

µk =
ζ(p− k + 1)

ζ(p+ 1)
, (54)

whereas for k ≥ p the moments are infinite. The discrete Pareto distribution is also
known as the Zipf or Riemann zeta distribution

(ii) The discrete standard lognormal distribution, defined by

aj = ce−
(log j)2

2 , j = 1, 2, . . . , (55)

where c is a normalization constant.
(iii) The discrete distribution, related to the continuous Weibull distribution, defined by

aj = cp−
√
j, j = 0, 1, . . . , (56)

where p > 1 and c is a normalization constant.
(iv) The Haight’s zeta distribution, defined by

aj =
1

(2j − 1)p
− 1

(2j + 1)p
, j = 1, 2, . . . , p > 1. (57)

5. Finding the roots

We now pay further attention to the roots of zs = A(z). We first present an explicit
expression for each of the roots as a Fourier series. Next, we elaborate on finding the roots
using a fixed point iteration. We also point out how the conditions needed for the Fourier
series representation and the fixed point iteration are related.

5.1. Fourier series representation. The roots of zs = A(z) lie on, what is called in [20],
the generalized Szegö curve, defined by

SA,s := {z ∈ C : |z| ≤ 1, |A(z)| = |z|s}. (58)

For the notions used below from complex function theory we refer to [15, 28]. We impose
the following condition:

Condition 1. SA,s is a Jordan curve with 0 in its interior, and A(z) is zero-free on and
inside SA,s.
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Recall that a0 > 0 so that we have |A(z)| > |z|s for z in the interior of SA,s. Condition 1
is geometric in nature, and can be visually checked using some standard software package.
A useful geometric formulation equivalent with Condition 1 is as follows:

Lemma 3. Condition 1 is satisfied if and only if there is a Jordan curve J with SA,s in its
interior such that A(z) is zero-free on and inside J while |A(z)| < |z|s on J .

The proof that Condition 1 implies the existence of a J as in Lemma 3 uses continuity of
A on SA,s and some basic considerations of Jordan curve theory. The proof of the reverse
implication can be based on the considerations in the proof of Lemma 4. For brevity we
omit the details.

To present an equivalent form of Condition 1 of more analytic nature, we use the following
result:

Lemma 4. Condition 1 is satisfied if and only if the coefficients [zl−1]Al/s(z) decay expo-
nentially in l.

Proof. Assume that Condition 1 holds. Letting J as in Lemma 3 we see that we can define
an analytic root A1/s(z) for z on and inside J that is positive at z = 0. We thus have by
Cauchy’s theorem

[zl−1]Al/s(z) =
1

2πi

∫

z∈J

Al/s(z)

zl
dz, l = 1, 2, ... . (59)

Since |A(z)| < |z|s for z ∈ J , it follows that

[zl−1]Al/s(z)| ≤ 1

2π
length(J)

(

max
z∈J

∣

∣

∣

A(z)

zs

∣

∣

∣

1/s)l
, (60)

and this decays exponentially, as required.
Now assume that [zl−1]Al/s(z) decays exponentially. We shall sketch the proof that

Condition 1 is valid; full details can be found in [20], proof of Lemma 4.1. We consider for
w in a neighborhood of 0 the equation

zA−1/s(z) = w, (61)

where we have taken in a neighborhood of z = 0 the root A−1/s of A that is positive at
z = 0 (recall a0 > 0).

Theorem 9. (Lagrange inversion, see e.g. [32], p. 133) For f(z) analytic on and inside a
contour J surrounding the origin, and for w satisfying

|wf(z)| < |z|,
for every z on J , the equation

z/f(z) = w,

has a unique solution z = z̃(w) inside J and

z̃(w) =

∞
∑

l=1

wl

l!

[( d

dz

)l−1
[f l(z)]

]

z=0
.
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By the Lagrange inversion theorem, the solution z̃(w) of (61) has the power series repre-
sentation

z̃(w) =
∞
∑

l=1

clw
l, (62)

for w in a neighborhood of 0 in which

cl =
1

l!

( d

dz

)l−1( z

zA−1/s(z)

)l∣
∣

∣

z=0
=

1

l
[zl−1]Al/s(z). (63)

By assumption, we have that cl → 0 exponentially, whence the power series in (62) for z̃(w)
has a radius of convergence R > 1. It follows then from basic considerations in analytic
function theory that A−1/s extends analytically to the open set {∑∞

l=1 clw
l
k | |w| < R} and

that z̃(w) extends according to (62) on the set |w| < R. The Szegö set SA,s in (58) occurs
as

SA,s = {z̃(eiα) : α ∈ [0, 2π]}, (64)

and it can be shown that the parametrization

α ∈ [0, 2π] → z̃(eiα) =

∞
∑

l=1

cle
ilα ∈ SA,s (65)

has no double points while a homotopy between {0} and SA,s is obtained according to

r ∈ [0, 1] → {z̃(reiα) : α ∈ [0, 2π]}. (66)

From the latter facts it follows that SA,s is a Jordan curve with 0 in its interior, and this
completes the sketch of the proof of the converse statement. ✷

We now turn to the representation of the s roots of zs = A(z) in |z| ≤ 1. These roots all
lie inside the Jordan curve J in Lemma 3 and are given by

zk = wkA
1/s(zk), k = 0, 1, ... , s− 1, (67)

where wk = e2πki/s. Hence, from (65) we have

zk =

∞
∑

l=1

clw
l
k, k = 0, 1, ... , s− 1, (68)

where cl are explicitly given in (63).
The Condition 1 and its equivalent forms as given per Lemmas 3 and 4 are equally useful

in deciding whether a given A satisfies it. We present now some instances where Condition
1 is satisfied.

i. A(z) is zero-free in |z| ≤ 1. An appropriate Jordan curve J is found as |z| = 1 + δ
with sufficiently small δ > 0. Indeed, the assumptions on A imply that there is a
δ > 0 such that 0 < |A(z)| < |z|s for 1 < |z| ≤ 1 + δ.

ii. A(z) is zero-free in |z| < 1. There may occur now a finite number of zeros of A on
|z| = 1, necessitating a modification of the Jordan curve J in (i). We indent this J
around the zeros such that the zeros are outside the new J while |A(z)| < |z|s for
all z on the new J . As one sees, this technique may also work in cases where there
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are zeros of A strictly inside |z| = 1. A class of examples follows from Kakeya’s
theorem [22] as follows:

- when a0 > a1 > . . . , we have that A(z) is zero-free in |z| ≤ 1,
- when a0 ≥ a1 ≥ . . . , we have that A(z) is zero-free in |z| < 1.

iii. The cl in (63) are all non-negative. It follows from Pringsheim’s theorem [30] and
the fact that z̃(w) is well-defined for w ∈ [0, 1 + δ] with some δ > 0, that the radius
of convergence of the power series in (62) exceeds 1. Thus Lemma 4 applies and it
follows that Condition 1 is satisfied.

Below we give two examples where one can compute the cl = [zl−1]Al/s(z) explicitly, so
that the criterion in Lemma 4 can be verified.

Example 10. Consider the Poisson case, aj = e−λλj/j!, j = 0, 1, ..., and A(z) = exp(λ(z−
1)) with 0 ≤ θ := λ/s < 1. In this case, Condition 1 is always satisfied. Furthermore, there
holds that

cl = e−lθ (lθ)
l−1

l!
. (69)

In Figure 3 we have pictured SA,s for θ = 0.1, 0.5, 1.0. The dots on the curves indicate the
roots zk for the case s = 20, obtained by calculating the sum in (68) up to l = 50.

Example 11. Consider the binomial case, aj =
(n
j

)

qj(1 − q)n−j, j = 0, ..., n, and A(z) =

(p+ qz)n where p, q ≥ 0, p+ q = 1 and A′(1) = nq < s. We compute in this case

cl =
1

l
plβ−l+1 ql−1

(

lβ

l − 1

)

, l = 1, 2, ... (70)

where β := n/s. In [20] the cl are shown to have exponential decay for β ≥ 1 (which covers
in fact all practically relevant instances). It is further shown that for 0 ≤ β < 1 the cl have
exponential decay if and only if

pβ−1q(1− β)1−βββ < 1. (71)

For β = 1/2, s = 20, constraint (71) requires q to be less than 2(
√
2 − 1). In Figure 4 we

plotted the SA,s for q = 0.82 < 2(
√
2 − 1), and the dots indicate the roots zk obtained by

calculating the sum in (68) up to l = 50. When q is increased, such that q > 2(
√
2 − 1),

SA,s turns from a smooth Jordan curve containing zero into two separate closed curves (see
[20]), and (68) no longer holds.

For the Poisson and binomial distribution we have (69) and (70), respectively, to deter-
mine the cl. In general, the values of the cl can be determined using the following property:

Property 1. For A(z) =
∑∞

j=0 ajz
j and α ∈ R, and Aα(z) =

∑∞
j=0 bjz

j , the coefficients
bj follow from the coefficients aj according to b0 = aα0 and

bj+1 = αaα−1
0 aj+1 +

1

(j + 1)a0

j−1
∑

n=0

[α(n + 1)− (j − n)]an+1bj−n, j = 0, 1, . . . . (72)

The proof of Property 1 consists of computing the bj ’s successively by equating coefficients
in A(z)(Aα)′(z) = αA′(z)Aα(z).
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Figure 3. SA,s for Pois-
son case, θ = .1, .5, 1. The
dots indicate z0, . . . , z19 for
s = 20, obtained by calcu-
lating the sum in (68) up
to l = 50.
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Figure 4. SA,s for bino-
mial case, β = 0.5, q =
.82. The dots indicate
z0, . . . , z19 for s = 20, ob-
tained by calculating the
sum in (68) up to l = 50.

In [7] it is shown that the condition that A is infinitely divisible, or the somewhat weaker
condition that A(z) has no zeros inside the unit circle, are sufficient for the roots of zs = A(z)
on and within the unit circle to be distinct. However, examples exist of A(z) having zeros
inside the unit circle and at the same time having distinct roots (see e.g. Example 11). It is
therefore that in both [7] and [18] the urge of finding a necessary condition for distinctness
is expressed. In this respect, we have the following result:

Lemma 5. When Condition 1 is satisfied, the roots of zs = A(z) on and within the unit
circle are distinct.

Proof. The roots lie inside J , and satisfy (67). Since |A(z)|1/s < |z| for all z ∈ J , it follows

from Rouché’s theorem that for each wk, the function z − wkA
1/s(z) has as many zeros

inside J as z. ✷

Although Condition 1 is not necessary for the roots to be distinct (as appears to be the
case in Example 11 with β = 1/2 and q = 0.83), it covers a far larger class of distributions
of A than those for which A(z) has no zeros within the unit circle.

5.2. Fixed point iteration. We now discuss a way to determine the roots by applying
successive substitution to a fixed-point equation. This idea originates from the work of
Harris et al. [18] on root-finding for the continuous-time G/Ek/1 queue, and was presented
more formally by Adan & Zhao [2] who distinguished a class of continuous random vari-
ables for which the method works. We further investigate the method for discrete random
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variables A. We present necessary conditions for the method to work and compare these
to the conditions needed for the Fourier series representation of the roots introduced in the
previous section.

When A(z) is assumed to have no zeros for |z| ≤ 1, we know that the s roots of zs = A(z)
in |z| ≤ 1 satisfy

z = wG(z), (73)

with G(z) = A1/s(z) and ws = 1. For each feasible w, Equation (73) can be shown as
in Lemma 5 to have one unique root in |z| ≤ 1. One could try to solve the equations by
successive substitutions (see [2, 18]) as

z
(n+1)
k = wkG(z

(n)
k ), k = 0, 1, ..., s − 1, (74)

with starting values z
(0)
k = 0.

Lemma 6. When for |z| ≤ 1, A(z) is zero-free and |G′(z)| < 1, the fixed point equations
(74) converge to the desired roots.

Proof. For |z| ≤ 1, |w| ≤ 1,

|wG(z)| ≤ G(|z|) ≤ G(1) = 1, (75)

so wG(z) maps |z| ≤ 1 into itself. For |z̃|, |ẑ| ≤ 1 we have that

|wG(z̃)− wG(ẑ)| ≤ |z̃ − ẑ| max
0≤t≤1

|G′(ẑ + t(z̃ − ẑ))|. (76)

Hence, from (76) and |G′(z)| < 1 for all |z| ≤ 1, we conclude that wG(z) is a contraction
on |z| ≤ 1. ✷

For the Poisson distribution with λ < s, it is readily seen that A(z) 6= 0 and |G′(z)| < 1 for
|z| ≤ 1, so that the iteration (74) works. We want to consider, however, also distributions for
which A(z) has zeros within the unit circle (see e.g. Example 11). We restrict here naturally

to A(z) that allow a root G(z) = A1/s(z) that is analytic around SA,s and positive at 0.
Hence we introduce the following condition:

Condition 2. Condition 1 should be satisfied and for all points z ∈ SA,s there should hold
that |G′(z)| < 1.

According to the maximum principle we have that Condition 2 implies that |G′(z)| < 1
holds for all points inside SA,s as well. Condition 2 thus ensures that for α ∈ [0, 2π] the
point zk is an attractor for the iteration (74).

Note that Condition 2 is what is minimally needed to ensure (74) to converge locally.
However, under Condition 2 the iterates are by no means guaranteed to stay in SA,s and
its interior. This is already seen for the binomial case with β < 1, s even, and the iteration
(74) for k = s/2, i.e

z
(n+1)
s/2 = −1(p+ qz

(n)
s/2)

β. (77)

For this iteration, the z
(n)
s/2, n = 0, 1, . . . , are alternatingly inside and outside SA,s. The

iteration, though, converges to the correct point when q is not too large. It is difficult,
in general, to give guarantees for convergence; nevertheless, convergence seems to occur in
most cases where Condition 2 holds.
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6. Infinite series and Spitzer’s identity

Iterating the relation (1) yields

Qn+1 = max{0, Qn +Xn}
= max{0,Xn +max{0, Qn−1 +Xn−1}}
= max{0,Xn,Xn +Xn−1 +Qn−1}
= max{0,Xn,Xn +Xn−1 +max{0, Qn−2 +Xn−2}}
= max{0,Xn,Xn +Xn−1,Xn +Xn−1 +Xn−2 +Qn−2}
...

= max{0,Xn,Xn +Xn−1, . . . ,Xn +Xn−1 + · · ·+X0} (78)

where the last step uses the fact that Q0 = 0. Hence,

P(Qn+1 ≥ x) = P(max{0,Xn,Xn +Xn−1, . . . ,Xn +Xn−1 + · · ·+X0} ≥ x)

= P(max{0,X1,X1 +X2, . . . ,X1 +X2 + · · ·+Xn+1} ≥ x) (79)

where the last equality follows from duality.
Let Sn = X1 + · · · +Xn and Mn = max{0, S1, . . . , Sn}, n ≥ 1. From (79) we see that

E(Qn+1) = E(Mn+1). (80)

Lemma 7.

EMn =
n
∑

l=1

1

l
E(S+

l ).

Proof.

Mn = 1{Sn>0}Mn + 1{Sn≤0}Mn. (81)

Use

E(1{Sn>0}Mn) = E(1{Sn>0}(X1 +max{0,X2, . . . ,X2 + · · · +Xn}))
= E(1{Sn>0}X1) + E(1{Sn>0} max{0,X2, . . . ,X2 + · · ·+Xn})
= E(1{Sn>0}X1) + E(1{Sn>0}Mn−1) (82)

Since Xi, Sn has the same joint distribution for all i,

E(Sn1{Sn>0}) = E(
n
∑

i=1

Xi1{Sn>0})

= nE(X11{Sn>0}) (83)

and hence

E(1{Sn>0}X1) =
1

n
E(Sn1{Sn>0}) =

1

n
E(S+

n ). (84)

In addition, since Sn ≤ 0 implies that Mn = Mn−1 we have that

1{Sn≤0}Mn = 1{Sn≤0}Mn−1. (85)
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Combined with the preceding this gives

E(Mn) = E(1{Sn>0}Mn) + E(1{Sn≤0}Mn)

=
1

n
E(S+

n ) + E(1{Sn>0}Mn−1) + E(1{Sn≤0}Mn−1)

= E(Mn−1) +
1

n
E(S+

n ). (86)

Hence,

E(Mn) =
1

n
E(S+

n ) +
1

n− 1
E(S+

n−1) + E(Mn−2)

=

n
∑

l=2

1

l
E(S+

l ) + E(M1), (87)

which proves the result since M1 = S+
1 . ✷

More general results can be obtained (remember that Q0 = 0):

Theorem 12. (Spitzer’s identity)

F (u, z) =
∑

n≥0

E(zQn)un

=
1

zs − uA(z)

s−1
∏

k=0

z − zk(u)

1 − zk(u)

= exp
{

∞
∑

l=1

1

l
E(zS

+
l )ul

}

(88)

For that stationary queue length distribution it follows from Abel’s theorem that

F (z) = lim
u↑1

(1− u)

∞
∑

n=0

unEzQn = exp
{

∞
∑

l=1

l−1(EzS
+
l − 1)

}

. (89)

Moments of the stationary queue length follow from taking derivatives of (124), e.g.,

F ′(1) =
∞
∑

l=1

1

l
E(S+

l ). (90)

6.1. Cumulants. Spitzer’s identity holds for both discrete and continuous increments Xl.
In fact, with M the all-time maximum, EXl < 0, and X having moments of all orders, we
have

E(eωM ) = exp
{

∞
∑

l=1

1

l
E(eωS

+
l − 1)

}

, Re ω ≤ 0. (91)

The k-th cumulant of a random variable Y is defined as the k-th derivative of logEeωY

evaluated at ω = 0. We then see that

logE(eωM ) =
∞
∑

n=1

1

l
E(eωS

+
l − 1)
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=

∞
∑

l=1

1

l

∫ ∞

0
(ωx+ 1

2ω
2x2 + . . .)fS+

l
(x)dx, (92)

with fS+
l
the density function of S+

l , and so the k-th cumulant of M equals

dk

(dω)k
logE(eωM )

∣

∣

∣

ω=0
=

∞
∑

l=1

1

l
E((S+

l )
k), k = 1, 2, . . . . (93)

Recall that the first cumulant is the mean, the second cumulant is the variance, the third
cumulant is the central moment E(M −EM)3, and the fourth cumulant is E(M − EM)4 −
3E(M − EM)2.

7. Wiener-Hopf technique

The Wiener-Hopf technique stems from mathematical physics, and found its way to
the field of applied probability Perhaps the most famous application of the Wiener-Hopf
technique is in the context of random walks, see e.g. Cohen [10] due to the fact that the
Wiener-Hopf technique is a powerful tool for the analysis of Markov processes whose evo-
lution equation contains the max{0, ·} operator

Let us first describe the role of the max{0, ·} operator. From recursion (3) we have

E(zQn+1) = E(1{Qn +An ≤ s}) + E(zQn+An−s1{Qn +An > s})
= P(Qn +An ≤ s) + E(zQn+An−s)− E(zQn+An−s1{Qn +An ≤ s}).

(94)

Letting n → ∞ and observing that Qn and An are independent then yields

ξ+(z)(1 − z−sA(z)) = ξ−(z), (95)

where ξ+(z) = F (z) and ξ−(z) = P(Q+A ≤ s)−E(zQ+A−s1{Q+A ≤ s}). Observe that ξ+
(respectively ξ−) is analytic and bounded in |z| < 1 (respectively |z| > 1), and both ξ+, ξ−
are continuous up to |z| = 1.

In order to find an explicit expression for ξ+(z) we need to factorize the function 1 −
z−sA(z). In more general terms, we need to factorize a function 1−Y (z), where Y (z) is the
pgf of a random variable Y for which it holds that EY < 0. Such a factorization is known
as the Wiener-Hopf factorization. The Wiener-Hopf factorization identity then reads

Theorem 13. (Wiener-Hopf factorization identity) The following decomposition exists:

1− Y (z) = φ+(z)φ−(z), |z| = 1, (96)

where φ+ (respectively φ−) is analytic and bounded in |z| < 1 (respectively |z| > 1), and
both φ+, φ− are continuous up to |z| = 1.

Hence, once we know the functions φ+, φ− we can write (95) as

ξ+(z)φ+(z) =
ξ−(z)
φ−(z)

, (97)

where the left-hand side (respectively right-hand side) of (97) represents a function that is
analytic and bounded in |z| < 1 (respectively |z| > 1), and both sides of (97) are functions
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continuous up to |z| = 1. Therefore, their analytic continuation contains no singularities in
the entire complex plane. Liouville’s theorem then says

Theorem 14. (Liouville) Let f(z) be analytic for all values of z and let |f(z)| < K for all
values of z, where K is a constant (so that |f(z)| is bounded as |z| → ∞). Then f(z) is
seen to be constant.

Whence upon using Liouville’s theorem the left-hand side of (97) is constant, and since
ξ+(1) = 1, we obtain

ξ+(z) =
φ+(1)

φ+(z)
. (98)

With the machinery described above, we can prove earlier mentioned results, where we rely
on two different factorizations of the function 1− z−sA(z).

Proof of (124)
Start from the basic identity

1− z = exp{ln(1− z)} = exp
{

−
∞
∑

l=1

1

l
zl
}

, |z| ≤ 1, z 6= 1. (99)

Hence, we can write (for |z| = 1)

1− z−sA(z) = exp
{

−
∞
∑

l=1

1

l
(z−sA(z))l

}

= φ+(z)φ−(z), (100)

where

φ+(z) = exp
{

−
∞
∑

l=1

1

l
E(zSl1{Sl > 0})

}

, (101)

φ−(z) = exp
{

−
∞
∑

l=1

1

l
E(zSl1{Sl ≤ 0})

}

. (102)

Observe that

φ+(1) = exp
{

−
∞
∑

l=1

1

l
P(Sl > 0)

}

, (103)

which by (98) completes the proof. ✷

Alternative proof of (25)
We construct an explicit factorization of 1− z−sA(z) by choosing

φ+(z) =
zs −A(z)

∏s−1
k=0(z − zk)

, φ−(z) =

∏s−1
k=0(z − zk)

zs
. (104)

With

φ+(1) = lim
z→1

zs −A(z)

(z − 1)
∏s−1

k=1(z − zk)
=

s− µA
∏s−1

k=1(1− zk)
, (105)

this completes the proof. ✷
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8. From roots to infinite series

It is possible to derive expressions in terms of infinite series from expressions in terms of
the roots.

For the sake of clarity, consider Q (stationary queue length) and the case where A is

Poisson distributed with rate λ, so that the roots satisfy zs = eλ(z−1), and e.g.,

P(Q = 0) = eλ(−1)s−1(s− λ)

s−1
∏

k=0

zk
1− zk

. (106)

We also have

P(Q = 0) = exp
{

−
∞
∑

l=1

1

l

∞
∑

m=1

e−lλ (lλ)ls+m

(ls+m)!

}

. (107)

It can be shown that

s−1
∏

k=1

zk = (−1)s−1e−λ exp
{

∞
∑

l=1

1

l
e−lλ (lλ)

ls

(ls)!

}

, (108)

and

s− λ
∏s−1

k=1 (1− zk)
= exp

{

−
∞
∑

l=1

1

l

∞
∑

m=0

e−lλ (lλ)ls+m

(ls+m)!

}

. (109)

The way to do this is by using the exact expressions for the roots and Fourier sampling.

9. Proof of Spitzer’s identity

Theorem 15. (Spitzer’s identity) Assume that A(z) is a polynomial of degree n ≥ s. Then

F (u, z) =
1

zs − uA(z)

s−1
∏

k=0

z − zk(u)

1 − zk(u)

=
1

1− u

n−1
∏

k=s

1− zk(u)

z − zk(u)

= exp
{

∞
∑

k=1

uk

k
E(zS

+
k )

}

(110)

Proof. Observe that

zs − uA(z) = −uan

n−1
∏

k=0

(z − zk(u)) (111)

and for z = 1 this gives

1− u = −an

n−1
∏

k=0

(z − zk(u)). (112)
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Hence,

F (u, z) =
1

zs − uA(z)

s−1
∏

k=0

z − zk(u)

1− zk(u)
=

1

1− u

n−1
∏

k=s

1− zk(u)

z − zk(u)
. (113)

Let ν1(u), . . . , νn−s(u) denote the n− s roots in |ν| < 1 of

ν−s − uA(ν−1) = 0 or η(ν) :=
1

νsA(ν−1)
= u, (114)

so that

F (u, z) =
1

1− u

n−s
∏

k=1

1− ν−1
k (u)

z − ν−1
k (u)

. (115)

Next consider a positively oriented contour C that encircles 0 and is such that for sufficiently
small u the roots ν1(u), . . . , νn−s(u) lie inside C, and the remaining s roots of (114) lie outside
C. The residues theorem, for a function h(ν) analytic in a domain containing C, says that

n−s
∑

k=1

h(νk) =
1

2πi

∮

C

η′(ν)
η(ν)− u

h(ν)dν. (116)

Expanding the denominator in the integral for small u (thanks to (η−u)−1 =
∑∞

k=0 u
k/ηk+1

valid for |u| < |η|) yields
n−s
∑

k=1

h(νk) =
1

2πi

∞
∑

k=0

uk
∮

C

η′(ν)
ηk+1(ν)

h(ν)dν. (117)

Integration by parts on a closed contour
∮

a(ν)b′(ν)dν = −
∮

a′(ν)b(ν)dν gives for a = h

and b′ = η′/ηk+1

n−s
∑

k=1

h(νk) =
1

2πi

∮

C

η′(ν)
η(ν)

h(ν)dν +
1

2πi

∞
∑

k=1

uk

k

∮

C

h′(ν)
ηk(ν)

dν. (118)

Then write (115) as

F (u, z) = exp
{

− ln(1− u) +

n−s
∑

k=1

ln
(1− ν−1

k (u)

z − ν−1
k (u)

)}

. (119)

We thus want to apply (118) to the function h(ν) = ln 1−ν−1

z−ν−1 , for which

h′(ν) =
νz − 1

ν − 1

(νz − 1− z(ν − 1)

(νz − 1)2

)

= − 1

1− ν
+

z

1− νz
= −

∞
∑

j=0

νj +
∞
∑

j=0

zj+1νj. (120)

Notice that

1

2πi

∮

C

νj

ηk(ν)
dν =

1

2πi

∮

C

(νsA(ν−1))k

ν−j
dν

= P

(

k
∑

i=1

(s−Ai) = −j − 1
)
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= P(Sk = j + 1) (121)

Substituting (120) into (118) and using (121) yields

n−s
∑

k=1

ln
(1− ν−1

k (u)

z − ν−1
k (u)

)

=
∞
∑

k=1

uk

k

∞
∑

j=0

P(Sk = j + 1)(zj+1 − 1)

=

∞
∑

k=1

uk

k

(

∞
∑

j=1

P(Sk = j)zj − P(Sk ≥ 1)
)

. (122)

Combining (122), (119) and using − ln(1− u) =
∑∞

k=1 u
k/k leads to

F (u, z) = exp
{

∞
∑

k=1

uk

k

(

P(Sk ≤ 0) +
∞
∑

j=1

P(Sk = j)zj
)}

, (123)

which completes the proof. �

10. Tail distribution

Again we assume that A(z) is a polynomial of degree n ≥ s. It follows from Abel’s
theorem that

F (z) = lim
u↑1

(1− u)F (u, z) =

n−1
∏

k=s

1− zk
z − zk

. (124)

Then, upon using partial fraction expansion,

F (z) =

n−1
∑

k=s

rk
z − zk

= −
n−1
∑

k=s

rk
zk

∞
∑

j=0

( z

zk

)j
(125)

with the residues defined as

rk = lim
z→zk

(z − zk)F (z) =

∏n−1
j=s (1− zj)

∏n−1
j=s,j 6=k(1− zj)

. (126)

From (125) we see that

P(X = j) = −
n−1
∑

k=s

rk

( 1

zk

)j+1
(127)

Let zs be the unique real root in (1,∞) for which |zs| < |zk|, k = s+1, . . . , n−1. Then P(X =

j) ≈ −rsz
−j−1
s for large j, and we arrive at the so-called dominant pole approximation

P(X ≥ k) ≈ −
∞
∑

j=k

rs

( 1

zs

)j+1
= − rs

zs − 1

( 1

zs

)k
for large k. (128)
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11. Inversion

Generating functions are widely applied in combinatorics and probability, where the
coefficients typically stand for the numbers of objects of certain size, or probability of a
certain event. In these cases the coefficients are nonnegative. A random variable X is fully
characterized by its distribution function FX(x) = P(X ≤ x). A variable is discrete if it is
supported by a finite or denumerable set, and in most cases this set is Z or Z≥0. If X is
discrete and supported by Z, it probability generating function (PGF) is defined as

G(z) = E(zX) =

∞
∑

k=−∞
P(X = k)zk. (129)

One can apply analytic methods to the generating function in order to extract information
about the coefficients P(X = k). In favorable cases, this may lead to an explicit expressions
for P(X = k), while in more difficult cases, one can obtain a numerical or asymptotic
description of P(X = k). In obtaining such approximations, the Cauchy coefficient formula
turns out to be instrumental.

11.1. Cauchy’s coefficient formula. We now quickly summarize some basic notions re-
garding analytic functions, leading to the Cauchy’s coefficient formula, which has important
consequences for transforms of random variables. For more details see for instance [17].

Definition 1. A function f(z) defined over a region Ω is analytic at a point z0 ∈ Ω, if for
z in some open disc centered at z0 and contained in Ω, it is representable by a convergent
power series

f(z) =
∑

n≥0

cn(z − z0)
n. (130)

A function is analytic in a region Ω iff it is analytic at every point of Ω.

Definition 2. A function f(z) is meromorphic at z0 iff for z in a neighborhood of z0 with
z 6= z0 it can be represented as N(z)/D(z), with N(z) and D(z) being analytic at z0. In
that case, it admits near z0 an expansion of the form

f(z) =
∑

n≥−M

fn(z − z0)
n. (131)

If f−M 6= 0 and M ≥ 1, then f(z) is said to have a pole of order M at z = z0. The
coefficient f−1 is called the residue of z = z0 and is written as Res[f(z); z = z0].

Hence, for poles of order 1,

Res[f(z); z = z0] = lim
z→z0

(z − z0)f(z). (132)

Theorem 16 (Cauchy’s residue theorem). Let f(z) be meromorphic in the region Ω and
let C be a positively oriented simple contour along which the function is analytic. Then

1

2πi

∮

C
f(z)dz =

∑

s

Res[f(z); z = s], (133)

where the sum runs over all poles s of f(z) enclosed by C.
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Theorem 17 (Cauchy’s coefficient formula). Let f(z) be analytic in a region Ω containing
0 and let C be a positively oriented simple contour along which the function is analytic.
Then, the coefficient [zn]f(z) admits the integral representation

fn =
1

2πi

∮

C

f(z)

zn+1
dz. (134)

Proof. The residue theorem gives

1

2πi

∮

C

f(z)

zn+1
dz = Res[f(z)z−n−1; z = 0] (135)

and the latter is easily seen to equal the coefficient [zn]f(z). �

The coefficient formula presents a relation between the coefficient and the function itself,
using adequately chosen contours of integration. It thus presents the opportunity to estimate
the coefficients [zn]f(z) that appear in the expansion of f(z) near 0 by using information
of the function f(z) away from 0.

11.2. Singularities. Singularities are points where a function ceases to be analytic.

Theorem 18 (Pringsheim’s theorem). If f(z) is representable at the origin by a power
series expansion with nonnegative coefficients and radius of convergence R, then the point
z = R is a singularity of f(z).

From now on we assume f(z) to have nonnegative coefficients.

Proposition 1 (Saddle-point bounds). Let f(z) be analytic in the disc |z| < R with 0 <
R ≤ ∞. Let f(z) have nonnegative coefficients at 0. Then, for any r ∈ (0, R),

[zn]f(z) ≤ f(r)

rn
⇒ [zn]f(z) ≤ inf

r∈(0,R)

f(r)

rn
. (136)

Proof. Follows from trivial bounds applied to the Cauchy coefficient formula. �

Notice that the value for z that provides the best bound in (136) follows from solving

r
f ′(r)
f(r)

= n. (137)

Let h(r) = f(r)r−n. Then h(0+) = ∞ and h(r) → +∞ as r → R−. The function h(r) is
upward convex for r > 0 so that the function h(r) has a unique infimum. The convexity
follows from

d2

dr2
f(r)

rn
=

r2f ′′(r)− 2nrf ′(r) + n(n+ 1)f(r)

rn+2
, (138)

which is positive for r > 0, since the numerator
∑

k≥0

(n+ 1− k)(n− k)fkr
k, fk = [zk]f(k) (139)

has only nonnegative coefficients.
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Theorem 19 (Geometric tail bounds). Let G(z) = E(zX) be a pgf that is analytic for
|z| ≤ r with r > 1. Then

P(X = k) ≤ G(r)

rk
, P(X > k) ≤ G(r)

rk(r − 1)
. (140)

Proof. Trivial bounds applied to the Cauchy integral yield

P(X = k) =
1

2πi

∮

C

G(z)

zk+1
dz ≤ G(r)

rk
. (141)

The bound for the tail probability is derived from the integral representation

P(X > k) =
1

2πi

∮

C

G(z)

zk+2

(

1 +
1

z
+

1

z2
+ · · ·

)

dz ≤ G(r)

rk
, (142)

and again applying trivial bounds. �

Notice that these bounds always have a geometric decay in the value of k. This can also
be established without resorting to complex analysis (see [31]). For r ≥ 1,

− logP(X > k) = − log

∞
∑

j=k+1

P(X = j) ≥ − log

∞
∑

j=k+1

rj−k−1
P(X = j)

≥ − log
(

r−k−1
∞
∑

j=0

rjP(X = j)
)

= (k + 1) log r − logG(r). (143)

The tightest bound follows from the maximizer r̂ of (k + 1) log r − logG(r), which is the
solution to

r̂G′(r̂)
G(r̂)

= k + 1. (144)

This then gives

P(X > k) ≤ G(r̂)

r̂k(r̂ − 1)
. (145)

A similar result can be established for continuous random variables.

Theorem 20 (Exponential tail bounds). Let Y be a random variable whose moment gen-
erating function φ(s) = E(esY ) exists in an interval [−a, b], where −a < 0 < b. Then

P(Y < −x) = O(e−ax), P(Y > x) = O(e−bx). (146)

Proof. For any s such that 0 ≤ s < b,

P(Y > x) = P(esY > esx) ≤ φ(s)e−sx, (147)

where the last step follows from Markov’s inequality. It then suffices to choose s = b. The
left-tail bounds can be established by symmetry. �

Theorems 19 and 20 give a first impression of the order of magnitude of rare event
probabilities, and set the stage for more refined large deviation estimates.
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11.3. Numerical inversion. We next discuss numerical transform inversion using the
Cauchy integral. Let Cr denote a positively oriented circle about the origin of radius
r ∈ (0, 1). Upon making the change of variables z = reiu, we obtain

P(X = k) =
1

2πi

∮

C

G(z)

zk+1
dz

=
1

2πrk

∫ 2π

0
G(reiu)e−ikudu

=
1

2πrk

∫ 2π

0
[cos ku Re(G(reiu)) + sin ku Im(G(reiu))]du (148)

Calculating the integral in (148) approximately using the trapezoidal rule with step size
π/k yields

P(X = k) ≈ p̂k =
1

2krk

2k
∑

j=1

(−1)jRe(G(reijπ/k)). (149)

Using the Poisson summation formula, Abate and Whitt [1] derive for 0 < r < 1, k ≥ 1 the
error bound

|P(X = k)− p̂k| ≤
r2k

1− r2k
. (150)

For practical purposes one can think of the error bound as r2k, because r2k/(1− r2k) ≈ r2k

for r2k small. To have accuracy up to the nth decimal, we let r = 10−n/2k.

11.4. General tail asymptotics. The next theorem follows from Cauchy’s coefficent for-
mula, and pushing the contour of integration past singularities; see [17, p. 259].

Theorem 21 (Expansion of meromorphic functions). Let f(z) be a meromorphic function
at all points of the closed disc |z| ≤ R, with poles at points α1, α2, . . . , αm. Assume that
f(z) is analytic at all points of |z| = R and at z = 0. Then there exist m polynomials
{pj(x)}mj=1 such that

fn = [zn]f(z) =

m
∑

j=1

pj(n)α
−n
j +O(R−n), (151)

where the degree of pj is equal to the order of the pole of f at αj minus 1.

An important consequence of Theorem 21 is that the asymptotic behavior of all generating
functions whose dominant singularities are poles can be easily analyzed. For instance,
Theorem 21 can be applied to the pgf

F (z) =
(s−A′(1))(z − 1)

zs −A(z)

s−1
∏

k=1

z − zk
1− zk

, (152)

which is a meromorphic function. For many choices of A(z), including A(z) = exp(λ(z−1)),
it can be proved that the dominant singularity is the pole zs ∈ (1,∞) of order one, leading
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to the asymptotic result

P(X = k) ≈ −rs

( 1

zs

)k+1
for large k (153)

with

rs = lim
z→zs

(z − zs)F (z)

=
(s−A′(1))(zs − 1)

szs−1
s −A′(zs)

s−1
∏

k=1

zs − zk
1− zk

. (154)

This gives

P(X ≥ k) ≈ − rs
zs − 1

( 1

zs

)k
for large k. (155)

Note that this corresponds with (128), except that now the residue is calculated from the
expressions for F (z) that is in terms of the roots inside the unit circle. For an alternative
derivation of (155), that does not use the notion of meromorphic functions, see Tijms [29,
p. 365].
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