
10 Single-server models

The topic of this chapter is the exact and approximate analysis of G/G/1 queues. In
the next section we first consider the model with phase-type service times. Phase-type
distributions may be used to approximate any non-negative distribution arbitrarily close;
see e.g. [9, 10]. The waiting time distribution for this model can be determined exactly
by means of the spectral expansion method. In Section 10.2 we present some simple
approximations for the first two moments and the distribution of the waiting time for the
model with general (not necessarily phase-type) service times.

10.1 The G/PH/1 queue

We will study a single-server queue with phase-type service times and arbitrarily distributed
interarrival times. The interarrival time distribution is denoted by FA(·) with mean 1/λ.
The service times have a mixed Erlang-r distribution with scale parameter µ. This means
that with probability qn the service time is the sum of n exponential phases with the same
parameter µ, n = 1, 2, . . . , r. The phase representation of this distribution is shown in
figure 1.
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Figure 1: Phase representation of the mixed Erlang service time distribution

The system behavior will be analyzed at arrival instants. The state on arrival instants
can be described by the pair (i, j), where i is the number of customers in the system and
j the number of remaining service phases of the customer in service just before an arrival.
This two-dimensional description leads to a G/M/1 type model, as studied in the previous
chapter; see [8, 3, 7] for efficient algorithms for the computation of the matrix-geometric
solution.

Alternatively the state on arrival instants can be described by the one-dimensional
states i where i is the number of uncompleted service phases in the system. In doing
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so, we loose part of the information, since we cannot determine the number of customers
in the system from this description (except when the service times have a pure Erlang
distribution). But information on the number of uncompleted service phases is all that is
needed to determine the waiting time. The transition probability pij from state i ≥ 0 to
state j > 0 is given by

pij =

{
q1bi+1−j + q2bi+2−j + · · ·+ qrbi+r−j i ≥ 0 , 0 < j ≤ i+ r,
0 i ≥ 0 , j > i+ r,

where bk is defined as the probability that k service stages are completed during an inter-
arrival time, so

bk =

∫ ∞
0

(µt)k

k!
e−µtdFA(t) , k ≥ 0 .

Note that the Markov chain on arrival instants is irreducible and aperiodic. Henceforth it
will be assumed that the offered load ρ, defined by

ρ = λ

(
q1 ·

1

µ
+ q2 ·

2

µ
+ · · ·+ qr ·

r

µ

)
,

is less than 1. Then the equilibrium probabilities pi of finding i customers on arrival exist.
For i > 0 the equilibrium equations are given by

pi = q1

∞∑
k=0

pi−1+kbk + q2

∞∑
k=0

pi−2+kbk + · · ·+ qr

∞∑
k=0

pi−r+kbk, (1)

where by convention
p−1 = p−2 = · · · = p1−r = 0. (2)

Note that we do not pay attention to the equilibrium equation in state 0; since the equi-
librium equations are dependent, this one will be satisfied automatically once we have
satisfied (1). To solve the equilibrium equations (1) we try to find r basis solutions of the
form

pi = σi, i = 0, 1, 2, . . .

Substitution of this form into (1) and division by σi−1 yields

σr =
(
q1σ

r−1 + q2σ
r−2 + · · ·+ qr

) ∞∑
k=0

bkσ
k,

and thus, by substituting the expression for bk, we find the following equation for σ,

σr =
(
q1σ

r−1 + q2σ
r−2 + · · ·+ qr

)
E(e−µ(1−σ)A), (3)

where the generic random variable has distribution FA(·). Clearly, only solutions with
|σ| < 1 are useful. By using Rouché’s Theorem it can be shown that equation (3) has
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exactly r roots inside the unit circle (cf. [1]). We assume that these roots are all different
and label them σ1, σ2, . . . , σr. Now we take the linear combination

pi =
r∑

k=1

ck(1− σk)σik.

For any choice of the coefficients ck, this linear combination satisfies (1); it remains to
determine the coefficients ck such that the convention (2) is satisfied. Substitution of this
linear combination into (2) yields

c1(1− σ1)τ i1 + c2(1− σ2)τ i2 + · · ·+ cr(1− σr)τ ir = 0, i = 1, 2, . . . , r − 1,

where τk = 1/σk. These equations are of a VanderMonde-type and therefore, they can be
solved explicitly using Cramer’s rule. Then we get

ck =
C∏r

j=1(1− τj)

∏
j 6=k(1− τj)∏
j 6=k(τk − τj)

, k = 1, . . . , r ,

for some constant C. This constant follows from the normalization equation, which, by
using Lagrange’s interpolation formula, leads to

C =
r∏
j=1

(1− τj).

Our findings are summarized in the following theorem.

Theorem 10.1 For all i = 0, 1, 2, . . .,

pi =
r∑

k=1

ck(1− σk)σik,

where σ1, . . . , σr are the roots with |σ| < 1 of equation (3) and (with τj = 1/σj)

ck =

∏
j 6=k(1− τj)∏
j 6=k(τk − τj)

, k = 1, . . . , r .

The arrival probabilities pi are of the same form as the one for the standard G/M/1
queue (i.e., a sum of geometric distributions). Thus the waiting time distribution can also
be found along the same lines as for the G/M/1, yielding

P (W > t) =
r∑

k=1

ckσke
−µ(1−σk)t, t ≥ 0. (4)

Based on (4) it is easy to find expressions for the moments of the (conditional) waiting
time. Hence the problem of finding the waiting time distribution has been reduced to that
of finding the roots σk of (3).

3



In the special case of (pure) Erlang-r service time the roots σk can be found very
efficiently. Then (3) simplifies to

σr = E(e−µ(1−σ)A).

The idea is to reduce this equation for r roots to r equations for a single root, by raising
both sides of the above equation to the power 1/r. This leads to

σ = φF (σ) , (5)

where φ satisfies φr = 1 and

F (σ) = r
√
E(e−µ(1−σ)A) .

Thus φ can be selected from the r unity roots e2πim/r, m = 0, 1, . . . , r− 1. For each choice
of φ equation (5) is a fixed point equation. We can try to find the root of (5) with |σ| < 1
by using the iteration scheme

σ(k+1) = φF (σ(k)) , k = 0, 1, . . .

starting with σ(0) = 0. For certain classes of interarrival time distributions it can be shown
that, indeed, the sequence σ(0), σ(1), . . . converges to the desired root; see [1] for more
details. These classes include deterministic, shifted exponential, gamma, mixed Erlang
and hyper-exponential distributions.

10.2 The G/G/1 queue

Let us now consider a single-server queue with generally distributed service times and
interarrival times. For this system we present some approximations.

The simplest approximation for the mean waiting time assumes that the randomness
of the interarrival times has more or less the same effect on the mean waiting time as
the randomness in the service times. Let E(A) and E(B) be the mean interarrival and
mean service time, and denote their coefficient of variation by cA and cB, respectively. The
approximation for the mean waiting time is given by (see, e.g., [6, 11])

E(W ) =
ρ

1− ρ
· c

2
A + c2

B

2
· E(B), (6)

where the traffic intensity ρ is assumed to be less than 1,

ρ = E(B)/E(A) < 1. (7)

Note that the approximation is exact for Poisson arrivals (for which cA = 1). Also, under
heavy load conditions (ρ close to 1), the waiting time distribution in the G/G/1 system is
approximately exponentially distributed with mean given by (6); see, e.g., [4].
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Now we present a simple iterative method to approximate the first two moments (and
the distribution) of the waiting time. We assume that at time t = 0 the zeroth customer
arrives at an empty system, having a service time B0. Define for n ≥ 1,

An = the time between the arrival of the (n− 1)th and the nth customer,

Bn = the service time of the nth customer,

Wn = the waiting time of the nth customer,

Sn = the sojourn time of the nth customer = Wn +Bn.

Both {An}n≥1 and {Bn}n≥0 are sequences of independent identically distributed (i.i.d.)
random variables. It is readily verified that for n ≥ 1,

Wn = (Sn−1 − An)+, (8)

where (x)+ = max(x, 0). This equation is the starting point for an iterative method to
approximate the first two moments of the stationary waiting times (see [5]),

E(W ) = lim
n→∞

E(Wn), E(W 2) = lim
n→∞

E(W 2
n),

where the limits exist by virtue of stability condition (7). Equation (8) relates the waiting
time of the nth customer to the sojourn time of the (n−1)th customer. From this equation
we get the following expression for the kth moment of Wn,

E(W k
n ) =

∞∫
0

∞∫
z

(x− z)kdFSn−1(x)dFAn(z). (9)

Here we concentrate on the first two moments (so k = 1, 2). If the first two moments of
the sojourn time of the (n− 1)th customer are known and we fit a tractable distribution to
these two moments, then the above expression with the fitted distribution can be used to
compute an approximation for the first two moments of the waiting (and sojourn) time of
the nth customer. For the two moment fit we may use a mixed Erlang or hyper-exponential
distribution, depending on whether the coefficient of variation is less or greater than 1 (see,
e.g., [12]). This procedure is then repeated for the next customer and so on. The resulting
iteration scheme is presented below.

Iteration scheme

1. Initially set E(W0) = E(W 2
0 ) = 0 and set n = 1;

2. Fit a tractable distribution to the first two moments of Sn−1. The fitted distribution
F̃Sn−1(·) is a mixture of two Erlang distributions with the same scale parameter if the
coefficient of variation is less than 1, and otherwise it is a mixture of two exponential
distributions with balanced means.
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3. Compute E(Wn) and E(W 2
n) according to (9), with FSn−1(·) replaced by the fitted

distribution F̃Sn−1(·).

4. If |E(Wn)−E(Wn−1)| and |E(W 2
n)−E(W 2

n−1)| are sufficiently small, then stop and use
E(Wn) and E(W 2

n) as approximation for E(W ) and E(W 2); otherwise set n = n+ 1
and go to step 2.

In general, the approximations for E(W ) and E(W 2), produced by this algorithm, are
excellent; see [5] for more details. Of course, the distribution of the waiting time can be
approximated by fitting a distribution on the (approximate) first two moments.

Note that the iteration method can be used to gain insight in the transient behavior
of the queueing system; e.g., What is the time (in terms of number of arrivals) needed to
reach stationarity? Further, the method may also be used in case of discrete interarrival
and service time distributions (cf. [2]).
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